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ABSTRACT 

The coastal zone is a highly dynamic entity both spatially and temporally and when shoreline 

changes (and in particular retreat) occur on a hmnan time-scale, measurement of the rate of change 

becomes a pressing issue. This dynamism presents an excellent scenario for monitoring change 

using remote sensing techniques, and in the case of coastal sand dunes, where the requirement is 

to measure small scale changes such as erosion or accretion in the region of 10 or 20 m, aerial 

photography is the preferred source of remotely sensed data. 

The rapid developments in digital camera technology and real time satellite differential Global 

Positioning Systems have yielded new opportunities for mapping and monitoring environmental 

change when used with image processing and mapping software and state-of-the-art digital 

photogrammetric workstations. Despite the progress in digital technologies, however, there is still 

considerable lack of awareness on the part of potential users, and it is in response to this that the 

processing chain for data collection through to orthophoto production described here has been 

developed. This study explores the major issues that affect quality, mission logistics and cost and 

will demonstrate the methodology and application of digital techniques for producing georectified 

imagery and contoured orthophoto maps of coastal environments. This will be achieved through a 

series of case studies of dynamic dune environments in south-west England and France. 

Digital imagery was captured using a colour infrared Aerial Digital Photographic System and 

ground control was collected using differential Global Positioning Systems. This study seeks to 

assess the application of this imagery to coastal dune monitoring, putting these new techniques 

within the grasp of coastal dune managers, enabling them to make use of digital imagery captured 

to different specifications depending on the accuracy requirement of the end product. 

The results indicate that this type of imagery and the techniques used can provide the dune 

manager with information which would otherwise be too costly or time consuming to acquire. 2D 

rectification of the imagery provided maps of dune retreat and accretion with errors in the region 

of± 1.5m, and rectification to a higher order using 3D photogrammetric correction provided 

1 :5000 contoured orthophotographs with mean xy errors in the region of 2. 5 m and mean elevation 

errors in the region of 1.5m. 
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CHAPTER !  

THE COASTAL ZONE- a suitable case for monitoring change 

1.1.  INTRODUCTION 

The final decade of the 20th century has been marked by the extraordinary pace of technological 

change, commonly referred to as the 'digital revolution'. In Earth Science, Geography and 

Remote Sensing this change includes the ready availability of desk top computers with hitherto 

unprecedented computational speed and power, as well as specially developed software such as 

GIS, softcopy photogrammetry and user friendly remote sensing packages. These developments 

have created real opportunities for, amongst others, geomorphologists, biologists, ecologists and 

planners to map distributions and monitor change in the environment. In addition, the digital 

revolution has placed a range of tools in the hands of these researchers which provide data for 

advanced techniques in analysis, and these include miniature data loggers, micro-processor 

circuits, Global Positioning Systems (GPS) receivers and digital cameras. 

It is an evaluation of the opportunities presented by the advent of the large array digital camera 

which forms the subject of this thesis, founded on the need for new techniques of rapid acquisition 

of environmental data for planning, management and prediction. Recognition of the needs of the 

environmental community and the opportunities presented by the availability of these cameras 

resulted in the development of the Aerial Digital Photographic System (ADPS) by 

GeoTechnologies at Bath Spa University College, thereby providing the means by which aerial 

digital photographic data could be obtained. 



1.2. AIMS AND OBJECTIVES 

The aim of this study is the evaluation of small fonnat aerial digital photography as a qualitative 

and quantitative tool for use in environmental monitoring. In achieving this aim, six objectives 

must be realised. These are:-

• An understanding of the values and limitations of digital cameras. 

• Development of a methodology of data collection using the ADPS. 

• A reasoned selection of a test environment in which evaluation of the ADPS can take 

place. 

• Application of the ADPS in the selected environment with subsequent evaluation of its 

performance in monitoring environmental change. 

• An appreciation of the methodologies of image processing using remote sensing 

software and soft -copy photogranunetry as applied to digital photography within the 

context of this study. 

• Recommendations with regard to future deployment of digital photographic systems in

environmental monitoring. 

The performance of the small format digital camera and the Aerial Digital Photographic System 

(ADPS) will therefore be tested in a variety of contexts within coastal sand dune environments. 

Before any evaluation of its performance can be made, it will be necessary to have an 

. 

understanding of the characteristics of the environment in which the digital camera will be tested. 

if only to ensure that the opportunities provided by this tool will be correctly identified and 

grasped. To this end. this chapter will give a brief account of some of the major issues. problems 

and monitoring needs in the coastal zone in general, and this will, in chapters 2 to 4. lead into a 

more in-depth account of their relevance to coastal sand dunes in particular. 
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The use of large array, small format digital cameras in environmental monitoring is a developing 

field, and, as indicated in the aims and objectives, the characteristics of the camera and system 

must also be fully explored before the evaluation can take place. Chapter 5 will give an overview 

of digital photography and digital cameras in general, followed by a more detailed account of the 

particular digital cameras used in this investigation and the techniques employed to elicit data 

from the imagery (chapters 6 to 8). The study will culminate in several applications of the ADPS 

in coastal sand dune environments (chapters 9 to 12), each case study designed to rigorously test 

the usefulness of the approach in general, and small format digital photography in particular. 

1.3. CHANGE IN SPACE AND TIME 

In the natural sciences, the element of time is an important consideration in choosing the subject 

matter for short-term research projects centred on change detection using contemporaneous data, 

i.e., it would be useful for at least some measurable change to have occurred within the time frame 

of the research. For example, illegally deforested tropical rain forest, encroachment into National 

Parks, areas subject to flooding and areas subject to landslides are potential candidates, but the 

changes here are episodic and they may not actually occur within the time frame of the project. In 

contrast the coastal zone is a highly dynamic entity both spatially and temporally where the 

interactions of natural processes with socio-economic factors create stresses which gives rise to a 

continuously changing environment. 

1.3 .1. The question of time 

When shoreline changes (and in particular retreat) occur on a human time-scale, measurement of 

the rate of change becomes a pressing issue for many reasons. These include scientific 

investigation into natural processes and sediment budgets per se. which may then be applied by 

engineers to study the effectiveness of shoreline protection structures or the construction of safe 

set-back lines. Planners and Insurers need to make decisions regarding existing property and land 
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use and future development and managers need to make management decisions which will not 

become obsolete in the very short term. 

The rate of change at the coastal zone has accelerated markedly over the past 50 years (1.5) and 

mapping the differences has not always kept pace with the change. Indeed, many of the changes 

take place around the immediate boundary between the sea and the land, in the subtidal zone, the 

intertidal zone, the backshore and at the dune, cliff or marsh. These areas are usually not mapped 

in detail simply because they are changing incessantly. Scientists, engineers and coastal managers 

are looking for new, cost effective ways of monitoring and mapping the coastal zone that are not 

constrained by the inertia that often accompanies national mapping campaigns and for data that 

can fill in the 'missing details' associated with even relatively large scale maps (e.g. 1 :2500) that 

are so often vital for investigations at the very margin between the land and the sea. 

1.3.2 . Tbe question of scale 

The dynamism of the coastal zone presents an excellent scenario for monitoring change using 

remote sensing techniques and Cracknell (1999 p. 485) has cited the coastal zone as: 

"the last remaining .frontier of opportunity for remote sensing techniques. The key to 

success, or otherwise, of remote sensing in coastal or estuarine studies lies in the 

question of scale". 

This 'question of scale' is important in terms of the physical dimensions of the area of interest the 

magnitude of the changes, the type of information that is required and the scale of the final output, 

all of which are related to the resolution of the sensor. Therefore, it is of the utmost importance to 

select data that is acquired at the appropriate scale so that the information desired is obtained with 

the least data (Atkinson & Curran, 1 997). For example, both pictures shown in Plate 1 .1 are false 

colour infrared images, but the type of information that can be derived from them is very different 

4 



for each. The image on the right is a small subset of a Landsat TM scene imaged at 30 m ground 

pixel resolution and the image on the left is part of the same area (indicated with an arrow) 

photographed with a digital camera with a ground pixel of 50 em. 

Plate 1.1 Landsat TM subscene of Newquay, Cornwall, England and aerial digital photograph at 

Holywell Bay, Cornwall 

Whilst the Landsat image gives an excellent overview of a relatively large area and shows that it is 

a coastal area, it is difficult to define with certainty the type of beaches and their sediment 

charncteristics. In contrast, the aerial digital image of a sand dune system shows individual dune 

ridges, paths through the dunes, a golf course and a small settlement, although it does not provide 

a contextual view of the area. Where typically small scale changes such as erosion or accretion of 

say 10 or 20 m of sand dune are to be measured, the use of Landsat imagery would be totally 

inappropriate and aerial photography would be the obvious choice. If, on the other hand, it were 

necessary to monitor remotely the land use in a region, then Landat TM imagery would probably 

be the more appropriate data to use, as was the case in the 1990s when the National Remote 

Sensing Centre was charged with checking inventories submitted by farmers in the U.K .  regarding 

the hectarage of crops and set -aside land on individual farms. 
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Whereas there have been innumerable studies using satellite imagery for small scale mapping and 

monitoring at the coast where extensive features and general trends are of interest (Brivio & 

Zilioli, 1996; Ramsey & Laine, 1997; Green et a/. , 1998; Ciavola et a/. , 1999), there have been 

few, if any, studies using small format aerial digital photography for large scale mapping, where 

detailed information regarding changes in the position, size and morphology of coastal features is 

required. 

Of all the coastal landforms, coastal dunes, composed of unconsolidated sediments - easily eroded 

by wind, waves and trampling, probably offer one of the best opportunities for testing aerial 

digital photography and its related technologies within a relatively short time scale. For, not only 

are dunes characterised by near continuous multidimensional changes (length, width, height and 

position), as opposed to say hard rock environments, they are also subject to significant surface 

character changes such as alterations in vegetation cover and erosion of new blowouts and paths. 

In additioll they are easily accessible for field work. and are not subject to tidal constraints as are 

some coastal environments such as salt marsh and mud flats. Coastal dunes account for only one 

part of the spectrum of coastal landforms and many of the problems encountered at the dune coast 

are common to and influenced by issues related to the coastal zone as a whole. It is important 

therefore to examine issues in the broader context of the coastal zone and in doing so the potential 

to use aerial digital photography beyond the singular application to sand dune coasts might be 

considered. One of the most basic questions for coastal scientists lies in the fundamental problem 

of defining what actually constitutes a coastal zone 

1.4. DELINEATION OF THE COASTAL ZONE 

Arriving at a definition of the coastal zone that satisfies everybody is problematic for a variety of 

reasons. In the first place, the boundary between the land and sea is difficult to define because the 
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coast is a dynamic entity both spatially and temporally. There are areas where strong interactions 

take place between the land and the sea including beaches, marshes, coral reefs and rivers but it 

may be difficult to decide where to draw the boundary. For example, in the case of rivers, the 

boundary might be drawn at the limit of the tidal influence or at a level that includes the entire 

watershed bearing in mind the delivery of water, pollutants and sediments into the coastal zone. 

In addition to political and physical factors there is a cultural dimension that cannot be ignored. In 
western cultures the limits of the coastal zone are indeed often determined by the geographical 

extent of the natural processes and human activities that take place, or by administrative 

boundaries, and so can extend as far inland and seaward as is required by management objectives 

(Mcinnes et a/., 1998). However, this approach is felt to be inappropriate in other cultures where 

the delineation along artificial boundaries is intrinsically unacceptable and where the coast has 

traditionally been viewed as a transitional region between land and sea (Kay & Alder, 1999). 

Based on the premise that the coast is an area that shows a connection between land and sea. 

Ketchum ( 1972) defined the coastal zone as: 

The band of dry land and adjacent ocean space (water and submerged land) in 

which terrestrial processes and land uses direct oceanic processes and uses, and 

vice versa. 

This definition is very imprecise, and for management purposes it is often necessary to take a 

more pragmatic approach in order to achieve management objectives within the available resource 

allocation (Soulsby, 1998). This belief is reiterated by Sorensen (1997), who has remarked that 

the boundaries of the coastal zone should extend as far inland and as far seaward as is necessary to 

enable the management issues to be resolved. The World Bank Environment Department ( 1993) 

states that: 
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"For practical purposes, the coastal zone is the special area endowed with special 

characteristics, of which the boundaries are often determined by the special 

problems to be tackled". 

In many instances the area of interest lies just either side of the interface between the water and 
the land and the typical swath width of the Aerial Digital Photographic System at I km lends itself 

to efficient and economical survey. 

1.5. THE COASTAL RESOURCE 

Coastal areas are increasingly valued by society for a diverse range of uses including living space, 

tourism, port and harbour development and waste assimilation (CCIRG, 1996). Natural resources 

including fisheries, forestry, oil, gas and marine aggregates are all exploited at the coast and, in 

addition, coastal areas are now seen as areas of worthy of conservation for the protection of 

biodiversity (Kay & Alder, 1999). The actual value of the coastal resource is difficult to assess 

since some facets of coastal zone development and uses for industry. commerce and tourism can 

be characterised in economic terms, whereas the ecological-economic aspects pose a complex 

problem regarding evaluation in monetary terms. The UK annual turnover by the marine related 

sector of the economy has been estimated at £51.2 billion (1994-1995 prices) and the total marine 

related value added has been put at £27.8 billion (OST, 1997). In contrast estimates of the value 

of natural resources such as storm buffering and coastal ecosystem biodiversity (such as the 

estimate of $1.28 trillion on a global scale. by Costanza et a!., (1997)) are very difficult to 

quantify and are often thought to be fictitious (Turner et a!., 1998). Nevertheless, approximate as 

these values may be, the implied high monetary value of the coastal zone underlines the 

importance of developing tools for large scale data acquisition. 
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1.6. NATURAL AND ANTHROPOGENIC IMPACTS ON THE COASTAL WNE 

1.6. 1 .  Population Pressure At Tbe Coastal Zone 

Walter Reid (1997), Vice President for Programs at the World Resources Institute has suggested 

that there will be more people living at the coastal zone in 2020 than were living in the world in 

1997. Public pressure on coastal zones around the world has increased dramatically in the last 50 

years and there have been numerous estimates of the percentage of the world's population now 

living at the coast, as well as innumerable forecasts of the potential increase over the next few 

decades. For example, in the Mediterranean region there are 132 million permanent residents, with 

a further 97 million national and international tourists each year (Paraskevas & Lekkas 1997). 

The USA has experienced an estimated 27% increase in the population living at the coast within 

the past decade, bringing the current total to around 54% and in Australia, some 83% of the 

population was living near the coast during the 1980's (Carter, 1988). In Latin America over 50% 

of the coast is believed to be under development pressure with the consequent rapid population 

growth and urbanisation (IDB, 1997). The Belgian coastal population grew by 225% in the 50 

years between 1919 and 1968 (Charlier & Charlier, 1995). Cyprus has experienced a rapid 

increase in tourism in the past two decades, 90% of which has taken place at the coast (Loizidou 

& Iacouvo, 1997), and the Egyptian population along the Red Sea and Mediterranean coasts is 

predicted to rise by between 81% and 125% by 2025 (Khalil, 1997). It has been estimated that 

50% of the population of the industrialised world lives within 1 km of the coast and that this 

population is set to grow by 1.5% p.a. over the next decade (Goldberg, 1994). 

These few examples share a common trait indicating an inexorable rise in the actual and predicted 

population living at the coast. As a consequence of this increased population pressure. coastal 

zones are under severe stress, a condition which has led Eke ( 1997) to remark that economic 

dynamism is often accompanied by loss of natural resources, loss of fertile agricultural land and 

increase in environmental degradation. The problems are compounded by natural phenomena 
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such as erosion, loss of sediment, and by indirect anthropogenic pressures such as enhanced global 

warming and its associated sea level rise. This brief analysis clearly underlines the need for 

readily accessible monitoring and mapping at the coastal zone and new digital technologies seem 

to offer the opportunity to achieve this to a wide spectrum of users. Figure 1 . 1  outlines some of 

the pressures which cause stress at the coastal zone, ultimately giving rise to change. 

INUNDATION 

Figure 1 . 1  Some stress related pressures at the coastal zone 

1 .6.2. Sea Level Rise 

MINING AND 
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Sea level rise is arguably one of the most important potential impacts of global climate change in 

terms of environmental and social consequences (IPCC, 1995). In worldwide studies of sea level 

trends there are difficulties in separating natural changes in sea level from those induced by an 

increase in ocean volume resulting from anthropogenic global warming (Pirazzoli, 1993) or 
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indeed from apparent changes due to changes in land level (Harvey et a!., 1 999). Furthermore, 

there is no hard evidence of accelerated sea level rise this century (Gornitz & Seeber, 1 990; 

Shennan & Woodworth, 1 992; Gornitz, 1 995). Although significant uncertainties still remain in 

estimating the amount of future warming and its impact on sea-leveL the IPCC recognised in 1 996 

that evidence suggested that there was a discernible human influence on the climate (CCIRG, 

1 996) and a total rise in the order of 230 mm by 2050 and 480 mm by 2 100 ( 4 mm per annum) has 

been forecast recently (Bray et a/. , 1 997), as compared with 'background' levels of a mean sea 

level rise of 1 . 8  ±0. 1  mm per annum over the period of 1 880 - 1 980 (IPCC, 1 995). 

A recently published article in 'The Observer' (McKie, 2000), revealed that between 1 764 and 

1 793, Captain William Hutchinson, a dockmaster at Liverpool, measured the high-tide mark twice 

a day for 30 years, whereas generally in the U.K. measurements of sea levels were not started 

systematically until well after the industrial revolution had begun Hutchinson's measurements 

give a record of sea levels which precedes the build up of anthropogenic greenhouse gases in the 

atmosphere and adds a valuable new dimension to the records showing that until the 1840's there 

was relatively little change in sea levels at LiverpooL providing another piece of evidence that 

there is indeed a human impact on the climate and hence sea-level rise. 

Change in mean sea-level is of paramount importance to coastal managers as coastal defence 

strategies and estimates of risk of flooding are based on magnitude and frequency calculations for 

storm surges and extremely high tides; return periods are likely to decrease with increasing global 

warming. Rising sea levels and changing patterns of storm activity have the potential to increase 

nearshore wave energy with implications for future flooding, patterns of erosion, sediment 

transport and deposition (ibid.) 

The impact of sea level rise will depend, in part on the type of coastal environment. It is thought 

that coasts protected by artificial defences will not be able to adjust to rising sea levels (Pilkey & 
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Wright, 1988); gravel beaches will be highly vulnerable (Brunsden 1992; Orford et al. , 1 995) and 

wetlands, occupying a limited vertical range, will be the most vulnerable (Pethick, 1 992, 1 993). 

Sandy beaches, although susceptible to increased erosion as sea level rises, will be able to adjust 

effectively providing that there are backshore sediment stores e.g. dunes, and that the backshore is 

allowed to retreat (Brunn, 1988). In many countries, these backshore sediment stores are not 

mapped in sufficient detaiL for reliable management decisions to be made. Traditional methods 

involving ground based profiling are very time consuming and expensive in man-power. The 

development of a cost effective, rapid method for calculating the extent and volumes of these 

sediment stores using aerial digital photography and digital photogrammetry would provide a 

useful tool for dune managers to monitor the progress of change. 

1. 7. COASTAL MANAGEMENT 

Given the fact that the population at the coast is large and increasing, coastal managers must find 

new ways to manage the coast that allow harmonisation of human interests with the natural 

processes of dynamic evolution that has always characterised the coast (Tooley & Shennon, 

1987). Integrated coastal management (ICM) is an holistic approach to coastal management 

which takes account of human, physical and biological processes at the coast and which promotes 

integrated planning to enhance management of this valuable resource (Mcinnes et al., 1 998). 

Although ICM has been practiced in some parts of the developed world, e.g. United States of 

America and Australia for around thirty years. it is only of late that the concept has gained 

sufficient momentum to be practiced, to a greater or lesser extent, on a global scale. There has 

been much discussion in recent decades regarding integrated coastal management (ICM) and one 

of the conclusions drawn from this is that globally, efforts to achieve ICM are piecemeal. lack co­

ordination, sufficient funding and often outright sincerity (Charlier & Charlier, 1995). This belief 

has led prominent figures worldwide to call for renewed action, and. since the beginning of the 
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1 990' s. the adoption of nationally integrated management and planning has been promoted by 

several international organisations. These include; Intergovernmental Panel on Climate Change 

(IPCC), 1 992; Council of the European Communities, 1 992; United Nations Conference on 

Environment and Development, in Rio de Janiero. 1992; and the Organisation for Economic 

Cooperation and Development (OECD) 1 993. What is clear, is that data related to all facets of the 

coastal zone will be necessary to enable ICM and the broad panoply of aerial survey techniques 

represent a major component in acquiring data to undertake that task. 

Such sustainable management strategies must be based on detailed knowledge of all types of 

coastal systems. With particular reference to sand dune management Davis ( 1992) has remarked 

that much still remains to be achieved before comprehensive and effective management can be 

implemented which will ensure their sustainability for future generations and although coastal 

dunes have been studied over a period of many years, numerous aspects of their formation and 

evolution remain poorly understood. This thesis will concentrate on assessing the value of the 

ADPS in recording distributions and detecting change in the dune and beach morphology and the 

vegetation cover. If assessment and measurement of these environmental changes proves to be 

successful, then its value in monitoring the less subtle changes in infrastructure and buildings in 

the coastal zone will almost certainly be possible. 
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CHAPTER 2 

COASTAL DUNES - physical background 

2.1.  SAND DUNE DEVELOPMENT 

This chapter is not intended to be an all-inclusive discussion on the physical nature of sand 

dune systems, rather, it is intended to review the physical dynamics that make dunes 

susceptible to pressure and adjustment . A knowledge of the physical character of dunes will 

allow an appreciation of the type of evidence that makes them a suitable testbed for this new 

technology. 

2.1.1.  Global distribution

On a global basis sand dunes are most common on dissipative coasts (characterised by flat 

shoaling slopes and wide surf zones) with strong onshore winds and a plentiful supply of sand 

sized sediment (Carter. 1 988). However. in Europe, they occur in a variety of different 

coastal settings from exposed Atlantic coasts to more sheltered North Sea coasts and from the 

Baltic to the Mediterranean. The extent and morphology of dune systems also vary 

considerably: from the extensive hindshore systems of the Holland coast in The Netherlands 

and the chains of barrier dune islands of southern Iberia, to small exposed bay dunes often 

found in predominantly rocky coastlines such as south-west England and Brittany (Doody, 

1 99 1 ,  Guilcher & Hallegouet, 199 1 ;  Radley, 1 992; Arens & Wiersma, 1 994). 

2.1.2. Sediment sources 

Coastal sand dunes are dynamic geomorphologic features that receive. store and release 

excess beach sand. These exchanges of sediment take place over all time scales from 

thousands of years to minutes and with spatial dimensions of millimetres to kilometres 

(Carter, 1 99 1 ). 
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The seas surrounding Europe are relatively shallow and provide a vast reservoir of sand, 

gravels and muds derived for the most part from the last glaciation. Most of the European 

Holocene dunes have formed within the last 5 000 years, and many are less than 1 000 years 

old (Klinj, 1990a; Guilcher & Hallegouet, 199 1; Haslett et at., 2000). They are mainly 

composed of glaciogenic sands that were stranded during a minor sea level regression some 

5 - 6 000 years B.P., and which have been reworked and incorporated into the coastal system. 

Present day sources of sediment include the products of cliff erosion, especially in areas of 

soft rock geology and from glacial till deposits and fluvial sources, particularly in areas where 

coarse (sand grade) sediments dominate the bedload. These sediments may then be 

transported alongshore and then delivered immediately to the beach or they may be 

transported first to offshore bars where they are stored temporarily, and subsequently 

transported to the beach by wave action (King, 1973; May, 1985). This exchange of sediment 

is continuous but particular phases in the cycle are dominant, depending on the prevailing 

conditions (Figure 2 . 1). 
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Figure 2. 1 Sediment exchange at the nearshore I beach/ dune interface 

For example, during summer, the cycle is dominated by a net movement of sediment from 

offshore bars onto the beach and into the dunes, whereas, during winter storms the cycle is 
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dominated by marine erosion of the dunes and beach resulting in a net sediment transport 

from the beach to offshore bars. In addition, there may be increased aeolian erosion where 

dune sand may be deposited on the beach or in the dune hinterland, depending on wind 

direction. Some of the sand removed from the dune system during storm surges is 

incorporated into the foredunes afterwards and this dynamic sediment exchange between 

dunes and beach ensures the morphological stability and ecological diversity of dune systems 

(Arens & Weirsma, 1994). 

There are numerous quantitative studies that demonstrate the dynamic nature of coastal dunes, 

for example, Bennet and Olyphant ( 1 998) found that the backshore width varied from about 

40 m in summer to 25 m in winter months. Relative rates of aeolian transport varied by more 

than two orders of magnitude depending on topography, vegetation cover, sand fetch and the 

direction of wind approach. De Ruig ( 1 989) calculated an average transport rate of 3 - 3 .5 

m3m-1yr-1 , whereas Carter ( 1988), quoted 50 000 m3km-1 supply of sand to a beach due to 

dune face failure and recession in a matter of hours. Arens & Weirsma ( 1 994) calculated 

maximum aeolian transport rates of 50 m3m-1yr-1 for a severely eroding coast. 

2.1.3. Sediment dynamics 

Dunes depend on the transfer of sand, by wind, from drying intertidal areas. Sand is 

deposited first in the intertidal zone and then on to the nearshore when currents and wave 

action transport sediment from offshore and alonghore deposits. As the sand dries, particles 

(usually between 0.05 rnm and 3 rnm in diameter) are prepared for aeolian transport and once 

the wind reaches the critical entrainment velocity, particles are carried downwind in the air or 

by rolling and saltation until they are trapped by vegetation or other physical barriers. 

When sand is lost from a beach the level drops and the intertidal zone becomes narrower. 

One of the symptoms of this condition is a failure of the sediment to dry sufficiently for 

aeolian transport between tides, characterised by a wet intertidal zone. Wet sand on the beach 

is a good indicator of an inadequate sand supply for dune building and is a feature which is 

easily recognised in aerial photographs as can be seen in Plate 2. 1 .  
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Plate 2. 1 True colour digital aerial photograph of the dune system at Northam Burrows, 

Devon, England 

The dune system at Northam Burrows is under considerable pressure as the dune is not only 

separated from the beach by a pebble ridge (Popple Ridge), but the beach level has dropped to 

such an extent that the sand apron remains wet, as evidenced by the darker tone compared 

with the dry sand exposed on the dune and in the bunkers on the golf course. This condition 

severely restricts the sand supply to the dune system. 

2. 1.3. 1. Sediment transport models 

A comprehensive understanding of beach-dune interactions is fundamental to any judicious 

management philosophy and the dynamics of aeolian transport are central to this ideal. The 

beach - dune aeolian system is extraordinarily complex and there have been numerous 

attempts during the past 60 years to establish a quantitative foundation for aeolian sediment 

transport rates, to enable both measurement and the development of predictive models, e.g., 

Bagnold ( 1936); Horikawa and Shen (1960); illenberger and Rust ( 1986); Sherman (1990). 

The problem has proved arduous because most models are based on theory and laboratory 

17  



work and rely on a set of enabling assumptions: these include, steadiness of wind, a planar, 

horizontal and unobstructed surface, clean, dry and uniform sediments and an absence of 

vegetation � none of which may be reliably satisfied in a natural, dynamic, coastal 

environment. This has led Sherman et a/., ( 1 994, p.477) to remark that 'All of these 

assumptions are violated, some seriously, in coastal aeolian systems' .  

Never-the-less, models have been devised, and in most of these the transport rate depends on 

only three parameters which are critical to the estimation of threshold shear velocity, these 

are; shear velocity, sediment grain size and sediment density. For average size particles 

threshold velocity is reached at about 4 ru s-1 , but substantial sand movement is only achieved 

at high wind velocities since the rate of sand flow varies as the cube of the wind velocity, 

once the threshold has been reached (Bagnold 1 936). 

Deposition occurs when obstacles in the wind-run, such as vegetation and tidal debris. disturb 

the flow, saltation ceases. and small shadow dunes form in the lee of such obstacles (Hesp, 

1 984). The type of vegetation and the density and height of the stand all contribute to the 

final form of the incipient dune (Carter, 1 988). 

2.2. DUNE MORPHOLOGY 

The morphology of dunes is constantly changing and reliable maps of dunefields are rare. 

This situation presents an opportunity to test aerial digital photography and digital 

photograrrunetry as a cost effective means of producing and updating maps from contoured 

orthophotographs derived from true colour and colour infrared stereo photography. A basic 

knowledge of the morphology of sand dunes is necessary to enable an understanding of the 

implications of changes for the dune manager. 
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2.2.1 .  Morphology and wind regime 

The relationship between dwte morphology and wind flow is extremely complex where either 

one may influence the other. For example, as the dwte increases in height, wind velocity over 

the crest increases, particularly if the crestline is sharp, when acceleration of the wind may be 

up to twice the freestream velocity. Changes in wind strength and direction cause rapid re­

sedimentation often changing the dwte surface by the hour, especially on sparsely vegetated 

sites. Established dwte fields can alter the surface wind pattern and in front of high foredwtes 

shore parallel winds are common, irrespective of the prevailing wind direction (Carter, 1988; 

Klinj, 1990b; Arens, 1992). The presence of vegetation fundamentally alters the shape of a 

dwte, whereas a bare surface will result in a barchan form i.e. a shallow windward slope and a 

steep leeward slope at arowtd 32°, (the angle of repose for loose clean sand, (Selby, 1993)) a 

vegetated slope becomes more steep on the windward side and more shallow on the landward 

side. A barchan dune form is shown on the left of Plate 2.2 and a typical vegetated dune 

system is shown on the right 

Plate 2.2 Barchan dune form and vegetated dunes 

2.2.2. Evolution of the system 

The initial growth habit of coastal dunes is in a linear or curvilinear direction, parallel with 

the strandline but subsequent development depends upon geographic location and on 

sediment supply giving rise to dwte systems that vary in fundamental ways. They may 

stabilise at a low level, erode and recycle as in a small bay or continue to accumulate as in 
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open coast sites with a plentiful supply of sediments (Ranwell, 1975). If the coast is 

prograding, as is the case of many of the dune sites in Aquitaine, a series of ridges are formed 

with the youngest ridge to seaward, the older ridges becoming stable in a relatively short 

period. On eroding coasts where sediment supply is limited the seaward ridge undergoes a 

cycle of erosion and deposition and may move landward, either as a parabolic dune or as a 

complete ridge. This type of system is inherently unstable and can remain mobile for 

centuries (Boorman, 1977). Seaward growth of the dune is limited by storm tide height which 

can undercut the dune to form a near vertical seaward face, an example of dune cliffing can be 

seen in Plate 2.3. These photographs of Pea Island, near Oregon Inlet were taken during a 

small storm in March, 1988. 

Plate 2.3 Dune cliffing by the sea at Pea Island, Oregon 

Source: Pilkey & Thieler (1992). 
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Where this condition prevails, the windward face may continue to erode and the sand may be 

re-deposited on the leeward slope. In this way the dune continues to grow in height but 

undergoes a progressive landward shift. A flat -bottomed dune valley or slack may form 

between dune ridges when the eroding surface reaches the water table. This type of dune 

development is common on the western coast of the UK, where the prevailing Atlantic winds 

are onshore, and is independent of human interference (Boorman, 1 977). Dune slacks can 

also be formed when prograding foredunes leave inter-dune hollows which may be 

subsequently colonised by a diverse community of physiologically and morphologically 

adapted species Carter, 1 988). 

2.2.3. Blowouts 

Blowouts are basin shaped wind hollows within the dunes. They may develop as a result of 

natural gaps in the dune line which are subsequently eroded by wind action, or they may form 

where there is a poorly vegetated area on the dune. Once a small hollow forms it may be 

rapidly extended by deflation and then avalanching along the flanks. Blowout cycles are 

natural phenomena which provide free sand within the system enabling a state of dynamic 

equilibrium to develop. In time many blowouts stabilise and revegetate. 

Problems arise when anthropogenic pressure either prevents existing natural blowouts from 

healing or actually causes the formation of numerous blowouts in a system. An early warning 

sign of potential blowout development due to trampling pressure can be seen where paths 

through the dunes meet and coalesce forming 'stellate' features. Aerial photography gives an 

excellent overview of features such as blowouts as can be seen in Plates 2.4 and 2.5. 

Plate 2. 4 shows the development of numerous stellate features due to path coalescence in the 

foredunes at Holywell Bay, Cornwall, UK. This situation should be monitored carefully 

because although the individual blowouts are relatively small, many in the region of 2 m in 

diameter, (pers. obs.) they are numerous and the dune vegetation is very fragmented. This 

degree of erosion could be controlled fairly easily with appropriate management strategies 

unlike the rather more serious problem identified in Plate 2.5. 
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Plate 2.4 'Stellate' erosional features at minor path nodes in the foredunes at Holywell Bay, 

Cornwall 

Plate 2. 5 is a colour infrared digital photograph showing part of a dune coast which is 

seriously eroded. A number of large blowouts have coalesced and the first dune ridge has 

largely disappeared leaving a huge area of bare sand. This state of affairs is potentially very 

costly as the road running parallel with the coast and developments along the road will need 

protection from the sea. 

Plate 2.5 CIR digital photograph showing serious erosion of the dune front 
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In contrast, over-management which inhibits blowout formation is also detrimental to the 

system as this stabilises too much sand preventing the natural evolution of the system (Gares 

and Nordstrom, 1 99 1 ). 

2.3. DUNE CLASSIFICATION 

2.3.1. Geomorphologic classification 

The chaotic relief of many dune systems has confounded simple description and a rigorous 

process - response classification of dunes is impossible because of the complex relationship 

between topography and forcing processes, but geomorphologically relevant classifications 

have been made on the basis of age (Van Straaten, 1 96 1 ;  Hesp, 1 984) structure (Goldsrni� 

1 978), morphology (King, 1 972) and shoreline morphodynamics (Ranwell & Boar, 1 986; 

Rust & Illenberger, 1 996). The most universally applied typology is based on an 

amalgamation of several of these classifications including morphological, positional, age and 

stability factors (Carter et a!. ,  1 990). Such a typology is described by Houston ( 1 992a) who 

considers a dynamic environment where foredunes develop at the seaward edge of the 

dunefield leading to mobile dunes, transitional dunes and finally fixed dunes. Figure 2.2 

describes the dynamic dune environment put forward by Houston. 

mobile dunes 

Figure 2.2 The dynamic dune environment 

sand blow 

slacks infilling 
with blown sand 

Source: Houston, 1 992a 
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2.3. 1 . 1. Foredunes 

Foredune growth is a symptom of a positive sand budget and on natural coastlines is in a 

seaward direction. They develop where incipient (embryo) dunes in the litter zone become 

colonised by annuals which are rapidly succeeded by perennial dune building grass species, 

tolerant of high salinity and drought such as Ammophila arenaria (maram grass), Elymus 

farctus (sand couch grass) and Leymus arenarius (sea Iyme grass). These dune building 

grasses respond positively to sand deposition and can extend the foredune depositional area 

seaward by 5 - 15 m in a few months (Carter, 1988). 

2.3. 1 . 2. Mobile dunes 

Mobile dunes are generally ridges that have attained their maximum height and then move 

downwind. They are fed by sand released from foredunes and from blowouts within the 

dunes and by sand exposed on the beach by coastal erosion. Often mobile dunes have an 

eroded windward face and a marram covered leeward face. The mobility of the dune is 

controlled, to a large ex1ent, by the degree of vegetation on the leeward face: movement is 

steady and predictable if the face is well vegetated and unpredictable if the face is bare. 

2. 3. 1 . 3. Transition dunes 

Transition dunes are generally stable with a dominance of marram as the substrate contains 

little soil. Through the process of succession, a wide variety of plant species become 

established so that the transition dune eventually becomes more fixed. 

2. 3. 1. 4. Fixed dunes 

Fixed dunes are the final landform and are characterised by a low hummocky morphology 

with a permanent grassland vegetation cover. In this more inland part of the dune system 

typical species include Agrostis stolonifora, Festuca rubra, and Carex arenaria in the wetter 

areas with Calluna heath developing in dry areas. 
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2.4. SUMMARY 

In their paper entitled "Engineering geomorphology on the coast: lessons from west Dorset, 

Brunsden and Moore ( 1 999, p. 392) remarked that: 

"the first general consideration in the development of an applied 

geomorphological investigation (assuming that the problem has been 

identified, the objectives are known, and the brief has been written l) is to 

determine the nature of the resource which is to be managed and to 

understand public attitudes toward it. " 

This chapter has looked briefly at some of the physical characteristics of sand dunes. It has 

clearly demonstrated the impermanent nature of dunes and their susceptibility to often rapid 

and frequent physical change, thus confirming the rationale for selecting coastal dunes as a 

test bed for the evaluation of the ADPS. Chapter 3 will consider the relationship between 

humankind and the dune landscape. 
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CHAPTER J 

COASTAL DUNES - pressures and perspectives 

3.1. PERCEPTIONS AND MIS-CONCEPTIONS

3.1.1. Dune Vulnerability 

In 1 864, George P. Marsh ftrst wrote about the impact of humankind on sand dunes and 

contemplated "in what degree the naked condition of most dunes is to be ascribed to the 

improvidence and indiscretion of man" (Marsh, 1 864, p. 410). Considerable debate as to the 

vulnerability and fragility of dune systems prevails to this day, and whilst some authorities e.g. 

Nordstrom and Lotstein ( 1989) believe that the dynamic nature of dune systems enables them to 

readjust to stress, most workers accept that there is a threshold beyond which degradation and 

destruction is inevitable (Alveirinho-Dias et al. , 1 994 ). 

In a study of dune systems in the Eastern Cape Province South Africa Rust and lllenberger ( 1996, 

p. 1 66) have suggested that 

"certain coastal dune systems are extreme�v fragile and sensitive to even low-level 

impacts, whereas other dune components are physical�v robust, resilient and 

capable of rapid restoration, even under conditions of comparative�v heavy impact". 

This perspective seems to encapsulate the views expressed by other workers in the fteld and brings 

together even those viewpoints that at ftrst seem to be diametrically opposed to each other. In the 

light of this more comprehensive approach, judicious management strategies for coastal dune 

systems should encompass a broad spectrum of procedures to cater for the many differences in 

sensitivity. Efforts have been made to address this, for example Davies et a/., (1 995) and Simeoni 

et al. , ( 1 999) have devised multi-parameter checklists which seek to investigate the pressures on 

the dunes and the management strategies in place in order to evaluate the status of the system 

before implementing new management measures. One of the problems associated with this 
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approach is that such checklists are time consuming to use and depend on the survey of discrete 

areas of the dune system. In contrast aerial survey using digital cameras could give a synoptic 

view of an entire dune system or even entire coastline in a matter of hours. 

3.1.2. Societal Perceptions 

One fundamental problem that must be addressed with respect to the sustainable use of dune 

coasts is that of past societal perceptions and misconceptions, a phenomenon which exerts a 

powerful influence over the condition of this coastal landform. The fear of engulfment of 

hinterland developments by shifting sands and inundation by seawater in active coastal dunefields 

appears to have been universal, and such fears have prompted extensive programmes of dune 

stabilisation and reclamation all around the world; for example, Goudie, (2000) claims that the 

Japanese first began to stabilise coastal dunes using vegetation in the seventeenth century; 

McLachlan et a/. , (1994) have reported such programmes in the Eastern Cape Province, South 

Africa; Houston, (1992b) has cited examples from Denmark; Mourik et al., (1995) have described 

stabilisation with Leymus arenarius in The Netherlands whilst Favennec (1996) has described 

planting regimes in the Aquitaine using a number of Pinus species. In the USA Seabloom and 

Wiedemann (1 994) have reported the use of Ammophila arenaria (a non-native American dune 

grass) for planting schemes throughout the west coast of North America since the early 1900's and 

Mauriello (1989) has described the continued use of planting and fencing techniques to stabilise 

dunes fronting coastal properties in the barrier islands of New Jersey in the 1980's. 

Drawings and paintings and old photographs showing churches. houses and whole conununities 

partially buried by sand are fairly common in the literature but the lessons of the past have not 

always been heeded and Plate 3.1 shows a modem day example of engulfment on the Aquitaine 

coast of France at Hourtin Plage, where a relatively new development is under threat of burial by 

sand. The house is quite clearly occupied as evidenced by the open shutters and laundry on the 

washing line. 

27 



Plate 3. 1Dwelling at Hourtin Plage, Aquitaine, France partially engulfed by sand, September, 1 998 

Prevailing attitudes towards the management of coastal dunes are shaped by past experiences and 

these are different everywhere. For example, in the Netherlands, around 55% of the countiy is 

below sea level (Klein et a/. , 1 998) and because much of the Dutch coast is flanked by dunes (de 

Ruig, 1 995) dune coasts are of major importance. They are a means of natural coastal defence, 

since they act as a buffer to extreme wind and waves, sheltering landward communities, but they 

also pose a direct threat to hinterland settlements from sand engulfment. They have been an 

important means of producing a biologically clean, potable water supply since Mediaeval times 

(Louisse & Van der Meulen, 1 991), and in recent years this has become one of the major functions 

of the Dutch dune coasts, providing one third of Holland's drinking water (Houston, 1 992b ). For 

these reasons dune management has always been given high priority, although it is only in recent 

years that any serious consideration has been given to the ecological value of dune coasts (Janssen, 

1 995). 
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In contrast, the UK coastal dunes have hitherto been regarded as mere wastelands fit only for 

development into some more profitable use (Houston, 1 992a) such as golf courses, military 

training grounds and grazing. It is only fairly recently that sand dunes have come to be seen as a 

cost effective, natural and sustainable means of coastal defence (English Nature, 1992) which 

merit conservation for their ecological and geomorphological value. 

3.2. HISTORIC AND MODERN PERSPECTIVES 

3.2.1. Historic Perspectives 

Dune sites have been used by mankind for hundreds and even thousands of years (Higgins, 193 9) 

and the extent of the human impact on coastal sand dunes has been so great throughout history that 

there are very few dunes that are "natural" in the strictest sense of the word. Farming, mineral 

extraction, recreation and military training have created such an impact on dune systems that in 

some instances they have undergone complete structural and ecological modification, moreover, 

many European coasts are lined with artificial dunes, some 300-400 years old (Carter, 1 988). 

Farmers have used dunes for centuries for low intensity agriculture that could be readily 

abandoned or adjusted to mirror the natural dynamic character of the dune system, and they could 

maintain a relatively high standard of living providing they did not attempt to exceed the carrying 

capacity of the land. Tills they achieved by careful cultivation and fertilization of the dune soils. 

thus avoiding nutrient stripping, ensuring that the land was not overgrazed and by cutting only as 

much fuel wood and fodder as the ecosystem could sustain. In this way a delicate balance was 

struck between the needs of the people and the inherent potential of the land (Houston, 1 992a). 

Many coastal communities lived in this way, but from the sixteenth to the early nineteenth 

centuries, huge areas of the European coast were devastated by blowing sand due to the 

destruction of dune systems. The problem was caused by a shift in climatic conditions in Europe 

which was known to have given rise to temperatures one or two degrees lower than today's 

29 



temperatures and to exceptionally stormy conditions (Hauerbach, 1992). This decrease in 

temperature was sufficient to cause a general lowering of sea-level through an increase in the 

extent of polar sea ice with a consequent marked increase in the expanse of the foreshore around 

Europe's coasts and hence an increase in the volume of sand available for aeolian transport. 

The environmental and social catastrophe that ensued gave rise to the first recorded attempts at 

dune management. Higgins ( 1 93 9), discovered historical evidence indicating dune management 

practice at the mouth of the River Ogmore at Merthyr Mawr between 1 5 14 and 1 573 and Carter 

(1988), reported that remedial planting and regrading of slopes had been practised even in 

Mediaeval times. Mediaeval Dutch dune managers used a simple sand trapping barrier made from 

reeds, poplar or willow, known as a 'Dutch Fence', to create sand dykes at the top of the beach 

which enclosed the low lying polders behind; these were then kept drained using windmill 

powered pumps. In Jutland, western Denmark, the problem of drifting sand was particularly 

severe, so that even 9 km inland whole communities were enveloped by huge 'wandering dunes' .  

In 1539, Christian III of Denmark issued an ordinance aimed at protection of dune vegetation 

Much later, in 1 792 the Sand Drift Act was drawn up which ordered the conscription of labourers 

from communities within 24 km of the coast. over a 60 year period, to try to stem the tide of 

drifting sand. The problem was finally addressed by thatching the dune surface with cut heather to 

prevent aeolian sand loss and planting with marram grass (Jensen 1994 ). Such management 

practice was totally pragmatic in nature, reflecting the urgent need to control sand drifting onto 

adjacent lands and to maintain a sea defence, unlike the most modem approach which also 

involves preserving the dune-scape per se. 

3.2.2. Modern Perspectives 

Much of the past legislation concerning dunes has been centred on the need to protect the land 

behind the dunes, but this has led to many systems becoming over stabilised with a loss of 

geomorphic and ecological diversity. Over the last few decades there has been a shift in policy to 

one which relies on the use of the naturally functioning beach and dune system as a means of 
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coastal protection (Nordstrom and Psuty, 1 980), and even those nations who have suffered badly 

in the past are adopting an approach which places more emphasis on protection of the ecological 

environment. Examples of this new philosophy can be found around the world, for example, 

although the main priority of the Danish dune management legislation concerns the prevention of 

sand drift, the 1 992 Nature Protection Act explicitly states that consideration should be taken of 

nature and landscape (Jensen. 1 994). In the case of The Netherlands, Tekke, ( 1 995) has pointed to 

recent concerns held throughout Dutch society for nature conservation. 

In the late 1 970's the US government designated 'barrier-island' systems as worthy of protection, 

and dune preservation districts were established where natural dunes, designed to provide 

protection for shorefront structures and to serve as wildlife habitat, were created (Nordstrom and 

Psuty, 1 980). This action prompted much research in the barrier islands, and in the early 1 990's, 

contrary to popular belief, Gares and Nordstrom ( 1 991)  demonstrated that the development of 

blowouts in the dune system of the Island Beach State Park, New Jersey was desirable because 

these facilitated sediment transport into the dune system, reinvigorating existing plant species and 

increasing species diversity. 

On the island of Romo, Denmark, work is currently underway to remove sand traps and managed 

paths in favour of a non-intervention style of management to preserve the 'wilderness' element of 

the dune landscape (pers. com. ,  Reimers, 1 998). 

In the Alexandria dunefield in Algoa Bay, South Africa dunes have been artificially stabilised 

through planting schemes with the resultant net loss of breeding habitats for indigenous birds. 

Watson et a/., ( 1997) have proposed new management strategies that will return the dunes to their 

natural state to provide breeding sites; these strategies include a moratorium on planting, fencing 

breeding sites to protect them from off-road vehicles and public education. 
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The Netherlands has a long tradition of coastal management using stringent dune management and 

hard engineering structures but this has resulted in a coastline that has very little natural resilience 

and is unable to evolve naturally. The current philosophy which has grown out of studies such as 

the World Wide Fund for Nature's Growing with the Sea (Helmer et al. ,  1996) envisions a 

dynamic coast with space for natural processes to occur. Through managed retreat the safety of 

coastal communities could be maintained at a lower financial cost and with additional benefits 

such as nature conservation. (Klein et al, 1998). This philosophy has been embraced, at least in 

part, by the Ministry of Transport, Public Works and Water Management which is now 

investigating ways in which new developments can be designed which could enhance coastal 

resilience (Rijkswaterstaat, 1 998). 

3.3. SUMMARY 

This chapter has indicated how deep seated, historical perceptions of sand dunes have prevailed to 

some extent until today and because of this dune managers are faced with a variety of different 

types of problems, some stemming from over-stabilisation of dunes and others from lack of regard 

for the natural value of dunes. Management policies are clearly evolving as perceptions change, 

and there are strong incentives to base the implementation and modification of those policies on a 

secure knowledge of the current form and use of the dunes. In addition, there is a need to monitor 

the response of dune systems to the newly evolving management ethos and policy in order to 

ensure that management decisions are appropriate in the context of the now established value of 

coastal sand dunes. The following chapter will therefore look at current management issues and at 

some of the management techniques commonly in use. 
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CBAPTER 4 

COASTAL DUNE MANAGEMENT - issues and techniques 

4.1. INTRODUCTION TO CURRENT MANAGEMENT ISSUES 

Huge areas of dunes have been lost all over Europe during this century due to industrialisation, 

urbanisation and tourism. All of these causes are destructive to some extent, and in each case the 

dune can no longer function as a natural dynamic landscape. The impact of human intervention is 

however, far more complex than simply giving dune systems over to development for some 

commercial activity and current management issues arise out of a complex set of interrelated 

conditions, both natural and anthropogenic in origin. 

If the Mediaeval period saw massive sand drifting related to lower sea levels, then currently rising 

sea levels ( 1 . 5 .2) due to both natural and anthropogenic factors. with its concomitant loss of 

sediment for dune replenishment, poses different problems for dune management today. The 

Brunn model ( 1 988) implies that sandy beaches, although susceptible to increased erosion as sea 

level rises, will be able to adjust effectively, providing that there are backshore sediment stores 

e.g. dunes, and that the backshore is allowed to retreat, but Bray et a/., (1 997) have warned that 

the adjustments may not be instantaneous and that considerable lags are likely with respect to 

redistribution of sediment so that erosion would be enhanced. It is important for coastal managers 

to be aware of the implications of sea level rise at the local level as this will be different 

everywhere (ibid). 

4.2. HUMAN IMPACTS ON SAND DUNES 

Although many of the management issues of the past have prevailed until the present day, others 

are distinctly contemporaneous reflecting the anthropogenic impacts of 20th century industrial 
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developments and modem lifestyles. The range of these anthropogenic forcings is wide and 

varied and includes: industrialisation, sand extraction, farming, recreation, tourism, urbanisation, 

military use and coastal protection works within the coastal cell (Carter, 1988; Jensen, 1 994; 

Nordstrom. 1 994; Simeoni et a/., 1 999), and some dune systems such as the Wilderness dune 

cordons of the Western Cape South Africa, are used as rubbish dumps (lllenberger & Burkinshaw, 

1 996). The scale of human alterations to dunes 

"runs the gamut from unconscious actions taken by individual shorefront residents 

or visitors to preplanned and massive construction projects that convert entire 

natural landscapes employing a considerable investment of capital and labour", 

(Nordstrom, 1 994, p448). 

Some of the factors involved in the destruction of dune systems are given below and although they 

are dealt with under separate headings many are interrelated. 

4.2.1. Industrialisation 

Industrial development is often responsible for the total loss of dunes and examples can be seen all 

around the coasts of Europe (Ritchie. 1 98 1 ;  Ranwell & Boar, 1 986; Killemaes & Herrier, 1 998: 

Meur & Ruz, 1 998). Industrial developments often require erosion control to protect the site from 

wind blown sand (Ranwell & Boar, 1986; Meur-Ferrec & Ruz, 1998) and this in turn can upset 

sediment delivery at adjacent coastal sites (McLachlan et a!. , 1 994 ) . In addition. there may be 

localised risk of damage to dune ecosystems from water/air-borne pollutants (Ranwell & Boar. 

1 986). Williams and Randerson ( 1 989) reported that as a result of urbanisation and 

industrialisation in South Wales, the once extensive coastal dunes have been mostly destroyed. 

Plate 4. 1 ,  a true colour digital aerial photograph of the north-east end of Kenfig National Nature 

Reserve near Port Talbot in South Wales shows a typical industrial development on a dune 

system. The development includes manufacturing and storage units as well as the associated 
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infrastructure such as the rail yard and road built to carry material to Port Talbot for the 

construction of a breakwater in the late 1960's. 

Plate 4. 1 Industrial development on the dunes at Ken:fig, South Wales, May 1997 

This represents just one part of the dune coast in Swansea Bay which has been subjected to 

intensive industrialisation because of its proximity to vast coal reserves and because of the easy 

establishment of land and sea transport links. Heavy industry such as metal smelting and the Port 

Talbot steel works soon followed and once the basic infrastructure was in place new industrial 

estates were spawned. The expansion of industry resulted in a massive population increase in the 

area and this in tum put further pressure on the remaining dune systems from recreational 

activities. 

4.2.2. Sand extraction 

Although less sand extraction from dunes and foreshores occurs nowadays than in the past it 

remains a significant problem in some areas. Sand is exploited by industry for construction, glass 

making, and winning heavy metals and by farmers for nourishing calcium poor soils (Mather & 

35 



Ritchie, 1977; Heathershaw et a/., 1978; Ranwell & Boar, 1986; Gillham, 1987: Guilcher & 

Hallegouet, 1991; Flinn, 1997; Simeoni et al., 1999). Removal of sand from the shore can prevent 

dune growth creating a continuously eroding seaward face and removal of sand from the dune 

itself causes destabilisation and deflation. 

4.2.3. Farming 

4.2.3. 1. Stockgrazing 

Some of the dune systems in the U.K. have a very long history of grazing management, for 

example, at Sandscale Haws, Cumbria, grazing has occurred for at least 800 years (Burton, 1998) 

and in The Netherlands grazing is the oldest continuous type of land use of the dunes (Coops 

1953; Boerboom, 1957; van der Vegte et a/., 1985). In the 1960's and 1970's grazing dune 

systems by cattle and sheep came to be seen as detrimental to the dunes (Frame, 197 1 ;  Band, 

1979; Band, 198 1 ;  Doody, 1985; Chapman, 1989; de Bonte et a/., 1999) because cattle and sheep 

create deflation hollows and erode tracks by trampling and crop the turf short, thus reducing the 

sand trapping capacity of the dune vegetation. Boorman ( 1977) reported a general movement 

away from extensive stock farming on dunes in the U.K. The notion has come full circle and 

currently grazing for conservation using domestic livestock is seen as an effective means of 

managing over-stabilisation resulting from excessive protection (Burton, 1998, Hoffman et al., 

1 998) and of increasing species diversity (de Bonte, et al., 1999). 

4.2.3.2. Rabbit grazing 

Rabbits were a deliberate introduction to dune systems in England and Wales during Norman 

times and were exploited commercially providing a cheap, available source of meat (Rhind et a/. , 

1998) and many of the dune systems in England and Wales are actually called 'warrens' or 

'burrows' as in Newborough Warren, Anglesey and Braunton Burrows, Devon. Wild populations 

established easily and spread rapidly causing considerable damage to dune systems because 

burrows and scrapes are readily enlarged by wind erosion and these may coalesce to form craters 

up to 10m deep (Ranwell & Boar, 1986). Rabbits alter the plant community structure by 
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preferentially grazing some species, particularly the grasses and sedges that are then outcompeted 

by low growing herbs. This phenomenon was demonstrated at Newborough Warren, Anglesey, 

Wales, where in the first three years following the outbreak of myxomatosis, in the 1 950's, there 

was a great increase in the growth of indigenous dune grasses and sedges, and within I 0 years 

there was a significant reduction in the area of bare sand (Rhind et al., 1998). This latter point is 

seen to be a disadvantage and the reduction in rabbit grazing due to myxomatosis is often quoted 

as one of the main causes of dune stabilisation in Britain and The Netherlands (Ranwell & Boar, 

1 986: de Bonte et al, 1999) although in the case of Newborough warren, Rhind et al. , (1 998) 

suggest that the reduction in strong winds and a continuous reduction in the quantity of offshore 

sand in the same time interval would also have resulted in a more stable system. In reality it is 

probably a combination of many factors working together which brings about significant changes 

on large dune systems. 

4. 2. 3. 3. Cultivation 

Cultivation is practised in the hinterland of many large dune sites (Ranwell & Boar, 1 986). In 

Belgium the dunes have been used intensively for growing crops such as potatoes, rye and 

vegetables (Hoffman et al. , 1 998); in North Western France vegetables and flower bulbs are 

grown (Guilcher & Hallegouet, 1 99 1  ), and in The Netherlands a whole range of arable crops and 

bulbs are grown on the dunes (van der Vegte et al., 1 985: van der Meulen & van der MaareL 

1 989). Plate 4.2 shows arable fields on the dunes at Tronoen, Brittany. 

Cultivation alters the texture and structure of dune soils through tillage and the addition of 

fertilisers and has a significant impact on dune ecology and landscape. In sensitive sites. such as 

machair lands in Scotland, cultivation can cause severe erosion (Ranwell & Boar. 1986); in less 

sensitive areas cultivation of the landward side of the dunes is not thought to cause problems for 

coastal protection. 
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Plate 4.2 Arable fields on the dunes at Tronoen, Brittany, May 1997 

4.2.4. Tourism And Recreation 

4.2.4. 1. A contextual overoiew. 

In the more recent past the major cause of impact has changed from low intensity farming to 

episodic, high intensity recreation and during the past centwy the impact of recreation has been 

steadily increasing (1 .5. 1 ). Traditional landuse has declined for a variety of reasons such as 

modem farming methods and the decline of small holdings, decline in the resin trade etc. and by 

and large this has been replaced by tourism which has paralleled increases in leisure time, 

expendable income and mobility. 

In developed countries, the proximity of large cities to coastal dunes has led to high recreation 

pressure on the dunes, for example, 35% of Denmark's dunes has been lost due to afforestation 

and recreation (Doody, 1993), and some 75% is estimated to have been lost from the dunes of 

Mediterranean region (Gehu, 1985) due to tourism and urbanisation. 

At Camber Sands in Sussex, England. Ranwell, (1975 p. 478) quoted " . . . .  as many as 1 7  000 

people a day may descend on only 57 hectares of dune", this represents a huge influx of visitors 
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since Carter (1 988) has suggested the overall canying capacity for dunes to be around 100 people 

per hectare. However, visitor pressure per se is only one facet of the problem and at some dune 

coasts, hotels and holiday villages have been built on the dunes, in some cases completely 

obliterating the dunes. A typical scenario is shown in Plate 4.3, a CIR digital aerial photograph 

taken in July, 1 997 along the Belgian coast. This photograph shows a small part of an 

enormously developed coastline where mere fragments of the dune remain. Sand traps have been 

placed on the beach to hold the sand in front of the hotels as the natural exchange of sand between 

the dune and the beach is no longer possible since the sediment store of the dunes has been 

removed. A considerable number of visitors can be seen on the beach. 

Plate 4. 3 Development on the dunes along the Belgian coast, July 1 997 

Plate 4.4 shows another example of property built in the dunes. This photograph shows a holiday 

home built directly in the dunes in northern Christchurch, Canterbury, New Zealand To 

accommodate this building, part of the dune has been removed. This type of construction lowers 

the profile of the dune and may lead to extensive flooding inland during storms and huge deposits 

of sand washed over into the land behind the dunes. Where the dune is backed by land of 

relatively high value, such as the timber in Plate 4.5, the cost in terms of loss of the crop can be 
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very high and furthennore, large volumes of sand can be lost to the sediment budget in this way. 

In addition, properties such as this have a very short life expectancy. 

Plate 4.4 Property development at the dune - beach interface (source, Scholle, 1996) 

Plate 4.5 Washover deposits destroy the forest and result in loss of sand (source: Scholle, 1996) 

These types of development are not unconunon in developed countries but one recent, unusual 

example of destruction of a dune environment related to recreation is that of Maya Bay, Phi Phi 
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Leh, Thailand, where Twentieth Century Fox's production crew reconstructed the landscape to 

film 'The Beach', scheduled for release in February 2000. The crew created two large gaps in the 

cove's sand dune system which the monsoon tides subsequently ripped apart destroying the beach 

(RE., 2000). 

4. 2. 4. 2. Trampling 

The impact of visitors on many types of natural landscapes can often be characterised by erosional 

features (Bayfield, 1979; Liddle, M., 1997; Tallis, 1997, Wainwright, 1999) and sand dunes are no 

exception. Carter (1988) bas remarked that dune degradation is usually paralleled by a developing 

network of paths and tracks and trampling pressure bas been shown by many to compact dune 

soils, alter species composition and destroy vegetation (Willis, 1 963; Burden & Randerson, 1 972; 

Liddle & Greig-Smith, 1975a, 1975b; Hylgaard & Liddle, 198 1 ;  Bowles & Maun, 1 982; Sothem 

et a/. , 1985; Williams & Randerson, 1989; Louisse & van der Meulen, 199 1 ;  Koehler et a/. , 1 996). 

Trampling diminishes the system's ability to recover from stress through a loss in species diversity 

and is thought to be the major anthropogenic factor in dune erosion in many sand dune systems 

(Ranwell & Boar, 1986). This type of damage exposes bare sand to erosional forces and can lead 

to the development of low elevation passes and fragmentation of the dune front forming wind 

corridors and allowing inundation by the sea An example can be seen in Plate 4.6. 

Plate 4.6 Penhale Sands, Cornwall, paths from the beach leading into the dunes provide a wind 

corridor and an easy route for high tides to penetrate the dune 
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Boorman (1976) found that 10 trampling passes per month reduced turf height by 60% at 

Winterton, Norfolk, and by more than 75% with 40 passes per month. Boorman & Fuller (1977) 

estimated that bare ground would result when trampling pressure reached 80 passes per month. 

Hylgaard & Liddle ( 1981) found that one person walking to and from the beach across the dune 

heath at Skallingen, Denmark, created a path 24 em wide and 15mm deep within 200 passages 

over a period of 3 months. During this time the vegetation cover was reduced by 50% and there 

was a 75% reduction in species diversity. These results have clear implications for dune sites that 

are visited by large numbers of tourists in the holiday season. 

Uncontrolled path networks are often fan shaped spreading out from an inland access point, such 

as a car park, and path density often increases near the sea. This can be seen in Plate 4.7, a colour 

infrared digital image, showing a badly eroded dune system with numerous paths spreading out 

from access points on the road at the back of the dunes. 

Plate 4. 7 CIR aerial photograph showing numerous paths through the dunes spreading out from 

access points on the road at the back of the dunes 
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Once paths become devoid of vegetation the bare sand becomes difficult to walk on and new areas 

are often eroded alongside existing paths. These newly eroded areas may coalesce with the 

original path causing significant widening, or may remain intact increasing the path network 

density. In addition, where crossing paths meet, enlarged areas of bare sand occur and these are 

particularly susceptible to aeolian erosion and can eventually form large blowouts in the dune with 

a windward deflation area and a downwind deposition area, the latter derived from the former 

(Bate & Ferguson, 1 996). This condition has already been shown in Plates 2 .4  and 2 .5  

4.2. 4. 3. Off-Road Vehicles And Cycles 

Off-road vehicles and cycles have a substantial effect on dune vegetation that can eventually lead 

to destruction of the dune system (Liddle & Grieg-Smith 1 975b; Leatherman & Godfrey, 1 979; 

Ranwell & Boar. 1 986; Rust & Dlenberger, 1 996; Watson et a!., 1 997) through deflation of 

exposed sand. Leatherman and Godfrey ( 1 979) reported transportation of some 2000cm3 of sand 

by one vehicle on an go slope, and predicted that over time the dune profile could be lowered by as 

much as 0.6m annually in areas of uncontrolled vehicular access. The recovery process on the 

foredune area can take up to 4 years but in the backdune area recovery may take up to 8 years 

(ibid). 

4. 2. 4. 4. Horse Riding 

In some countries. e.g. England, Wales and France. horse riding is a popular leisure pursuit whose 

environmental impact can be considerable (Boorman, 1 977; Ranwell & Boar, 1 986; Williams and 

Randerson, 1 989). Evolution of the horse has ensured that each 'foot' is actually only a single digit 

and hoofs are modified toenails. This means that the entire weight of the horse (and rider) is 

concentrated on three, two, or one, very hard small points (depending on the gait) when the horse 

is moving. On a soft substrate like sand dune the hoofs pierce the sward causing considerable 

damage. Where there are riding establishments at the dune site, riders usually use the same paths 

through the dunes so that the paths never have time to recover. 
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4. 2. 4. 5. Golf courses 

In Europe there are over 5,200 existing golf courses, covering in excess of 250,000 hectares. 

Although concentrated in the British Isles there are smaller numbers in Scandinavia, The 

Netherlands, Belgium, France and Iberia. Golf courses are commonly sited at coastal locations 

and around one third of the sand dune systems in the UK are used this way (Ranwell, 1 975 ; 

Stubbs, 1 998). There has been a long and on-going debate as to the environmental impact of golf 

courses on dune environments and it has been claimed that they are both beneficial and 

detrimental. 

Golf courses can contain important fragments of semi-natural vegetation, often with a high 

biological diversity. In particular, they support valuable patches of coastal vegetation, notably 

dune slacks and fixed dune communities (A typical 1 8  hole golf course may occupy 50-60 

hectares of open space, much of which receives little direct management or disturbance). Indeed, 

on some coastal sites, golf courses have provided a last line of defence against encroaching 

urbanisation, tourist development or intensive agriculture (EGAEU, 1 995; 1 997). Furthermore, 

exclusion of the general public protects the natural dune vegetation within the perimeter from 

trampling damage. 

Originally golf courses were virtually unmodified dune landscapes using the natural vegetation 

and topography but over time they have evolved and changed from their original 'natural' state. 

The maintenance of the close-mown greens and fairways has been shown to radically alter the 

species diversity of the site. For example a case study on Jersey, UK, showed that the number of 

floral species was typically reduced from 30 to 40 species per 25 m2• to communities of 5 to 10

species per 25 m2, mostly consisting of grasses and common herbs (Ranwell. 1 975).

In southern Europe, the number of coastal golf courses has increased dramatically in recent 

decades with the advent of golf tourism. These new resorts attract the majority of their golfing 

clientele during the winter, enabling year-round tourism to flourish in these areas and this 
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prolonged 'tourist season' is having a major detrimental impact on the coastal environment 

(Stubbs, 1 998). 

4.2.5. Urbanisation 

4.2.5. 1. Housing 

There are a number of different impacts on dunes that stem from urbanisation depending on the 

size and type of the development as well as the local conditions. Many areas of coastal dune were 

developed before the hazards to such developments were understood, and these now pose difficult 

management problems because of the cost of protection and because of the conflict that 

management techniques create between groups with different vested interests. Plate 4.8 shows a 

housing development on the remnant of what was once a continuous dune. 

Plate 4.8 Housing development built on the dune front 

Source: Scholle, 1996 

In many countries legislation now exists which permits maintenance of existing properties but 

forbids new development (Cartright, 1 987; Jensen, 1 994: Alveirinho Dias, 1998 pers com.). The 
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problems for the protection of coastal dune developments could be said to fall into two major 

categories: First where sediment supply is abundant and large volumes of drifting sand can engulf 

buildings and infrastructure (Jensen, 1 994) or can accumulate to form extensive foredunes which 

obliterate the ocean-view of ocean front properties (Cartright, 1 987). An example of this was 

shown in Chapter 3 Plate 3 . I .  Second, where sediment supply is low and erosion of the dunes 

may become irreversible increasing the danger of inundation of settlements by the sea (Carter, 

1 980). 

Aside from the problems of protection of the property itself, other problems result from the 

provision of services to the property, for example, sewage pipelines laid through the dunes have 

been exposed following erosion of the dune resulting in fracture of the pipes (Ranwell & Boar, 

1 986). Housing developments also bring the risk of the introduction of undesirable exotic species 

from gardens that may change the ecological integrity of the dune system (Ranwell & Boar, 1 986; 

Garcia Mora et al., 1 998). 

4. 2. 5.2. Drinking water catchments 

The use of dune systems in Holland as water catchments for urban areas has had a significant 

impact on the dune environment by altering the natural hydrology and the ecological balance of 

the dune systems so that grass and scrub communities now dominate Dutch dune landscapes (Van 

der Hagen et a!., 1 998). This problem can be attributed to excessive water extraction from sub­

dune aquifers over the past I 00 years that resulted in salinisation of the polderland behind the 

dunes in the early 1 950's. In an attempt to remedy this situation, the aquifers have been artificially 

recharged by percolating water abstracted and diverted from the river Rhine to the dunes, to be 

filtered before extraction for public water supply. An unforeseen result of this action was the loss 

of most of the rare species previously found in the dune slacks because the river water was richer 

in both pollutants and nutrients (Louisse & van der Meulen, 199 1 ). Currently the Amsterdam 

Water Supply Dunes at Zandvoort provide 70 million m3 of drinking water each year (Cousin, et
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al., 1 998) and the Amsterdam Municipal Water Supply now has a department dedicated to nature 

conservation and research (Van der Meulen, 1 997). 

4.2.6. Exotic Introductions 

Exotic introductions can be found on dune sites all around the world. The major problems 

associated with planting schemes using exotic species arise from the fact that the plant in question 

is often chosen for its vigour and ability to establish readily, attributes which make it very difficult 

and costly to eradicate. The deep shade created by mature stands of forest and shrubs may 

eliminate the natural ground flora changing the balance of the ecosystem and in addition, 

depletion of the water table due to high transpiration rates of trees and shrubs compounds the 

damage to the ecosystem (Ovington, 1 95 1 ;  Tinley, 1 985; Doody, 1 989). Furthermore, the 

aesthetic value of the site may be impaired. 

Sea buckthorn (Hippophae rhamnoides) is a native shrub that has been introduced extensively to 

dune systems in the U.K. in stabilisation progranunes. It is very vigorous and as a result of 

reduced grazing by rabbits following the Myxomatosis epidemic, the shrub has spread out of 

control on many dune systems (Ranwell, 1 975) forming impenetrable thickets as at Merthyr 

Mawr, SouthWales (see Plate 4.9). Mourik, et al. , ( 1995) have reported a 700% increase in the 

distribution of this shrub in a part of the dune system at Zandvoort. the Netherlands. 
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Plate 4.9 Stands of Sea Buckthorn (Hippophae rhamnoides)at Merthyr Mawr, South Wales. 

In Denmark the pine (Pinus mugo) that was planted to stabilise the dunes has spread naturally to 

adjacent dune areas with the result that the intrinsic value of the dune area is diminished or lost 

(Jensen, 1994). Bitou bush (Chrysanthemoides moni/ifera) was accidentally introduced to the New 

South Wales dunes, Australia, from southern Africa. It was used for sand drift control in the late 

1 940s until its recommendation was withdrawn in 1 972 following the discovery of its detrimental 

effects on indigenous species (Chapman et al., 1987). Paradoxically, Australian Wattle (Acacia 

cyclops) was introduced in the 1 970s to stabilise the dunes at Bushman's River, South Africa and 

was also found to be problematic (Booysen, 1994). 

4.2. 7. Military Use 
As with golf courses the impact of military activity on sand dunes has been both detrimental and 

beneficial (Ranwell & Boar, 1 986; Guilcher & Hallegouet, 1 99 1). Military activity has caused 

significant damage to dune systems through a variety of activities including sand mining for 

construction of concrete anti-tank structures, block houses and access roads; the destruction of the 

dunescape by military vehicles; and the creation of craters from ship to shore bombardment and 
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air to ground explosions during training exercises. On the other hand, the exclusion of the general 

public has protected the dunes from visitor pressure allowing wildlife to flourish in seclusion. In 

recent years the MOD has been working towards striking a balance between military use, public 

access and wildlife conservation (Baker, 1 998). 

4.2.8. Coastal Protection Works 

Coastal protection works such as groynes, jetties, sea walls, harbour-building and dune 

stabilisation can cause serious erosion problems for down-transport areas when sediment supply is 

interrupted or stopped (Arens & Weirsma, 1 994; Nordstrom, 1994). For example, lllenberger 

( 1 993) reported 140 m recession in 45 years ( 1940 - 1 985) or 3 . 1 m yr'1 on the downdrift side of

the harbour breakwater at Port Elizabeth, South Africa. Similar problems have been reported 

around the world (Kelletat, 1 992; Moller, 1 992; Correia et a/., 1 996). The problem of inadequate 

sediment delivery to some dune coasts is further exacerbated by the construction of darns that act 

as sediment traps reducing fluvial sediment supply to the coast. On the Adriatic coast of southern 

Italy Simeoni et at. ( 1 999) have estimated that damming the Rivers Fortore and Biferno has 

caused a retreat of the shoreline between 1 957 - 1 980 of up to 1 1  m yr-1 .  The Aswan High Dam is 

reputed to have caused a 50% drop in sediment yield and enhanced erosion of the Nile delta at a 

rate of 30 m yr-1 since its construction inl964 (Kassas, 1 97 1 ;  Sharaf El Din, 1974; Khedr, 1 998).

4.2.9. Assessment of change 

The morphological changes on the dunes that have been reported in 4. 1 and 4.2 are precisely the 

types of scenarios that offer a subject for testing the aerial digital photographic system as many of 

the changes are relatively large and may occur in a short time span. For example, the development 

of new paths and increased erosion of old paths can occur within the space of one holiday season 

and conversely remedial action can restore damaged areas in the interval between successive 

holiday seasons (Sothern et al., 1 985). The initial indications are that the ADPS is potentially a 

useful instrument for monitoring, measuring and mapping such phenomena. 
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4.3.MANAGEMENT TECHNIQUES 

4.3.1. Management ethos 

With new found understanding of coastal processes there has been a change in management ethos 

and practice over recent years from hard engineering using sea walls and groynes to a softer 

approach using beach nourishment and subsequent management (Turner et al., 1998; O'Brien et 

a!., 1 999). Furthermore, since much of the existing coastal protection around the world is in need 

of constant attention and costly repair, the dynamic coast which can maintain safety at a lower 

financial cost and with additional benefits such as nature conservation (Klein et a!, 1 998) is 

increasingly viewed as a very attractive option. 

Although the modem philosophy on dune management embraces this natural approach (3.2.2) 

there are problems associated with it, and the importance of sustainability is relegated to a lower 

order of concern as vested interests cause conflict over policy and planning, so that compromise 

becomes inevitable. For example, in the Zeeland estuaries. in The Netherlands, safety 

requirements (do and must) dictate most of the management activities because in most places only 

a single foredune ridge protects the hinterland from the sea (Arens & Weirsma 1 994). In the case 

of the UK there is no mechanism to award compensation for erosional loss at the coast, a cause of 

both anxiety and conflict for property owners. To satisfy the needs of all stakeholders in 

developed coastal areas dune managers need to adopt a pragmatic approach that allows both 

natural and socio-economic systems to interact dynamically (Turner et a/., 1 998). Decision 

making in management of the coastal zone requires rapid access to spatial and temporal 

information. Aerial digital photography using the ADPS can potentially provide this because it can 

be deployed rapidly, can often operate in conditions prohibitive to conventional aerial cameras and 

the data can be processed in a fraction of the time required for film processing (5.3 .6). 
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4.3.2.  Managing the physical environment 

To protect high value property and amenities behind the dunes, managers use a range of 

teclmiques, some of which were first used in Mediaeval times (3.2. 1 ). Often these teclmiques rely 

on methods that mimic natural processes of dune construction, particularly those which aim to 

build new dunes such as the use of fencing to trap sediment and direct seeding with natural 

vegetation. In other cases preventing loss and damage is the object and mitigating against the 

impacts of visitor pressure using teclmiques such as managed paths and strategically sited car 

parks. 

4. 3. 2. 1. Planting, ftncing and thatching 

Planting with natural vegetation has been used almost ubiquitously both for stabilisation of 

eroding dunes and to encourage new dune growth and development (Cartright, 1 987; Avis, 1 989; 

Van der Putten, 1990; Mendelsshon, et a!. , 1 99 1 ;  McLachlan et al., 1994; Seabloom & 

Wiedemann, 1 994: Barron & Dalton, 1 996). Planting schemes have been most successful on the 

upper beach where there is often an abundant sediment supply and a low risk of storm damage but 

limited success has also been achieved in blowouts and inter-dune areas. The planted area may be 

fertilised and temporarily stabilised using materials such as bitumen mulch, chopped straw, 

compost, and geotextiles (Van der Putten, 1 990; Mendelssohn et a!. , 1 99 1 ;  Barron & Daltoa 

1996). 

Plate 4. 10  shows a small scale planting of marram grass on the upper beach at Holywell Bay 

Cornwall to rehabilitate a severely eroded comer of the southern section of the dune front. Plants 

were protected in small enclosures of nylon mesh and the whole area was fenced. A planting 

scheme on a much larger scale, again using marram grass, but this time on the Island of Texel. 

The Netherlands is shown in Plate 4. 1 1 . 
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Plate 4. 10 Planting with marram grass on the foredunes at Holywell Bay, Cornwall 

Plate 4. 1 1, Dune enhancement using marram grass to stabilise the dunes, Texel, The Netherlands 

Source: Scholle, 1996 
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Planting schemes can improve habitat diversity by providing shelter for dune species, but, 

although there have been numerous successes, planting schemes are not without their fair share of 

disasters so careful consideration is required before management decisions are made. The choice 

of species and particular planting regime depends upon a number of factors including: climate, 

aspect, and the desired outcome, e.g., in areas where public pressure is likely to be high, such as 

designated dune amenity areas e.g. campsites, pathways, and picnic spots, hardy grass mixtures 

are planted which require minimal maintenance. 

Fencing and thatching have long been used as relatively inexpensive and easily constructed means 

of trapping sand by disrupting the surface airflow (Van der Putten, 1990; Gares & Nordstrom, 

1 99 1 ,  Mendelsshon et a/., 1 99 1 ;  Kelletat, 1 992). These sand traps are commonly made from 

straw bales, palings, brushwood, etc., the choice of material reflecting the cost and availability of 

material in the vicinity of the dune site. 

A variety of different strategies are used for fencing depending on the prevailing conditions at the 

site. Sometimes new fences may be placed upwind or downwind of the original fence to 

encourage horizontal as well as vertical growth of the dune. Ultimately, the original fence may 

become buried and the siting of a new fence will depend on the current status of the dune. Plate 

4. 12  shows 3 different types of fencing, each at a different dune site managed by the Office de 

Forets Nationale in France. The choice of fence type reflects the particular conditions at the sites: 

in the top photograph the paling fences have been erected in succession, evidenced by the 

weathered appearance and degree of burial of some of the panels with new sections erected to 

increase the height of the dune. This is the primary function of this type of fence but it also 

controls trampling as it is difficult to cross. The zig-zag fencing constructed in the centre 

photograph is commonly used to trap sand where the wind direction is variable (Savage, 1 962; 

Willets & Phillips, 1 978) and at this site the dune front is severely eroded at the entrance to a 

popular resort beach. The fenced area is enclosed by a sturdy rustic post-and-wire fence to deter 

visitors form using the v-shaped enclosures of the windbreak fence as convenient picnic spots. 
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The third type of fencing shown in the bottom photograph has no visitor control function at all and 

is simply used to prevent deflation by lowering the wind speed across the beach. 

Plate 4. 12 Three different methods of fencing to trap sand reflecting differing conditions at the 

dune site 

The short-term results of planting schemes alone do not often achieve-the rates of dune growth and 

development promoted by fencing, but in the longer-term dune growth is usually sustained (Dahl 

et a/. , 1975; Mendelssohn et a/. , 1991). Results vary according to the wind regime, sediment 

supply, type of planting and type of fencing. Planting with fencing often gives the best results. 

For example, in a trial site on a sand deficient barrier island, accumulation of only 0.6 m3m1 yr·1

was achieved using planting alone, whereas 4.2 m3m·'yr·' was achieved with planting and fencing

(Mendelssohn et a/. , 1 99 1). In other combined planting and fencing strategies Dahl et a/. ( 1975) 

reported an average accumulation of 10m3 m·' shoreline yr1, Knutson (1980) recorded 
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14 m3m-1yr.l at Cape Cod and Savage and Woodhouse (1978) measured 16 m3m-1yr-1 at Ocracoke 

Island, North Carolina. 

Thatching the surface is often used where scrub clearance is taking place on a different part of the 

dune. Plate 4. 13  shows the use of brushwood to trap sand on a dune where the vegetation has 

been destroyed. A close-up of the type of material used is also shown. 

Plate 4. 13, Thatching to prevent deflation on the dune, lie d'Oleron, France 

In the main photograph the thatching material has begun to decay, and not only is this unsightly 

but it can also be hazardous to barefoot visitors when it becomes obscured just beneath the surface 

ofthe sand 

4.3.2. 2. Beach nourishment and dredging 

Sand nourishment is an attractive management technique because it is flexible and allows cost-

spreading, it does not disturb recreational beaches, it is less expensive than hard engineering 

structures and it matches the natural character of the coast (Valverde et a/., 1999; van Nootwijk & 
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Peerbolte, 2000). In similar vein, Kelletat (1 992) remarked that hard structures such as tetrapods 

and groynes are expensive, obtrusive features in sandy environments and are sometimes 

dangerous to bathers. Beach nourishment schemes, however do cause some ecological damage 

both at the extraction site and at the nourishment site, impacting on benthic communities and this 

in turn can affect organisms higher up the food chain, so timing of the nourishment to minimise 

impact is very important (Loffier & Coosen, 1 995). 

Beach nourishment is common around the world (Newman, 1976; Dixon & Pilkey, 1 99 1 ;  Kelletat, 

1 992; Moller, 1 992; O'Brien et a/., 1 999). The sand is usually supplied either from dredging 

offshore and pumping onto the beach (Plate 4. 1 4) or duneface (hydraulic dredging) or by dumping 

individual truckloads of sand on the upper beach (truck haul) (Creed et a/. , 2000). 

Plate 4. 1 4  Pumping sediment onto the beach to raise beach levels and protect the dune front 

properties source: Scholle, 1 996 

In The Netherlands, beach nourishment is necessary to protect valuable dune areas and the high 

value hinterlands that are densely populated. Each year about 7 million m3 of sand are supplied to 
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maintain areas of the coastline subject to permanent erosion. Currently the cost of this operation 

is about 70 million Dutch guilders (van Noortwijk & Peerbolte, 2000). Similar nourishment 

regimes on the German North sea coast reportedly require 3 million m3 that are pumped from the 

offshore or the leeward side of the islands to the outer beaches (Kelletat, 1 992). Nourishment 

episodes on the Great Lakes beaches have cost between $ 6000 - $ 2 45 1 000 U.S., depending on 

the source of the sediments and the volumes involved (O'Brien et a/., 1999). 

Simeoni et a/. ( 1 999) have advocated nourishment and sub-aerial reprofiling to assuage erosion 

and increase sand supply to the dunes in cases of high instability in the foredunes, and only limited 

nourishment together with remodelling of the beach and dune, in cases of medium - high 

instability. In cases of low instability management activities which control or stimulate natural 

processes e.g. planting and fencing are recommended. To protect the village of Fabrica and the 

clam and oyster beds in the lagoon behind Cacela peninsula, Algarve, Portugal, the inner channel 

was dredged and some 325 000 m3 of sediment was used for dune replenishment (Matias et a!., in 

press). The new dune was fenced to trap sand and prevent trampling and 2 elevated foot-bridges 

were built to allow visitors to cross the replenished areas. 

4.3.3. Managing tbe human element 

Visitor pressure is responsible for considerable impact on dune systems, but careful planning and 

design of a system can significantly reduce the damage sustained (Kelletat, 1992 ) . Providing well 

designed access roads and strategically placed car parks contains vehicle pressure, restricting it to 

small areas and preventing indiscriminate wear and tear throughout the dunes. In the same way, 

channelling visitors to the beach along sign-posted and fenced walkways encourages people to use 

the preferred routes and discourages trespass onto fragile surfaces, especially if the walkway is 

constructed of an easy to walk on material such as wooden slats or plastic I raffia mesh. Carter 

( 1988) advocates planting the edge of the walkway with spiky vegetation to prevent widening of 

footpaths and careful contouring to minimise the 'wind tunnel' effect. Similarly, camp sites which 
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may accommodate hundreds of visitors throughout the holiday season, should be sited and 

organised so that erosion is contained. 

Often people will respond positively to instruction and providing visitors with well-marked 

boundaries and information at the dune site can prove very satisfactory. In the U.K. there have 

been many initiatives in recent years aimed at educating the public through interpretation centres 

and publications, funded by bodies such as English Nature, The National Trust, the European 

Union, county councils and numerous private sector organisations. General environmental 

education in schools and through the media has gained ground in the recent past and this should 

raise awareness among future generations of beach users. 

Plate 4. 1 5  Materials used for beach access path management in Europe 

Plate 4. 1 5  shows a number of different materials used for path management at various dune sites 

in Europe, ranging from a channelled walkway without surface protection, a nylon mesh walkway, 
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a makeshift straw bale and fenced path and a wooden boardwalk to an expensive well constructed 

bridge and steps. 

4.4.  MONITORING AND MEASUREMENT 

Despite the fact that numerous studies of dune sites have clearly documented the features, 

processes and stages of dune degradation (Louisse & van der Meulen, 1 99 1 ;  Arens, 1 992: 

Nordstrom, 1 994 ). site specific extents and rates of such environmental changes are often less well 

known (Curr et a/. , 2000). In recent decades management of the environment has become a high 

profile issue and this has prompted governments, local authorities, land-owners and other 

interested parties to look more closely at the types of management in place. Management 

intervention to prevent or control dune degradation has often been haphazard, misguided, under 

funded and sometimes too late and in common with coastal management in general, has often 

been stimulated by 'crisis response' strategies (Healy, 1 995). 

The dune manager needs information regarding the condition of the dune system both before and 

after management intervention so that a baseline can be established against which all subsequent 

measurements can be evaluated (Van der Hagen et a!. , 1998). Effective management decisions 

depend upon the timely availability of quality information which is objectively measured rather 

than anecdotal and this enables dune managers to identifY spatial and temporal variations in the 

degradation of dune sites. significantly enhancing the strategic decision making process (Ricketts, 

1 992; Davies et al., 1 995). This information is required at scales ranging from the species to the 

landscape and in broad terms, the dune manager's interest is particularly focussed on the loss and 

development of vegetation as a means of assessing the current condition of a dune system. 

Monitoring such dynamic coastal environments in the field is very time consuming and tedious 

because of the large spatial scales involved so new methods that can provide cost effective data, 

rapidly and over large areas are required. 
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Remote sensing techniques are capable of providing such data but it is imperative that it is 

acquired at the appropriate scale ( 1 .2 . 2). For instance, the spatial resolution of all but the most 

recent high resolution satellite data is too coarse for detailed investigation on coastal sand dunes 

and even Space Imaging's Ikonos data, ( 1 m  panchromatic and 4m colour at nadir) cannot equal the 

resolution of aerial photography 'at the high resolution end' ( l Ocm - l m), (Walker, 1 999) and may 

not be of sufficiently high resolution for detailed mapping. Aerial photography using film is a 

well established form of remote sensing but airborne digital photography is a new remote sensing 

technique using state-of-the-art digital cameras. Although it has not been tested ex1ensively, 

Fraser ( 1 994), Bobbe & McKean ( 1 995) and King ( 1 995) have demonstrated its potential as an 

alternative means of imaging for landcover analysis. The trend in using digital is set to continue 

(Light, 1 996; Walker, 1 999) and now that the technology is in place, there is a need for further 

research to prove the concept of this exciting new data gathering facility in new application areas. 

Monitoring change on sand dune systems is an ideal application area because of the highly 

dynamic nature of this coastal feature. 
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CHAPTER S 

AERIAL PHOTOGRAPHY AND VIDEOGRAPHY 

5.1. A BRIEF HISTORY OF SMALL FORMAT AERIAL PHOTOGRAPHY 

5.1.1. The early years 

In 1 858 the first aerial photographs of the earth's surface were taken from balloons. The advent of 

powered aircraft heralded the next stage in the evolutionary process and World War I saw an 

increase in research into aerial photography using handheld Kodak aerial cameras for 

reconnaissance (Campbell, 1 987). As early as the 1 920's oblique aerial photography was used in 

Canada and the United States for basic mapping purposes; applications included timber resource 

inventory, forest fire damage and wildlife habitat and infrastructure mapping (Zsilinszky, 1 997). 

Large scale photography (LSP) was already a research concept in the late 1 950's and by the mid 

1 960 's  vertical aerial LSP was standard for most resource management applications. It soon 

became apparent that there were severe limitations to its use because large format cameras were 

(and are) both bulky and expensive. In the early days only black and white film was an optioa 

furthermore, because of the cost a 10 year revisit time was standard practice (Meyer, 1 997). and 

in this long time interval any maps produced were usually out of date well before the next aerial 

campaign. 

5.1.2. Evolution of small format camera technology 

The need to acquire aerial photographs more frequently and at an affordable price spawned the 

search for a new solution to the problems of air survey. At the same time, rapid developments in 

35 mm film and camera technology raised people's awareness and expectations of the products of 

film (particularly colour film), and a logical progression for the aerial photography fraternity was 

to investigate the potential of small format cameras, either 70 rnrn or 35 rnrn format (Warner et al., 

1 996). In the first place, 70 mm cameras such as the Hasselblad and Hulcher were more widely 
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used as there were few 35 mm cameras available with motor drive, but in the 1 970's and 1980's 

the wider availability of 35 mm cameras with motor drives enabled their take-up as a cost 

effective alternative to large format photography for some applications. There are numerous 

examples of the use of small format cameras in the literature including crop mapping (Warner, 

1 994), natural resource management (Zsilinszky et a/., 1 979; Knapp et a/. , 1 997; Rowe et a/. , 

1 999), monitoring land degradation (Marzolff & Ries, 1 997) and mapping coastal vegetation (Van 

der Hagen et a/., 1 998; Everitt et a/. , 1 999a). 

5.2. THE ADVENT OF SOLID STATE 

5.2.1. The evolution of video cameras 

5.2. 1. 1. Airborne video 

The phenomenon of electronic imaging provided practitioners with another element of choice 

regarding the type of camera to use for aerial work and the development of solid state technology 

has enabled rapid progress in the electronic imaging world. Before its advent in the late 1 970's, 

the use of airborne videography was possible but not practical because the equipment was both 

fragile and very bulky, but since the development of the earliest solid state sensor in 1 98 1  by 

Hodgeson et a!., (1981) the use of airborne videography and digital photography has increased 

dramatically. Indeed, low cost solid state video and digital camera technology has progressed at 

such a rate over the last 1 0  years that these sensors. available 'off the shelf, are now a realistic 

alternative to high cost, sophisticated sensors for some applications in commercial mapping and 

scientific research market places (King, 1 995). 

Airborne video has found a niche where relatively large scale imaging is required and it is a very 

cost effective tool for imaging long narrow corridors such as pipelines and coastlines for 'quick­

look' monitoring (Meisner, 1986; Edirisinghe et a/., 1 999; Urn & Wright, 1 999a). Video is 

attractive because of the near-real time availability of the imagery and it has been increasingly 

62 



used for natural resource assessment over the past 20 years or so (Meisner & Lindstrom, 1 985; 

Nixon et al., 1 987, King & Vlcek, 1 990: Everitt et a/. , 1 995; Everitt et a/. 1999a, 1 999b). There 

are however several processes involved in moving from the analogue to digital environment and 

the size of the unit pixel changes in the course of digitising which impacts on image quality. The 

resolution of the final image is only as good as the lowest resolution component in the system 

(Lee & Faig, 1 999). For photogrammetric work, interior orientation is difficult because video 

camera geometry is frequently unstable and furthermore it also depends on the configuration of 

the frame grabber. 

5.2.1. 2. Analogue video 

In a video, the sensor converts light energy into electrical signals and the voltage of the signal is 

proportional to the brightness of the image (Meisner. 1 986). The image is composed of a series of 

horizontal scan lines. scanned from left to right and top to bottom. The image is transferred from 

the camera to the tape by an analogue TV signal. The resolution of the transfer is constrained by 

TV standards for encoding and decoding video signals, e.g . . NTSC calls for a video frame to be 

scanned at one thirtieth of a second, but at this rate flicker is perceptible. To overcome this the 

frame is split into 2 fields each containing alternate scan lines which are then displayed every 

sixtieth of a second (60Hz), and the one row misalignment is imperceptible to the human eye. 

When a video frame is 'frozen' using a frame grabber the odd and even lines are viewed in 

sequence and misalignment is clear. In addition, the spatial resolution of the recording tape is 

lower than professional grade cameras (typically 540 lines) at 230 horizontal lines for VHS tape 

and 400 lines for SVHS tape. 

Video imaging systems are not radiometrically calibrated (Everitt & Nixon, 1 995) and spectral 

brightness variations including vignetting, change in viewing geometry, bidirectional reflectance 

variation and atmospheric scattering pose problems for quantitative work (Pickup et a!., 1 995a) 

although there has been much research into radiometric calibration for custom built cameras with 
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a fair degree of success (King, 1 99 1 ;  Richardson et at. , 1 993; Louise et at., 1 995 ; Pickup et a/., 

1 995: Edirisinghe et a/. , 1 999). 

The sampling frequency and radiometric linearity determine the geometric and radiometric 

resolutions of the output image, respectively, of the frame grabber. A typical imaging board 

matrix is 768 (H) x 576 (V), which is well above the spatial resolution of SVHS tape but there are 

other factors that relate to the digitising process which must be considered. For example, the 

video signal carries timing information so that the horizontal lines are aligned correctly, and, 

during the digitisation process the frame grabber generates its own pixel clock which locks onto 

the video time signal. Pixel jitter occurs when the two timing signals are not synchronised and 

this causes objects in the image to be displaced (Raynor & Seitz, 1990), however, recent 

developments in synchronisation performance have begun to address this problem (Urn & Wright, 

1 999b ). Further loss of geometric integrity occurs due to image capture from a sensor on board a 

moving platform, for example, given an aircraft true ground speed of 50 ms-1 using a 50 Hz 

system and a ground sampled distance of 30cm, a displacement of approximately 3 pixels would 

occur. These deficiencies have been addressed to a certain ex1:ent by software designed to shift the 

odd and even line displacement (Neale et al. , 1 994). 

Until recently, one of the major drawbacks of using video imagery has been the time consuming 

and tedious procedure of converting the analogue signal to a digital format if digital analysis of the 

imagery is required, particularly if a large number of frames is involved. There have been several 

attempts to overcome this problem by designing systems with direct digitisation capabilities in 

flight (Pearson et a!. 1 994; Everitt et a!., 1 996; Mao & Kettler. 1 996) but these are expensive 

systems compared with off the shelf digital video cameras (Urn & Wright. 1 999b). Moreover 

these systems which use more than one video camera to collect multispectral data require time 

consuming image co-registration to produce a single composite multispectral image because the 

different image bands are significantly misaligned through rotation, shift and scale change (Mao & 

Howard, I 996). In addition, Heitschrnidt et al. , ( 1 996) found that mosaicing such images 
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presented problems because the transformations created in mosaicing the first band could not be 

used for the other two bands because the file sizes and mosaic geometry were different for each of 

the bands. The difficulties encountered with imaging using analogue video has delayed 

widespread acceptance of video technology and researchers have looked to other technologies to 

satisfy the needs of end users (Urn & Wright, 1 999b). Digital still camera technology is 

considered to be a great advancement by some resource specialists accustomed to using video 

(Bobbe, 1 997), and the emergence of 'off-the-shelf digital video cameras has been favoured by 

others (Urn & wright, l 999b). 

5. 2. 1. 3. Digital video 

The advent of the low cost multimedia PC and the availability of CODEC (compressor I 

decompressor) cards enabling direct input video format to a computer (producing outputs such as 

MPEG, Indeo and Cinepak) could be exploited for aerial video, although even newer technology 

now exists which does not require CODEC cards to compress and decompress the data (Doyle, 

1 999). The latest technology, digital video, has a world-wide unified format decided in 

consideration of high definition TV (HDTV) signals which has more than 1 000 lines. Digital 

video dispenses with all the losses of image quality due to analogue to digital conversion since the 

resulting captured video is the original itself (ibid.) .  Picture quality is likely to be more than 25% 

improved over SVHS because there is no radiometric or spatial resolution loss due to data 

conversion (Morgan, 1 995). 

5.2.2. The evolution of digital cameras 

5.2.2. 1. Early developments 

The Sony Mavica, which was launched in 1 980, was a precursor of the modem digital camera in 

as much as it was a CCD camera. It used a 50rnm floppy disk to store the data instead of film. but 

the output was analogue and not digital. This camera was viewed more as a curiosity than a 

potential commercial camera, and Graham ( 1 998) considers that one of the main reasons for its 

failure of uptake was that it was too advanced for the status quo of the supporting technologies, 
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i.e. personal computers and peripherals were of low specification, were expensive and were not 

universally available, as is the case today. 

The first generation digital cameras on the market required permanent connection to a computer 

for power supply, image acquisition and storage (Peipe & Schneider, 1 995). For example, 

Kodak's DCS 100 camera, although compact, needed to be connected to a large external digital 

storage unit and this detracted from its uptake (Graham, 1998). Technological evolution has 

allowed the development of completely independent cameras which carry an internal power 

supply and storage medium (Peipe & Schneider, 1995), making them far more versatile than was 

previously possible. 

Although, broadly speaking this is true, and the internal power supply and storage are adequate for 

applications such as photo-journalism, these two elements of the Kodak digital cameras used for 

this research posed difficulties for air survey operation for all but the smallest survey blocks. This 

was because of the limited capacity of the battery ( 1 100 mAh) and because of the number of 

frames that could be stored on one PCMCIA card. To overcome these problems an integral power 

supply unit and intervalometer was designed to power and control the camera (6.4) and meticulous 

mission planning via an interactive mission planner (6.6) was designed to manage the storage 

medium and cost the survey. 

Regardless of the make of digital camera they all share the same basic architecture that allows 

• 

energy to be captured and recorded as an electrical signal, corresponding to the brightness of the 

scene. This analogue signal is converted to a digital value corresponding to the voltage of the 

signal and is then stored to a magnetic medium in compressed format. Figure 5. 1 is a schematic 

representation of a digital camera. 
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Figure 5. 1 Imaging route from sensor to storage device in a digital camera 

5.3. THE CHOICE OF SENSORS - film Or digital 

5.3.1. Making the choice 

It is now possible to make choices about the type of sensor to use and there are a number of 

factors including cost and application to be considered before any such choice can be exercised. 

The new approach using low cost videography and digital photography has been born out of the 

realization in recent years that cost effectiveness has previously been given low priority and that 

applications have often been developed only after commitment to an expensive technology. The 

result is that many organisations are now awash with expensive data for which they have no 

immediate meaningful use (King, 1 995). 

The opportunity for decision making regarding the type of imagery to acquire presents itself with 

regularity since the shelf life of data can be very short, especially where natural or anthropogenic 

change is continual and/or rapid. However, making the change from tried and tested technology 
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to very new technology is likely to take some time as it not only requires forward thinking, but 

also sufficient funds for implementation of contingency plans should the new product not meet 

expectations. Commenting, almost twenty years ago, on the general reluctance of professionals to 

embrace new imaging technology Crawley ( 1981 )  remarked: 

"That announcement of a prototype solid-state imaging camera by Sony 

should cause nervousness and apprehension is very difjicult to understand, 

especially when one considers that electronic imagery will only broaden the 

whole scope of photography and its associated industry and trade ". 

In fact, traditional aerial photography using film is still widely used today in the coastal sciences 

e.g. coastal resource management and planning (La Cock et a/., 1 992; Welch et a/., 1 992; 

Ferguson et a/. , 1 993; Chauvaud et a!., 1 998), the study of estuarine sedimentology (McManus & 

Soulsby, 1 994}, monitoring morphological change over time (Lyon & Green, 1990; Hellstrom & 

Lubke, 1 993; Jiminez et a/., 1 997; Gorman, et a!., 1998; Leys & Werritty, 1 999; Oostwoud 

Wijdenes et al., 2000), monitoring coastal wetlands (Ramsey & Laine, 1 997), monitoring coastal 

sand dunes (Bate & Ferguson, 1996; Johnson, 1 997; Sanderson, et a/. , 1 998; Brown & Arbogast 

1 999), but it is a relatively expensive data format which does not lend itself to modem 

computerised approaches to data handling for resource management and planning. Even though 

film technology still prevails, other industries including mapping and charting and GIS have now 

embraced digital technology and so it is imperative for the imaging side to be able to interface with 

these industries allowing them to take full advantage of the digital revolution. This requirement in 

itself highlights the need for application led research into the capability of digital cameras. 

5.3.2. General film and digital issues 

There are fundamental differences in image capture, storage and transmission between 

photographic and electronic imaging devices. Whereas conventional aerial cameras use film for 

recording images which must be processed chemically to reveal the acquired image, digital 
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camems use a camera body and lens but record the image with charge-coupled devices (CCDs) 

and the images are stored in digital format usually on computer disks. Film (particularly CIR) 

suffers from degradation induced by fluctuating temperature and humidity and there are problems 

of consistency associated with film emulsion batches. A further significant disadvantage is that 

film is prone to deform during both the survey and subsequent processing, reducing the geometric 

integrity of any derived maps. In contrast, airborne digital photography neither requires specialist 

laboratory processing nor suffers from deformation. The images integrate searnlessly with other 

digital technologies such as Global Positioning Systems (GPS), computer assisted cartography and 

Geographic Information Systems (GIS) (Greve, 1 996). Images can be readily enhanced using 

image processing software to reveal subtle details which might not otherwise be visible in a print. 

5.3.3. Digital image capture 

Digital images are captured using charge-coupled devices or CCDs. A CCD is made up of a string 

of metal oxide semiconductor (MOS) capacitors that collect and transfer photon-generated charge. 

By connecting up the MOS capacitors in groups of 3 and applying 3 step voltages to them, 

clocked in sequence (tl ,  t2, t3), each charge signal is moved from well 1 to well 2 to well 3 to the 

output register (Figure 5.2). In this way the charge is coupled through each line of MOS 

capacitors in the array. 

In the case of area array CCDs these capacitors are closely spaced in a regular grid arrangement. 

A cross section of this arrangement is shown in Figure 5.3. When radiation strikes each sensor, 

electrons are released and then stored in the capacitors' potential wells (a potential well is a 

negatively charged depletion area, created at each Si-Si02 interface). The magnitude of the 

charge (number of electrons released) is proportional to the amount of incident radiation. After 

the charge is collected in each pixel site, the charge is clocked down each column (kept intact by 

electronic fields induced by applied clock voltages), and into the serial shift register in a method 

that is often referred to as a "bucket brigade". When the charge reaches the serial shift register, it 

is transferred perpendicularly along another shift register to one or multiple amplifiers before it 
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can be read out of the array. The charge is moved from well to well to an output diode via a semi-

transparent polysilicon gate by applying a step voltage (cp1 , cp2, �) as the surface potential as 

illustrated in Figure 5.3 .  
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Figure 5.2 Charge coupling, charges are 'clocked' to the shift register across a potential difference 

(Graham, 1 998) 
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One of the critical parameters of the frame transfer CCD is the speed at which the charge can be 

transferred to the storage medium and this bas implications for aerial survey work because it is a 
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controlling factor in the collection of stereo photographs (6.6.3). Digital file formats and data 

storage in the Kodak DS series will be described in 6. 3.2.  

5.3.4. Image Scale and Resolution 

Because hardcopy digital imagery bears a very close resemblance to film photography there is a 

tendency to use terminology based on traditional methods such as scale, line pairs per millimetre 

(lp mm·') and ground resolved distance when describing the resolution of digital imagery 

(Thompson, 1995; Comer et a/., 1 998). Problems arise because of the very properties of a digital 

image. For instance, scale is a fundamental measure of the usefulness and quality of print, and 

aerial photographs are characterised accordingly. Users will specifY a particular scale of 

photography for an application and be confident that their expectations of the photography will be 

met. However, a digital image does not have a scale in the same sense, as it can be printed and 

displayed at many different scales and this has lead to confusion in both the film and digital 

communities. 

The level of detail which may be discerned in a photograph depends not only on the scale of 

image capture, but also upon the film granularity and the degree of contrast within the scene 

(Graham & Read, 1986). High resolution film currently produces the best resolution attainable of 

all remote sensing sensors and film resolution is often described in line pairs per millimetre 

(lp mm·'). This measurement represents the limiting spatial frequency for which a regular line 

pattern can still be distinguished, and the line pair is the centre of one bar to the centre of the next 

in the test target. Typical values for black and white aerial photographs are between 30 and 60 

lp mm·' , corresponding to distances of between 33 and 16 f.lm on the photo, (although experience 

has shown that atmosphere and other attenuating factors in flight always reduce resolution to < 40 

lp mm·' (Light, 1 996). For typical image scale of 1 : 10 000 these values translates to a ground 

spatial resolution ofbetween 33 em and 1 6  em. 
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Ground sampled distance (GSD) provides an indication of the smallest objects that can be detected 

on the ground and is a more appropriate metric for digital imagery. However, since the 

conventional e;.,.-pression of resolution of a photograph is its scale, it is inevitable that those 

familiar with this expression wish to equate it to ground sampled distance. If the spatial frequency 

of CCD pixels were described in terms of lp mm·' it might be assumed that I line pair could be 

resolved by 2 pixels but in practice it has been found that 2 pixels often fail to resolve I line pair. 

Several different proposals have been put forward including 2.8 pixels = I line pair (Konecny et 

al . . 1 982) and 3 .3  pixels = I line pair (Makarovic & Tempfil, 1 979). Graham ( 1 998, p. 5 1) 

recommends a compromise somewhere between the two and that for practical purposes 3 pixels = 

I line pair. In terms of digital imagery captured at 50cm ground pixel resolution, this would 

equate to a resolution of I .5m per line pair and this would be equivalent to film based photography 

at a scale of 1 :40 000 (assuming 40 1pmm-1 ). 

Although GSD has come to be the expression of digital image resolution that is favoured by the 

Remote Sensing community (Thompson, 1994 ), this must be clearly defined to avoid ambiguity 

because digital imagery may be resampled to alter the GSD. In effect, the GSD at collection may 

be very different from that of the final product (Comer et al., 1998). Thompson ( 1 994. p. 129) has 

suggested that the GSD can be determined at any stage in the photographic reproduction cycle by 

measurement of the image spread function and he has suggested that: "For a photographic 

system, the !SF is characterised as the smallest observable pixels that remain visible as separate 

levels of grey (or Colour) in the image ". In this paper he describes a method for the determination 

of GSD and the results of an investigation into the spatial resolution of the Kodak Digital Science 

460 CIR camera are given in Chapter 6 section 6.3.6. 

5.3.5. Aliasing 

In digital imaging aliasing occurs when artefacts are created in an image. This is a fundamental 

limitation of all solid state image sensors because they have discrete sensor elements. Aliasing is 

manifested as jagged edges on straight lines or as a 'rainbow effect' or chromatic aliasing in 
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colour imaging and occurs when the intensity minima and maxima in the image do not fully 

coincide with the sensor elements. This phenomenon obeys the Nyquist sampling theorem which 

states that: " The sampling of any signal that has a spatial frequency close to the sampling 

frequency of the sensor (or multiples thereof) gives rise to intensity modulations in the displayed 

image in the form of beats between the two frequencies". As the spatial frequency of the 

sampling system improves to higher values the problem becomes less important. To remove 

colour aliasing artefacts, an anti-aliasing filter can be installed in the camera to lower the high 

frequency I high contrast in the image, but this also affects the low frequency data and has an 

overall smoothing effect on the image, thus decreasing sharpness in the image. 

5.3.6. Data security and quality control 

A significant advantage of the digital approach lies in security and control of data where CIR film 

processing is unavailable. In-flight quality control is possible since imagery can be seen in near­

real time allowing immediate verification before leaving the project region, eliminating costly 

reflights and remobilisation (Burger, 1 996). Where data obsolescence is problematic during time­

critical investigations, e.g. pollution incidents and precision farining applications with typical data 

lives of 24 to 48 hours, a rapid tum-around time is imperative. 

Goodpasture (1996) has reported the routine delivery of images. including hardcopy, highlighting 

crop anomalies to growers within 48 hrs, at annual cost of around $ 1 0 per acre. Bobbe ( 1 997), of 

the USDA forest, service was able to map an area of 25.000 acres of burnt forest in less than 1 

week using a Kodak Digital Science 420 CIR camera. whereas it would have taken several weeks 

using conventional film cameras, and, at the same time realizing a saving of $ 250 000 over 

traditional methods. In June 1 999, the aerial digital photographic system (ADPS) was used to 

photograph the 250 km2 district of San Cayetano, Columbia, to map the area for landslides in 4 

days, when the client was unable to locate any other survey team prepared to deliver the product in 

such a short tum-around time (pers. obs.). 
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5.3.7. Cost considerations 

5.3. 7. 1 . Capital cost 

The capital cost of most airborne cameras is in the order of $500 000 plus, with relatively high 

operational costs owing to the need for larger, more expensive aircraft (Roberts and Anderson 

1 999). In addition, the logistical and navigation support for these large-format systems could add 

an additional $ 1 50000 to the capital investment and facilities for scanning must be provided for. 

The complete system used for this research, based on the Kodak DS 460 CIR camera, costs less 

than £ 40 000 ($ 60 000) with modest operational cost, typically £200 - £300 (�$450) per hour for 

aircraft hire as it does not require survey-dedicated aircraft. 

5. 3. 7. 2. Developing, printing scanning 

Comparing the costs of film and digital survey is a complex matter because the two are inherently 

different, for example, the cost of chemicals for developing and printing film, and their expensive 

disposal imposed by environmental regulation, is considerable. This is particularly pertinent to 

CIR (colour infrared) film since it requires specialist processing, available only at a few 

professional laboratories in the U.S .  The Netherlands and Japan. whereas, there are no such costs 

incurred with a digital system because the images are stored directly to disk. The cost is also 

dependent on the required product, for example, if the end product is needed in digital format then 

film must be scarmed. 

Scanning is a time consuming (20 minutes per photograph at 7.5 J.lm (Hohle, 1 996)) and costly 

operation, ($ 1 00 per 23cm x 23cm print, (Light, 1 996)), and furthermore, there is often a loss of 

radiometric detail and geometric integrity in the scanning process (Bakker & Kootwijk, 1 993 ; 

Burger, 1 996 ). Mills and Newton ( 1 996) have remarked that the increased cost of a digital camera 

compared with its 3 5mm film counterpart is easily offset by the cost of a high-resolution flat bed 

scanner. 

74 



5. 3. 7. 3. Block survey and orthophoto production 

For block air survey operations the area of photocoverage for a given ground pixel resolution dictates 

the economic feasibility of using one format in preference to the other. The largest commercial off­

the-shelf CCD is the Kodak M6 that has sensor dimensions of27mm by l 8mm, so that photocoverage 

at the CCD is approximately !/90th that of large format cameras for the same ground pixel resolution. 

For small areas the digital format is less expensive, for example, Wright ( 1998) reported the 

comparative costs of a digital survey and a conventional survey of Exmoor national Park, UK, as 

£897 1 for digital and £ 18400 for analogue with a further £12,800 to £ 1 7,232 for scanning the colour 

prints at 70f.!m (:::.300 dpi). 

For the production of orthorectified photographs, however, a threshold is reached where it becomes 

uneconomical to use small format cameras. Typical area threshold limits for orthorectified 

photographs for 0.5m and l .Om ground pixel resolutions are presented in Tables 5 . 1  and 5.2 and 

Figures 5.4 and 5.5 respectively. The smnmary costings are derived from a survey of current 

(December 1999) charges in Europe. For corridor survey such as pipelines, roads and coastlines that 

can be photographed in a single flight line, digital is always cheaper. 

The cost of collecting ground control contributes significantly to the overall cost of the production of 

orthorectified photographs, since at least 6 control points are required for each stereo pair (model). As 

the photocoverage is so much greater for the analogue survey the number of control points needed is 

considerably less for the entire block than is needed for the digital survey. 

survey block area (km2) 460 CIR cost (£) 9 X 9 film cost (£) 

1 X l 2814 22385 

10 X 10 28802 44308 

25 X 25 15 1872 8503 1 

Table 5. 1 Digital I analogue costings for orthophoto production at 0.5m pixel resolution for 3 survey 

block sizes 
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Figure 5.4 Digital I analogue costings for orthophoto production at 0.5m pixel resolution for 3 survey 

block sizes 

survey block area (km2) 460 em cost (£) 9 X 9 ftlm cost (£) 

1 X 1 2460 15476 

1 0  X 10 10473 25960 

25 X 25 43399 47799 

50 x 50 1 55989 85873 

Table 5.2 Digital I analogue costings for orthophoto production at lm pixel resolution for 4 survey 

block sizes 

1 80000 
160000 
1 40000 

4.1 1 20000 
..:.i :i ) 00000 
.5 
- 80000 
"' 0 60000 u 

40000 
20000 

0 

1- 460 digital cost £ -e- 9x9 film cost £ j 

' I I 
I Jil // J � 

"'" � 
1kmx 1 km I Okmxi Okm 25kmx25km 50kmx50km 

suTVey block area 

Figure 5.5 Digital 1 analogue costings for orthophoto production at 1m pixel resolution for 4 

survey block sizes 
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5.4. TRUE COLOUR AND COLOUR INFRARED DIGITAL IMAGING 

5.4. 1. Digital image display 

In true or natural colour digital imagery, blue, green and red wavelengths are sensed and recorded, 

and then displayed using the blue, green and red guns of a VDU display. In false colour infrared 

imagery, green, red and near infrared wavelengths are used, but near infrared energy is beyond the 

spectral response of the human retina. 
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Figure 5.6 True colour and colour infrared image display 

To enable human beings to see infrared radiation it is displayed in the red gun of a VDU display 

and by convention, red radiation is displayed in the green gun and green radiation is displayed in 

the blue gun. Figure 5.6 represents this schematically. In this way, objects, which have a high 

reflectance in the near infrared part of the spectrum, such as leafy vegetation, appear bright red, 

and objects with low near infrared response such as concrete, appear blue. In the Kodak digital 

science CIR cameras this is achieved through hardware and software. 

77 



5.4.2. Producing multiband images 

The silicon sensor has a broadband response from 400 - 1 100 nm as shown in Figure 6.4. To 

achieve a 'colour targeted' narrow band response, the wavelengths that reach the sensor must be 

limited in some way. This could be achieved relatively inexpensively and easily by placing a 

glass filter with the required characteristics in front of the sensor, either in front of or behind the 

lens. For example, a short pass filter would allow blue wavelengths to pass but would prevent any 

longer wavelengths reaching the sensor; a band pass would allow green wavelengths through but 

would filter shorter and longer wavelengths. This approach exposes the entire sensor array to the 

filtering mechanism so only allows one 'colour targeted' waveband to be imaged. To produce a 

three-band image using this technique with a single area-array camera such as the Kodak digital 

science series, three separate cameras are required. An alternative is to use a three-area array 

camera with a three-way beam splitter to allow radiation of the correct waveband to strike each 

array, this technology is common in professional video cameras. 

To produce a multiband image using a single photoplane, multiple variations of the narrow band 

response must be devised. A filter wheel system exists which rotates in front of the sensor so that 

three successive images must be captured to produce a multiband image. This system presents 

difficulties for moving targets, or conversely, moving cameras, because of misalignment of the 

three bands (Lane, 1 996). Another technology using the same philosophy as the filter wheel 

involves a tuneable liquid crystal filter which can cycle through the RGB filters during a single 

exposure such as the Dicomed Big Shot, but this suffered the same disadvantages as the filter 

wheel cameras. To overcome the cost implications of multiple cameras and the problems 

associated with producing colour photography using a single photoplane, Kodak devised a 

different approach using a colour filter array and this will be discussed in detail in 6.3 .4. 
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5.5. CONTINUING DEVELOPMENTS 

Five years ago in a critique of the state-of-the-art of airborne videography and digital camera 

sensor designs and their associated imaging and mapping methods, King ( 1 995) observed that the 

digital photography approach often lacked the scientific rigour of method and techniques 

developed within the remote sensing community during the past 20 years. The vast majority of 

operational applications used qualitative visual analysis rather than quantitative work using 

automated computer based techniques, and only a few researchers had developed and applied 

calibration techniques. 

As the use of digital photography for aerial survey gains momentum it is likely that research 

interest will concentrate more on the quantitative application of this imagery as in the case of the 

slightly more mature application of video as a remote sensing tool (Anderson et a/. , 1 997), where 

sensors have been radiometrically calibrated (Jensen et a/. , 1 995; Neale et al. , 1 995), and 

geometric distortions due to changes in viewing geometry and interlacing have been addressed 

(Mitchell et a/., 1 995: Pickup et a/., 1 995). 

Indeed, in the five years since King's critique, research has included investigations into the use of 

alternative platforms for air survey (Mills et a/., 1 996: Koh, 1 998a; Koh, 1 998b ), comparative 

assessments of film cameras and digital cameras, (Bobbe, 1 997: Thompson & Houghton, 1 999). 

There has been a spate of research into the geometric properties of digital cameras and the 

development of camera calibration models (Warner & Slaattelid, 1997; Clarke et a/., 1 998; Clarke 

& Fryer, 1 998; Shortis et a/., 1 998: Walker, 1 999). The photogrammetric capabilities of the 

Kodak Digital Science series has been investigated by Graham and Mills ( 1 997), and in addition, 

Butler et al., ( 1 998), Robson and Shortis, ( 1998), Ahmad and Chandler ( 1 999), and Walker ( 1 999) 

have investigated the geometric and radiometric image quality of several digital camera systems. 
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Although the concept of using digital cameras for aerial photography is in its infancy, and 

therefore has not been tested extensively. several workers including Mills et al., ( 1996); Bobbe & 

McKean ( 1995); King et al., ( 1 995); Copley et a!. , ( 1997); Knapp et a!. , ( 1 997); Maas and Kersten 

( 1 997), Fraser ( 1 998) are amongst a growing number of workers in the field who believe that low 

cost, off the shelf, multispectral cameras are suitable for a variety of applications including 

landcover analysis. satellite data validation. forest health monitoring and orthophoto production. 

In the past year several European national mapping and remote sensing centres have embraced the 

digital approach including: Euro-Mediterranean Centre for Insular and Coastal Dynamics (I COD), 

Malta; IGN, France (Paparoditis, 1 999 pers com. ) and NRSC, U.K. 

In a comprehensive review of digital and film cameras Light ( 1 996), concluded that although there 

are several difficulties. including aircraft attitude and positioning, which must be addressed before 

digital cameras can supplant film cameras, once these problems are overcome there is a very real 

possibility that this new technology may ultimately emerge as the imaging system for the future 

providing the final link in the transition to an all digital environment. 

This chapter has given a general overview of the stages in the development of digital photography 

and has highlighted some of the differences between analogue and digital photography. Brief 

mention of the Kodak Digital Science has been made, and, as these cameras have become an 

integral part of the Aerial Digital Photographic System (ADPS) used for this research, they are 

described in some detail in the contex1 of the ADPS in Chapter 6. 
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CHAPTER 6 

THE AERIAL DIGITAL PHOTOGRAPHIC SYSTEM [ADPS] 

6.1. DEVELOPMENT OF THE SYSTEM 

The Aerial Digital Photographic System used for this research was developed at Bath Spa 

University College to address the increasing demand for rapid delivery, stereo, multispectral 

imagery with relatively high spatial resolution. The imagery is compatible with images acquired 

from current earth observation satellites, since the spectral sensitivity spans the entire range of 

visible light and extends well into the near infrared. The system is easy to use because it can be 

operated like a film based small format camera and is capable of capturing vertical aerial 

photographs below cloud cover. 

6.1.1. Tbe choice of sensor 

Making the choice between video and full frame CCD digital cameras at the outset of this research 

project was driven by a number of factors, some of which were related to the desire to improve the 

practicalities of operation of the equipment and others to improvement in quality of the product 

itself. 

In the first place, multispectral video using two 732 (H) x 290 (V) CCD video cameras fitted with 

red and near infra-red narrow band filters had already been used for coastal sand dune monitoring 

with limited success (Koh et al., 1 996). Digitisation of the data resulted in image frames with 699 

(H) x 576 (V) pixels which gave a photo coverage of 350 m x 300 m for a 50cm pixel. 

Digitisation of image frames in both spectral bands and image co-registration were time 

consuming and tedious with the hardware and software available at the time. 'Grabbing' exactly 

corresponding frames in both spectral bands was tricky and any misalignment between the frames 

caused an effective decrease in photocoverage. The intrinsic quality of the imagery was moderate, 
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partly because of the effects of interlacing and forward motion (5.2. 1 .2) and also because there 

were large spectral variations from scene to scene. The spectral variations were due in large part 

to the fact that the automatic level control was designed to meter the entire bandwidth of the 

sensor (400 - l lOOnm) and the cameras were fitted with very narrow bandwidth filters. The 

automatic level control was unable to cope with the reduced energy levels incident on the sensor 

so that the aperture was opened wide resulting in saturation in brighter parts of the scene. The 

video system was bulky and awkward to transport and to fit into the aircraft and relied on the 

aircraft power supply to drive the cameras and video recorders. The nature of the research meant 

that all types of light aircraft should be potential platforms, consequently most would not be fitted 

for air survey work. Generally speaking, pilots are wary of external devices drawing power from 

the aircraft and this factor alone caused difficulties in locating suitable aircraft with a willing pilot. 

In the second place, full frame CCD cameras with infrared capabilities (Kodak Digital Science 

420) became available off the shelf at relatively low cost due to the work pioneered by the USDA 

Forest Service in 1 994 (Bobbe, 1 997). The sensor size in these cameras is 1 524 x 1012  pixels 

resulting in a ground coverage of 762 m x 506 m for a 50cm pixel, a significant improvement over 

the video image, with a consequent reduction in image processing time. In addition, the problem 

of pixel jitter is eliminated since the A to D converter is matched to the CCD and is driven by the 

same timing generator (Walker, 1 999). The images are written directly to removable hard disks in 

digital form for direct computer analysis. The dynamic range of the digital camera sensor is 

superior (12 bit, 4096 greyscales) to that of video (8 bit, 256 greyscales) giving increased spectral 

resolution in the image. In addition, the camera is independent of the aircraft power supply, 

inspiring pilot confidence in the operation. Subsequent developments in digital camera 

technology resulted in the availability of cameras with larger arrays. for example, the Kodak DS 

460 series with an array size of 3060(H) x 2036 (V). 

The new system using full frame digital cameras not only overcomes some of the problems 

associated with video technology such as brightness control and compliance with TV standards 
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(5.2. 1 .2) but also provides a much more compact system for transportation and deployment in a 

small aircraft, where space is at a premium, and is schematically represented in Figure 6. 1 .  

aircraft 
power 
supply 

digital 
camera 
400-l 100 run 

video 
cameras 
(red and 
near infrared) 

SVHS video 
recorders 

video 
monitor 

The digital system is 
completely independent oflhe 
aircraft power supply and 
requires only one camera to 
produce a multi-band image 

Figure 6. 1 Image capture components of the video system and ADPS 

6.1.2. Evolution of the ADPS 

The original version of the ADPS was designed around the Kodak Digital Science 420 

panchromatic IR camera, which has a silicon photodiode sensor matrix of 1 524[H] by l0 12 [V] 

pixels, producing 1 .5  million pixels in monochrome mode (the M5 chip). The ADPS was updated 

on production of the 420 CIR camera, which has the same size array as the panchromatic camera. 

but is capable of sensing in true colour mode or colour infrared mode and produces a three-band 

image. The current version of the ADPS uses the Kodak Digital Science 460 CIR camera. This 

camera differs from the 420 CIR in the array size of the CCD, having a 3060[H] by 2036[V] array 

(the M6 chip) producing 6 million pixels and giving a photocoverage four times larger than that of 

the Digital Science 420. A fuller description of the Digital Science cameras is given in section 

6.3 . 1 .  
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6.2. GENERAL SYSTEM SPECIFICATIONS 

The system comprises 3 principal hardware components and one software component. These are a 

digital camera, an aircraft mounting plate and an intervalometer to manage the framing sequence 

(the hardware) and an interactive mission planner (the software) running in Microsoft Excel. 

The ADPS weighs approximately 2.5kg and has overall dimensions of 25cm by 25cm by 25cm. 

The assembly, (Plate 6. 1 ), is aircraft independent and can be installed within minutes. A variety 

of non-pressurised aircraft have been used for air survey with this system including the Cessna 

1 50 series, 1 70 series, 1 80 series, 200 series, the De Havilland Beaver, Partanavia, Thruster 

Microlight, Piper Warrior, Super Cub and Bell, Hughes and Robinson helicopters. 

Plate 6. 1 .  The ADPS comprising a Kodak DS 460 ClR camera, aircraft mounting plate, 

intervalometer and PCMCIA type III card 

In all cases a 70mm diameter hole is required that looks vertically down. Most non-pressurised 

aircraft have inspection ports larger than 70mm diameter that look vertically down through floor 

and fuselage skin, and these have been used successfully. 
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6.3. THE ADPS CAMERAS 

6.3.1. The Kodak Digital Science 420 and 460 series 

There are many digital cameras available off the shelf. but there are few that have adequate spatial 

resolution and spectral sensitivity for aerial survey work. At the outset of this research the Kodak 

series of digital cameras with infrared capability were the only full frame CCD cameras available 

at relatively low price, potentially suitable for natural resource imaging. Considerable 

improvements have been achieved with each new camera in the series. 

The Kodak Digital Science 420 panchromatic IR camera, which has a silicon photodiode sensor 

matrix of 1 524[H] by 1012[V] pixels, producing 1 .5  million pixels in monochrome mode (the M5 

chip) was the first in the series. This camera is capable of producing a single band, grey scale 

image and if colour imagery is required it is necessary to use a series of cameras each fitted with a 

filter appropriate to the waveband required. The images must be co-registered and then 

composited to produce a colour image. This is a time consuming operation and detracts from the 

'portability' of the system since more than one camera must be deployed. Never-the-less, this 

system has proved very useful when used with very narrow band filters, 640 ± 10.4 nm (red) and 

840 ± 1 1 .4 nm (very near infrared), and has been used by the Land Management Group, Cranfield 

University at Silsoe, to predict crop yield in the UK, (Taylor, 1., 1998, pers. com.). The advantages 

of using this camera over later versions include: lower cost, smaller file size (each image is only 

one third that of the 420 CIR camera), and full spatial and spectral resolution. 

A colour version of the 420 panchromatic camera was developed which has the same size array as 

the panchromatic camera but which produces a three-band RGB image. Production of the 420 

CIR camera was accomplished through modification of the colour camera sensor and software 

development. The arrival of the CIR camera, which was designed for the United States Forest 

Department (Bobbe and Zigaldo, 1 995), was an exciting step forward as it could be used to collect 

either true colour or false colour infrared images using only one camera. Post flight band 
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alignment procedures are eliminated because there is only one optical axis for the three image 

bands, and in addition, the bands can be separated and processed individually and then used to 

produce vegetation indices. 

The Kodak Digital Science 460 CIR camera differs from the 420 CIR in the array size of the CCD, 

having a 3060[H] by 2036[V] array (the M6 chip) and producing 6 million pixels. This gives a 

photocoverage four times larger than that of the Digital Science 420, making the field of view 

almost identical to that of 3 5mm film and offers considerable savings in processing time. Figure 

6.2 demonstrates the comparative sensor size of a 35mm film camera, the DS 420 camera and the 

DS 460 camera for a given flying height and focal length lens. 

36 m m

27.6  m m

1 3 .7 m m

420 c a m e r a  

4 6 0  c a m era 
3 5  m m  c a m e ra 

Figure 6.2 Comparative sensor sizes of a 3 5mm film camera. the 420 and 460 cameras 

Graham and Mills ( 1 997) have observed that although the nominal spatial resolution of the Digital 

Science 460 is the same as that of the Digital Science 420, the image quality is far superior due to 

the improved CF A interpolation algorithm incorporated within the Digital Science 460. 

The most recent digital camera from Kodak is the Kodak Digital Science 660 Colour camera. 

This camera does not have near infrared capability since the sensor is not silicon based but is 
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indium tin oxide, which is not sensitive in the near infrared part of the spectnun The array size of 

this camera is 3040 [H) x 2008 [V]. 

6.3.2. Digital file formats and data storage in tbe Kodak DS series 

The images are captured in TIF-EP (Tagged Interchange File Format for Electronic Photography) 

format using a colour filter array (CFA) technique. This produces a file size of 1 .5 Mb for the 420 

CIR camera and 6.2 Mb for the 460 CIR camera, which are stored in this format on PCMCIA 

cards. TIF-EP is an intermediate image file that maximises the number and quality of the images 

stored in memory. TIFF-EP allows image attribute data, such as date and time, aperture setting 

and shutter speed, as well as other types of digital data including GPS position data, to be stored 

along with the image data. This is shown in Figure 6.3. 
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Figure 6.3 Screen grab of import window showing TIF-EP and image attribute data 
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When acquired using a PC or Macintosh, the file is extrapolated into a full colour image, with 12 

bits per channel. This 36 bit image is resampled to a 24 bit colour image using the best 8 bits from 

each channel, producing a 4.6 Mb image or an 1 8.6 Mb image, for the 420 CIR and 460 CIR 

cameras respectively, in standard TIF format. 

The improvements in array size and multispectral capability involve a cost in terms of increased 

file size. This is of particular importance for air survey. (6.6) as it ex1ends the data writing time at 

the camera I PCMCIA card interface (maximum framing rate) and the download time at the 

PCMCIA card I PC interface; it also increases the storage space per image on the PCMCIA card, 

as shown in Table 6. 1 .  

SPECIFICATION CIR 420 CIR 460 

CCD array size 10 12 x l 524 2036 X 3060 

Pixel size 9.01 3  J.lm 9.01 3  J.lm 

Spectral sensitivity (nrn) 
Unfiltered 400 � 1000 400 - 1000 

Visible filter 400 � 700 400 - 700 

Infrared filter 500 � 800 500 - 800 

Sensor size (rnrn) 9. 1 2 }  X 13 .735 18 .350 X 27.579 

Burst rate 5 images in 2.3 s 2 images in 2 s 

Minimum framing rate (s) 2.75 8.5 

File size raw I interpolated (Mb) 1 .6 I 6.5 6.2 I 1 8.5  

Table 6. 1 Framing Rates and File Sizes of the Kodak Digital Science Camera Series 

PCMCIA cards are available in several sizes ranging from 1 7 1  Mb to I Gb. The capacity of the 

card controls the number of compressed image files that can be stored and this has important 

implications for air survey management (6.6.4). The number of compressed files per PCMCIA 

card for the 420CIR and for the 460CIR is shown in Table 6.2 
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No. of images per PCMCIA card 

camera 1 7 1 Mb 260 Mb 340 Mb 5 12 Mb 1 Gb 

420 CIR 1 06 162 2 12 320 625 

460 CIR 27 41 54 82 160 

Table 6.2 Storage capacity of PCMCIA type III cards 

6.3.3. Spectral Sensitivity 

6. 3.3. 1. Spectral range and quantum efficiency 

The spectral sensitivity of the sensor in the CIR versions of the cameras was designed to mimic 

the spectral sensitivity of Kodak 2443 colour IR film (King, 1 997). The range is governed by the 

quality and sensitivity of the silicon based CCD detectors (Anderson, et a/. , 1 997) and spans the 

entire spectrum of visible light, extending well into the near infrared (400 nm tol lOO nm). 

Silicon is the most commonly used 'chip' material as it is relatively cheap to manufacture and 

provides good quantum efficiency (the efficiency in conversion of incident photons to image 

signal) in the near infrared wavelengths. For CCDs the quantum efficiency is typically 10% in the 

blue (380 - 430 nm), 40% - 60% in the far red I very near infrared (680 - 800 nm) and 10% in the 

near infrared (900 - 1000 nm) - almost 50% of the response is in the near infrared, providing 

excellent potential for CIR imaging (King, 1 995). Figure 6.4 shows the quantum efficiency of the 

spectral response curve for the Kodak Digital Science CIR cameras. 
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Figure 6.4 Spectral sensitivity of the sensor (Eastman Kodak Company) 

6. 3.3.2. Survey altitude and poor light levels 

The difference in sensor type between conventional large format film and digital small-format 

cameras dictates the focal length of the lens that is acceptable, and for similar ground pixel 

resolutions, the use of large format cameras require significantly higher survey flying altitudes 

because they use 1 50mm or 2 1 0mm focal length lenses. This geometry-induced requirement may 

limit survey flying to clear-sky conditions and often renders the large format unsuitable for disaster 

management roles when low-cloud cover often accompanies the disaster scene. 

Under mission critical conditions digital small format systems are able to operate below cloud cover 

because of the short focal length (24mm or 28mm) of the lenses used. Furthermore, digital cameras 

appear to suffer less from inadequate light levels than film cameras. For example, Bobbe, ( 1 997), 

demonstrated that the Kodak Digital Science CIR digital camera performed better under adverse 

lighting conditions than a Hasselblad 70mm camera which failed to expose the CIR film, owing to 

the higher sensitivities inherent in digital sensors to record images under low light conditions (because 

of the extensive dynamic range of the 12 bits per channel sensor allowing 4096 grey scales in each 

channel). Similar results were reported by Knapp et al., ( 1 997) when comparing data obtained 

from a DS 420CIR, a 35mm film camera and a 70mm film camera. This can significantly expand 
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the window of opportunity for data capture, especially in regions where cloud cover is frequent or in 

areas that are turbulence free only in early morning I late afternoon when light levels are less than 

perfect. Plate 6.2 is a digital CIR photograph of a difficult subject taken in early morning (7.30 am 

local time) where the low sun angle cast deep shadow in the excavation pit of an open cast mine. 

Plate 6.2 Digital Science colour infrared image of an open cast mine 

The image was captured at 16200 ft ASL from a Bell helicopter, giving a nominal ground pixel 

resolution of 25cm. Only rudimentary image processing was necessary (contrast stretch and edge 

enhancement) to reveal some detail in the image even where the benches of the mine are in 

shadow and this photograph provides evidence of the potential of aerial digital photography in an 

exacting environment. 

6.3.4. The Kodak Colour Filter Array 

The Kodak camera senses the blue, green, red and near-infrared (NIR) parts of the spectrum using 

different elements of the CCD array, known as the colour filter array or CF A Multiband imaging 

is achieved by coating the individual photosites with waveband specific filters. There are three 
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types of filter; one which allows green and near infrared wavelengths to pass, one which allows 

red and near infrared wavelengths to pass, and fmally one which allows blue and near infrared 

wavelengths to pass. The pattern of the coated photosites within the matrix is shown in 

Figure 6.5. 

G+IR R+IR G+IR 
--� --

B+IR G+IR B+IR 
- -- f--- - c--- -- -t-- - -- -'--· -

G+IR R+IR G+IR 

Figure 6.5 Colour Filter Array (CFA) 

It can be seen that each photosite is sensitive to just one waveband pair (i.e. blue+NIR, green+NIR 

or red+NIR), and that there are twice as many green+NIR photosites as red+NIR or blue+NIR. 

The greater proportion of green sensitive pixels corresponds with the maximum sensitivity of the 

human eye to green wavelengths thus giving the image improved fidelity. Once an image has 

been captured using this arrangement three separate images have to be created using the adjacent 

pixel colour interpolation technique. Since only one in two photosites record information for the 

green channel, interpolation is used to fill in the remainder of the array. Just one in four photosites 

collect information in the red channeL and so interpolation is used to fill the remaining three­

quarters of the array. Likewise, interpolation is required to fill three quarters of the array to 

produce the blue channel image. Titis interpolation is achieved using a procedure known as 

"acquire" in TWAIN compliant software. The quality of the individual bands is determined by the 

sophistication of the interpolation algorithm. Titis procedure allows multiband imaging but at this 

stage each photocentre is sensitive to one primary colour plus near infrared wavelengths, to 

produce true colour or colour infrared imagery an optical filter is required. 
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For true colour imaging, an infrared cut filter is placed in front of the camera lens, to ensure that 

only visible wavelengths strike the photosites, as shown in Figure 6.6. The energy received at each 

photosite is converted to a digital number (DN) which in tum controls the brightness of the 

corresponding channel or gun (blue, green or red) of a visual display unit (VDU). 

RADIANCE MINUS-IR PHOTO SITE TRUE COLOUR 
FROM SCENE FILTER FILTERS IMAGE 

Blue + NIR Blue 
Blue/NIR Blue DN 

Blue gun • 
Green + NIR Green 

Green!NIR 
Green DN • Green gun 

Red + NIR Red 
Red!NIR 

Red DN • Red gun 

Figure 6.6 True colour image production using CF A and infrared cut filter 

For false colour infrared imaging, a minus-blue filter is placed in front of the lens to ensure that 

only near infrared wavelengths reach the blue/near infrared photosites, (i.e. the infrared signal 

occupies the blue photosites). This enables the near infrared radiance to be measured, and this 

amount is subtracted from the total radiance received at the green/near infrared and at the red/near 

infrared photosites respectively as shown in Figure 6.7 

RADIANCE MINUS-BLUE PHOTOSJTE FALSE COLOUR 

FROM SCENE FILTER FILTER IMAGE 

NIR 
Blue/NIR NIR DN 

Red gun Blue + NIR • 
Green + NlR Green +NIR

,. 

Green!NIR 

• 
Green O� 

Blue gun 

Red!NIR Red DN 
Green gun Red + NIR Red + NIR 

,. • 

Figure 6. 7. False colour infrared image production using CF A and minus blue filter 

93 



6.3.5. CIR AND TRUE COLOUR FILTERS 

Although the response of the CCD allows the use of filters of very narrow bandwith ( l Oom), 

(except in the blue region where the signal to noise ratio is low. and a minimum of 2 5  om 

bandwidth is required for acceptable results), to produce customised images for specialist 

applications, the two filters supplied with the 420 and 460 cameras are relatively broadband. 

These are, the 650BP300, a broadband filter in the 500-800 om spectral band enabling the CIR 

cameras to record false colour infrared and the VIS 550 BP 300 a filter in the 400-700 om spectral 

band enabling the CIR cameras to record natural colour. 

Figure 6.8 describes a number of spectral characteristics of the CIR camera and the 650BP300 

filter, a band-pass filter allowing wavelengths between 500 om and 8 1 0  om only to reach the 

CCD. The general CCD response in the 400 - 900 nanometre bandwidth is indicated, as well as 

the range and response of the 6500BP300 filter, superimposed on the general CCD curve. The 

response at the individual 'blue' ,  green and red photosites is shown with peaks at 760, 540 and 

650 om respectively. The apparently anomalous 'blue' response which peaks well beyond the blue 

part of the electromagnetic spectrum at 750 om with the 650BP300 filter in place is explained by 

the fact that the blue photosites are occupied by near infrared signals when the camera is operated 

in colour infrared mode (Figs.6.7 and 6.8). 
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Figure 6.8 Spectral response of the 650BP300 filter (Eastman Kodak Company) 

Figure 6. 9 shows the range and response of the 500BP300 filter at the individual blue, green and 

red photosites with peaks at 450, 540 and 680 nm respectively. 

Figure 6. 9. Spectral response of the vis filter 

'• 

(Eastman Kodak Company) 
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6.3.6. Spatial resolution of the image in em mode and true colour mode 

In Chapter 5: (5.3 .4 ) attention was drawn to the difficulties arising from the intrinsic differences 

between analogue and digital photographs in trying to compare scale and resolutions. Defining 

the resolution of digital images produced by the Kodak DS 460 CIR camera requires further 

clarification. 

Regardless of the stated GSD of the imagery, the amount of spatial detail which may be discerned 

appears to be greater for the true colour imagery than for the false colour imagery for the same 

pixel size. This probably arises from two factors, the first due to the physical properties of lenses 

and light and the second due to the CF A and the interpolation software. First, a slight de-focusing 

of near infrared wavelength occurs because the focal length of a lens at near infrared wavelengths 

is slightly greater than that at visible wavelengths giving a slightly out of focus image (Graham & 

Read, 1986). Second, loss of some spatial detail is a result of the noise effects in the green and red 

wavebands of the CIR as discussed below. 

Plate 6.3 shows a colour infrared image (top left) and a true colour image (top right) of the same 

subject. These images were captured simultaneously using two DS 460 cameras, with the camera 

configured to colour mode mounted in front of that configured to CIR mode, in this way, ambient 

conditions in the field were as near identical as is possible. Both images have been split into their 

component R., G,B bands. Similar subsets of the red and green single band images were produced 

to allow a zoomed-in view to facilitate comparison of the images. (On a point of clarification: the 

bands used for comparison are the actual red wavelengths and green wavelengths responses and 

not the red and green VDU channel images). 

Pairwise comparison of the red (centre) and green (bottom) waveband images reveals that the 

images obtained in CIR mode are of inferior quality to those obtained in true colour mode. The 

CIR images are more grainy and lack the spatial detail of the true colour mode images. This is 

most likely to have arisen from an amplification of noise introduced during the subtraction of the 
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near infrared component of the radiance incident on these photosites as illustrated in Figure 6. 7. 

When used in true colour mode, with an infrared blocking filter, all of the energy incident on the 

photosites is recorded and converted to a digital number. When used in colour infrared mode, at 

the red and green photosites only part of the energy incident on the photosites is used to calculate 

the digital numbers (DNs), as the near infrared component has been subtracted. Thus the signal to 

noise ratio is reduced for the red and green wavebands in CIR mode. 

Plate 6.3 A visual comparison of the detail discernible in a colour infrared (left) and true colour 

image (right). Red response (�550 - 700nm) centre and green response (�50 - 600nm) bottom 
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In order to quantify this difference, Grant Thompson FRPS, FBIPP, of the Royal Photographic 

Society Aerial Imaging Group, carried out an independent investigation into the spatial resolution 

of DS 460 CIR camera, operated in both colour infrared and true colour modes with a 28mm lens. 

In November 1 997 a hardcopy subscene of each of a CIR and a true colour image was provided 

for the investigation. These images were captured simultaneously in October 1 997. The images 

were contrast stretched by autolevelling. The scale of each print was established by careful 

measurement of 6 control points on each image, the selected control points representing three lines 

being as near as possible at 120° to each other. The same points were then measured on a 

1 :50 000 map and the image scale was determined by the relationship: 

Scale (image! = Distance (map! I Distance (image) x Map scale 

The average image scales were : 

CIR 1 : 1065 

Vis 1 : 1056 

Twenty measurements of Image Spread Function (I SF) were made from each of the prints and the 

mean value was calculated for each of the prints, together with the standard deviation and the 

coefficient of variation. The results are shown in Table 6.3 The image spread function is a 

measure of the resolving power of a system (including camera, computer and printer) and is used 

as a measure of the smallest discernible image patch in a hardcopy image (Thompsoa 1 997). 

Image Type ISF (avg. )  S.D. CoVar. 

DS 460 CIR 0.443 0.62 1 4.0% 

DS 460 VIS 0.373 0 .54 14.4% 

Table 6.3 A comparison of the mean image spread function in a CIR and a True Colour digital 

image captured simultaneously 
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From the relationship GSD = ISF x Image Scale it was possible to calculate the GSD (ground 

sampled distance) since ISF and Image Scale were known, and in addition, from a flying height of 

948m above mean ground level recorded for the images, the GSD values indicate an angular 

resolving power for each camera, plus computer and hardcopy system. The results are shown in 

Table 6.4 

Camera type & mode GSD Lar resolving power 

DS 460 CIR, CIR 0.47m 0.50 milli-rad. 

DS 460 CIR, vis 0.39m 0.4 1  milli-rad. 

Table 6.4 The ground sampled distance (GSD) and angular (Lar) resolving power for each 

camera, computer and hardcopy image. 

These findings might suggest that the camera should only be used in true colour mode, but this 

would mean that near infrared imagery would not be available and for studies involving the 

assessment of vegetation this would be disadvantageous. The near infrared waveband provides 

information on vegetation cover that is not available at visible wavelengths because near infrared 

wavelengths are reflected strongly by cell walls within leaves, and the denser and healthier the leaf 

canopy, the stronger the NIR reflectivity. 

6.4. THE INTERV ALOMETER 

6.4.1. Power supply to tbe camera 

Driving the camera and maintaining the storage devices places a heavy drain on batteries and this 

proved to be a tricky problem when the cameras were used towards the 'stated' limit of their 

batteries. The early cameras supplied by Kodak were prone to battery failure when used for aerial 

survey work. In addition, the batteries were not 'user replaceable' in the sense that the battery pack 
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was housed within the camera, requiring removal of the base plate for access and were certainly 

not replaceable in flight, and besides, Kodak would not accept liability for cameras that had been 

tampered with. 

Up to 1 997 the cameras were fitted with 900mAh NiCad batteries. All NiCad batteries suffer a 

memory effect, so that incomplete discharge before recharge caused an effective decrease in the 

capacity of the battery over successive charge cycles. This alone caused difficulties for aerial 

survey work but was only one of several problems encountered during the early camera trials. The 

nominal life of the battery was 1 000 cycles and for the 420 and 460 cameras one complete charge 

allowed the capture of 400 and 300 images respectively (Eastman Kodak, no date). Using the 

camera for continuous firing placed a high demand on the battery and did not allow recovery after 

firing. Rapid deterioration ensued, and by halfWay through the life cycle only about half of the 

stated number of frames could be captured on one full charge. Clearly this was inadequate for 

aerial survey as the following simple example illustrates: 

To capture full stereo imagery, at 50cm pixel resolution, of a block of JOkm length, 

on flat terrain, using the 460 camera orientated with its long axis along track would 

require 22 frames per line. With a compromised battery allowing the capture of 

150 frames only 6 complete flight lines could be photographed on one charge cycle, 

representing a block width of on�v ..f km. Furthermore, the most efficient way to fly a 

survey is to maximise the actual sun,ey time relative to aircraft costs such as 

relocation time, landing fees etc. The time for this actual survey, flown at 80 kts, is 

only ] .8 hours and with typical flight durations between refuelling in the region of ..f 

hours, for many light aircraft this would be a punitive W«V to operate in terms of 

both time and money. 

In March 1 997, Kodak recalled all the NiCad batteries and replaced them with l 100mAh nickel 

metal hydride batteries which do not suffer a memory effect, but these still proved inadequate for 

1 00 



prolonged use. In addition, problems were encountered in charging these batteries as they were 

found to overheat if they were left charging for more than two hours and Kodak was obliged to 

issue a supplement to the camera manual advising on this. 

In response to these problems, an integrated external power management unit (using a 

gel-lead-acid battery) and intervalometer, housed in an electrically shielded and fireproof box, was 

developed specifically for the ADPS, by Alexander Koh at GeoTechnologies, Bath Spa University 

College, to enable the use of the Kodak cameras for air survey. This power supply continuously 

charges and supplements the internal battery so that continuous firing is no longer a problem. 

Moreover, this external DC supply is an improvement over using the AC transformer in the 

laboratory as it delivers 1 3.8V maximum whereas the mains transformer runs at 1 5V. In this way 

operation is maintained at a lower temperature with benefits to the internal battery (and with 

possible implications for dark current noise suppression). 

The new generation cameras from Kodak, (including the DS660) are fitted with rechargeable and 

replaceable lithium polymer cells. These allow 1 00 frames per complete charge (optimum) but 

this camera has not been investigated yet for air survey. Since the time of writing, trials have 

been conducted by GeoTechnologies at Bath Spa University College and the University of 

Newcastle. Results of this trial are pending. 

6.4.2. Firing tbe camera 

The design of the digital camera using a modified Nikon camera is such that the communication 

port for the remote firing mechanism is occupied by the cable that connects the sensor to the 

PCMCIA card - (a facility which is not necessary in the film version of the camera). Firing the 

camera remotely by the usual means is therefore impossible, and in the early trials Bobbe et al., 

( 1997) manually fired the camera. This is not a sensible option for large surveys, so to address 

this problem the intervalometer was developed and was designed to fire the camera at a range of 

intervals to allow for different mission scenarios. 
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6.5. THE CAMERA MOUNT 

Aside from any CAA regulations regarding modification and/or attachment of equipment to an 

aircraft. the design of any camera mount must take into consideration the type of aircraft, the 

dimensions and weight of the camem, the number of cameras required and the accessibility of the 

camera controls. It is preferable to mount the camera inside the aircraft for a number of reasons 

including shelter for the camera from wind buffet and engine exhaust and ease of access for the 

operator, although it is not always possible to do so and some camera mounts have been designed 

to sit outside the aircraft, either as an extension to the luggage compartment or with a door 

removed. 

The versatility of aircraft type that might be used for the ADPS posed a problem for the mount 

design, if manufacture of a new mount for each new aircraft was to be avoided. Accordingly, the 

mount was designed to be near universal with only minor modifications to allow its use in a 

variety of aircraft. Designing the mount for this system presented additional problems unique to 

digital cameras. 

First, unlike cameras that have been designed specifically for aerial work such as the Vinten 360. 

(a military camera engineered with a very reliable film transport system to withstand high G 

loadings and therefore also withstanding turbulence, vibration and shock (Warner et a!., 1 996), the 

Kodak digital camera has no such design brief, but a write protection facility, designed to prevent 

damage is incorporated into the electronics of the PCMCIA card. In the event of the camera being 

subjected to excessive vibration or shock the disk is automatically parked. To enable the hard 

drive to spin-up again it must be removed from the camera which must then be reset with a 

consequent loss of expensive time whilst airborne. To prevent this, the camera is mounted on a 

chassis supported on shock and vibration tolerant mounts to damp out excessive movement. 
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The mount has been developed through a series of prototypes and evolved into an aluminium 

quadrilateral chassis supported on four shock mounts, two fore and two aft as shown in Plate 6.4. 

The loadings on each shock mount have been specified to enable operation of the camera even in 

turbulent conditions because although it would be unusual to capture photography for 

photogrammetric purposes under such conditions it is important to be able to operate in adverse 

conditions for critical situations such as disaster reconnaissance or hazard mapping. Since the 

time of writing the mount has been redesigned to be even more lightweight and is now supported 

on only three shock mounts. This mount has performed to expectation and allowed the camera to 

continue firing even in extremely turbulent conditions when mounted in the floor of a Cessna 1 52, 

flying in the Cordillera Orientalis, Columbia (pers. obs.) . 

• 

Plate 6.4 The ADPS universal mount: from the front (fL) from the back (fR) from above (BL) 

and from below (BR) 

Second, whereas large format film cameras regularly carry 76m film magazines (allowing 250 

photographs per can) they may also use 1 50m magazines (500 photographs) for large surveys, and 

35mm cameras can be adapted to carry 500 exposures, the 460CIR camera is limited to 160 
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frames using the largest capacity ( 1 Gb) PCMCIA card. Therefore, it must be possible to access 

the PCMCIA card slot to change the card when full and so an external mount is not ideal. All of 

these problems were demonstrated during a trial to evaluate the use of microlights as an 

operational platform for the ADPS when the operator resorted to hand-holding the camera in a 

near vertical position to photograph the subject (Graham and Mills, 1 997; Koh, 1 998b). 

6.6. THE MISSION PLANNER 

6.6.1.  Flight track planning 

Rigorous mission planning is the key to success with any aerial survey and an interactive mission 

planner has been designed to effect flight track planning, mission and processing costs and flight 

line navigation. The mission planner allows the user to select the resolution required, the 

dimensions of the survey block, the maximum and minimum elevations of the landscape and the 

forward and side overlaps that are required. The number of frames required for each flight line, 

the flight line spacing, the number of storage cards required and the number of flying hours are 

then calculated. 

Table 6.5 shows the flight track planning component of the mission planner for a hypothetical 

survey. In this case the user selected pixel resolution is 50cm and the block size is 20km x 1 5km. 

The imagery must be captured with 70% forward overlap and 30% side lap. This specification 

would require 52 images per line and 24 lines per block The simplest way to achieve this would 

be to store 3 full lines of data to a single I Gb PCMCIA card. Thus the entire survey would require 

8 PCMCIA cards each of I Gb. 

It is not possible to survey such an area in one sortie, even in ideal weather conditions, as the 

flying time required to survey the flight lines alone is in the region of 6 hours. The mission 

planner builds in a maximum of 3 hrs survey per day plus two extra days, one for planning and 

one contingency day. When a survey is scheduled over more than one day, the PCMCIA cards are 
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downloaded to a large capacity removable disk such as a 1 0  Gb Flip disk, or the files are written to 

CD, before the next survey day so that the cards may be cleared for the next sortie. This ensures 

that backup copies of the data can be made and is a more economical way to operate in that fewer, 

expensive PCMCIA cards are required. 

Table 6.5 The flight track component of the ADPS mission and flight track planner 
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Plaruring for a digital survey requires a different approach to that for traditional survey using large 

format cameras. Important differences arise from three major areas, the array size of the sensor, 

the download time at the sensor I storage interface and the maximum capacity of the storage 

media. Although all of these things are closely interrelated they are discussed briefly under 

separate headings below. Other factors of note will be discussed in 6.6.5. 

6.6.2. Issues related to the array size of the sensor 

For any given flying height and focal length of lens the array size of the sensor controls the area 

on the ground that is imaged, and in the case of the DS 460 camera the array size is 3060 (H) x 

2036 (V) pixels. An important consideration for flight planning is the required scale or spatial 

resolution of the imagery. 

The number of frames needed to cover a study area is determined by the desired spatial resolution 

of the imagery. The fmer the resolution required (i.e. the larger the scale), the smaller the area 

coverage of the image and the larger the number of fran1es required. For exan1ple, a pixel size of 

1 0  em would give overall image coverage using the Digital Science 460 of just 306m x 203m, 

whereas a pixel size of 1m would provide coverage of an area of 3 .06km x 2.03km. Although it 

is difficult to make a direct comparison between large scale analogue photography and digital 

photography, commonly used aerial photo scales are between 1 : 10 000 and 1 :25 000. The area on 

the ground covered by a 1 : 1 0  000 scale 23cm photograph is 2 .3km x 2.3km and for a 1 :25 000 

scale photograph the coverage is 5. 75km x 5. 75km. 

The small across track dimension of the digital photograph has implications for the required 

accuracy of navigation of the flight lines and there is very little tolerance for excursions from the 

planned line if the required side lap is to be achieved. To address this problem. navigation is by 

autonomous GPS using the cross track error report to maintain the correct heading, and a safety 

margin which accounts for selective availability and small excursions is built into the mission 

planner, in effect bringing the flight lines closer together. (Since the removal of selective 
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availability by the Clinton administration earlier this year it should be possible to reduce the 

margin for error built into the planner. ) 

6.6.3. Issues related to the download time 

A further important factor that must be considered is the download time, that is, the time taken for 

the image to be downloaded to the PCMCIA card. The download interval controls the maximum 

rate at which the camera can fire successive shots, as each frame must be downloaded to the 

removable hard disk before the next frame may be imaged. This in turn controls the percentage 

overlap that can be achieved. In the case of the DS 460 the stated download time is 1 2  seconds 

(although in reality the camera can be fired at a slightly faster rate). To ensure stereo coverage the 

aircraft must advance by no more than 40% of the image coverage between exposures. Flying at 

50ms·1 ( l80kmh-1 or 95kts) the aircraft would advance by 600m in 12s. Since 600m is 40% of 

1500m, the smallest pixel resolution that may be achieved with stereo cover is 50 em with the 

camera mounted with its long axis (3060 cells) parallel to the flight line. The mission planner has 

a built in safety factor which does not accept requested pixel resolutions finer than 50cm. 

Mounting the camera in this orientation reduces the across track ground cover to 1 .02krn 

6.6.4. Issues related to the maximum storage capacity of the storage medium 

The number of images that can be stored to a single PCMCIA card depends on the camera type 

and the capacity of the card (Table 6.2). The survey must be flown so as to maximise the number 

of images stored to each card but is important to avoid changing cards partway along a flight line 

as the card changing operation takes more than the 12  seconds available between frames, causing 

a loss of stereo overlap. Using the DS 460 camera to capture stereo imagery with a 50cm pixel 

resolution, the maximum length of line possible using 5 12 Mb and 1 Gb cards is approximately 

50 krn and 1 00 km respectively. 
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6.6.5. Other Issues 

6. 6. 5. 1. Exposure compensation 

Exposure compensation is required when the camera is used in infrared mode because the camera 

metering is designed for use with an 1R cut filter, since the camera was originally designed for true 

colour mode. When the 1R filter (minus blue) is fitted only the red and green energy can be used 

for metering, but the sensor is also receiving infrared energy. Without exposure compensation the 

sensor can receive too much energy, and although the chip has antiblooming properties the image 

appears over-exposed even in only moderately bright conditions. 

Experience has shown that an exlJosure compensation of -2.3  is the optimal initial setting for air 

survey work It is important to maintain observation of the landscape so that if any features 

appear which would be likely to cause saturation in the near infrared, the exposure compensation 

can be adjusted accordingly. For example, very thin films of water return a high NIR response as 

do corrugated steel roofing and glass houses. Plate 6.5 shows the effect of exposure 

compensation on a series of photographs captured with the DS 420 CIR camera. This terrestrial 

scene was imaged at exposure compensations from 0 to -3. 3, the subject matter and lighting 

conditions were as close to identical as is possible under field conditions. for each shot. Although 

terrestrial photography is not strictly comparable with aerial photography this set of photographs 

serves to illustrate the point in question. 
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Plate 6.5 Series of photographs captured with the DS 420 CIR camera with exposure 

compensation set between 0 and -3.3 

In this series of photographs it can be seen that exposure compensation settings from 0 to -1 

(images A, B and C) suffer some degree of saturation and this means that there is a loss of data at 

the high end of the image histogram. With a decrease in exposure compensation less energy 

reaches the sensor and the photographs appear very dark, and, if the exposure compensation is set 

too low the result is a loss of data at the low end of the image histogram. A particular range of 

exposure compensation allows the optimum amount of energy to strike the sensor without causing 

data loss at either end of the image histogram. The images D, E and F appear very dark but when 

image E is autolevelled it produces an image with a good dynamic range as shown in Plate 6.6. 
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Plate 6.6 DS 460 CIR image captured with exposure compensation set at -2.3 and autolevelled to 

produce an image with a full dynamic range 

6.6.5.2. Pixel translation 

Pixel translation is related to the distance that the sensor moves forward in the time it takes for the 

shutter to open and close. At 11500 s the translation is 16% or Scm for this survey. Translation 

causes smearing of the image because although each pixel in the array is imaging 50cm on the 

ground there is 50cm + Scm worth of information in each pixel. This problem is overcome using 

forward motion compensation (FMC) in some high specification large format cameras but 

experience has shown that using this system (without FMC) care must be taken not to exceed 50% 

translation, otherwise smear becomes discernible. 

6.6.6. Navigation 

Because of the particular strictures imposed by the ADPS, the margins for error are very small and 

navigation must be very tightly controlled. Issues related to the array size and download time 

have already been dealt with but there are other factors that give rise to problems, which must be 
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considered to ensure complete coverage of the survey block. Navigation by autonomous GPS has 

overcome these particular problems and has been well received by pilots, once they are instructed 

in its use for the demanding regime required for narrow flight line navigation. For example, 

unlike large format survey, the aircraft is flying close to stall speed and at these low speeds the 

effect of a tail wind can cause the aircraft to travel faster than is permissible to ensure stereo 

overlap, even though the indicated air speed might be below the required speed. The converse is 

true, and if the aircraft is flying into wind it is necessary to decrease the framing rate. The GPS is 

used to calculate the true ground speed, that is the relative speed between the aircraft and the 

ground. In addition, to overcome the problem of drift and to ensure that the aircraft stays on track, 

the GPS is used to calculate the cross track error (deviation from the planned track) at one second 

intervals and the pilot is instructed accordingly. 

Table 6.6 is an extract of the navigation section of the mission planner and the same hypothetical 

survey parameters as in 6.6. 1 are used to demonstrate navigation planning. Once the bottom left 

hand comer co-ordinates of the survey block are identified in UTM projection WGS84 datum, the 

planner calculates the waypoints for the start and end of the flight lines which are projected 5km 

beyond the actual survey block. This 5km lead in and lead out allows the pilot room to tum the 

aircraft onto the next line, on track, at the survey speed and at the survey altitude. The planner 

takes into account the orientation of the flight lines and makes the 5km lead in I lead out 

adjustment in the correct direction. Figure 6. 1 0  is a diagrammatic representation of the 

parameters in Table 6.6 and this illustration assumes that the bottom left hand comer of the block 

is specified to take account of the required overlaps for stereo coverage. 
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Map projection [m): 

Map datum 

Gnd dtrection of block North I EBst. 
Lead in [m) & lead out distance (m]: 

Datum coordinate BLHC of block. x {m} & y [m] 

Start line 1 ,  x [m) & y (m]: 

End line 1 , x (m) & y (m] 

DTG to camera ON [km] & to camera OFF [km]· 

Start line 2, x (m) & y [m] : 

End line 2, x [m) & y [m] · 

DTG to camera ON [km] & to camera OFF (km] : 

Start line 3, x [m) & y (m]. 

End line 3, x [m] & y (m] 

DTG to camera ON [km) & to camera OFF [km] · 

Start line 4, x [m] & y (m] 

End line 4, x [m) & y [m]: 

DTG to camera ON [km] & to camera OFF (km]. 

Table 6.6 Navigation section of the mission planner 
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Figure 6. 1 0  Flight line planning using the mission planner and GPS 
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One additional feature to note in Table 6.6 is the distance to go (DTG) for camera on and off. 

'This instruction allows for full forward overlap on the first and last frames, but at the same time 
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ensures that the planned number of frames is not exceeded as this can compromise data storage for 

subsequent lines. 

6. 7. THE FUTURE 

The ADPS has proved to be a very successful tool for data capture for many applications but it is 

limited in its application by its sensor dimensions. Current research and development has 

produced a new 1 2  bit colour camera with a larger array. The CCD, produced by Loral Fairchild, 

is on a silicon chip and is therefore sensitive across the full spectral range from 400 - l lOOnm as 

shown in Figure 6.3 .  The full array size i s  4096 x 4096 with a l 5J.tm square pixel, but the 

imaging area is limited to 3900 x 3900 with a border of pixels giving an imaging area of 57mm. 

The border of pixels return a true black response of the sensor. This enables the digital signal 

processor to subtract any noise generated in the system, such as dark current, from all other pixels. 

This will produce a higher fidelity image with 1 30% greater photocoverage than is possible with 

the current cameras. In addition, the square dimensions of the array will significantly decrease the 

number of flight lines required to survey a block. The sensor is housed in a Hasselblad camera 

and currently this is supplied with an infrared cut filter allowing true colour photography. 
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CHAPTER 7 

AERIAL PHOTOGRAPHS AND PHOTOG�ETRY 

The following account is not intended to be a comprehensive discourse, either on the intricate 

geometry of aerial photographs or on the minutiae of photogrammetric ideology but is designed to 

draw attention to some of the fundamental principles that affect a pragmatic approach to data 

collection, processing and analysis for the purpose of this research. 

7.1. GEOMETRY OF AN AERIAL PHOTOGRAPH 

7.1 .1. Types of aerial photographs 

There are two types of aerial photograph: vertical and oblique. A vertical photograph is one 

whose optical axis is in a vertical position, although unintentional and unavoidable inclination 

does occur for a variety of reasons. Obliques are photographs taken with the optical axis inclined 

from the vertical and they may be low or high obliques, depending on the angle of inclination as 

illustrated in Figure 7. 1 

low angle 
. � high oblique 

optical axi 

Figure 7 . 1  Classification of aerial photographs 
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Regardless of the classification, all photographs are central or perspective projections because the 

light rays are brought to focus through a central focal point, and this in itself gives rise to scale 

changes throughout the photograph which become increasingly large towards the edges of the 

photograph. For a perfect lens. the perspective centre of the lens which gives the geometric centre 

of the aerial photograph. is the principal point (PP). By convention the PP is taken as the origin of 

the photo-co-ordinate system (0,0), where PPx is parallel to the direction of flight and PPy is 

nomtal to the direction of flight. Nadir is defined as the point vertically beneath the camera and 

co-incides with the PP only if the photograph is perfectly vertical. The isocentre of a photograph 

is the point that falls halfway along a line between the PP and nadir. 

7.1.2. Scale 

The scale of a photograph is a ratio of the distance between corresponding points on the 

photograph and on the ground. so that in a 1 :  10 000 scale photograph. a feature that measures 

I Omm on the photo actually measures I OOm on the ground. The scale is related to the focal length 

of the camera and the distance from the target, and in the case of aerial photography this is the 

flying height above ground leveL such that: 

Scale number = f/ Hg 

Wherefis the focal length of the lens and Hg is the flying height above ground level. 

The focal length of the camera is the distance between the focal plane (film or CCD) and the 

centre of the lens. The focal length not only influences the scale of the photograph but also the 

field of view, both of which govern the ground coverage. Figure 7.2 shows how for a given height 

above the ground, a short focal length lens has a much wider field of view than a longer focal 

length lens and an object of length AB is imaged at a larger scale. This simple optical premise is 

of great significance in mission planning when choosing the type of lens to use for a particular 

survey. 
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Figure 7.2 The relationship between focal length, field of view and scale of an object 

This scenario holds good for a perfectly vertical photograph taken over perfectly flat terrain, but in 

the real world such a scenario is almost impossible to achieve. The scale of a photograph is 

variable across the entire photograph due to changes in viewing geometry caused by aircraft 

attitude and altitude and by terrain variation, and so is an average scale. 1n addition there can be 

considerable changes in average scale from photograph to photograph in a block survey 

7.1.3. Image displacement and distortion 

There are a number of factors that can affect the position of an object on a photograph. A shift in 

object position may be due either to distortion or to displacement. Distortions such as lens 

distortion and image motion alter the perspective characteristics of the image, whereas 

displacements due to topography or camera orientation do not. 

7. 1 .3. 1. Topographic displacement 

The relief of the terrain influences the scale of the photography such that an object at a higher 

elevation will appear larger (i.e. smaller scale) than a same-sized object at a lower elevation. This 

is illustrated in Figure 7. 3 .  Furthermore, high relief causes an apparent shift away from nadir 

whilst low relief causes an apparent shift towards nadir as shown in figure 7.4. 
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Figure 7.3 The effect of topography on scale 
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Figure 7.4 relief displacement of an object in a vertical photograph 
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7. 1. 3. 2. Tilt displacement 

Tilt displacement occurs when the aircraft is not completely horizontal at the moment of exposure. 

The camera can rotate around three axes, X, Y and Z, where X is the direction of flight and y is 

perpendicular to X as shown in Figure 7.5. 

• If the aircraft rotates about the Y axis the aircraft is said to pitch and the rotation by

convention is <j>.

• If the aircraft rotates about the X axis the aircraft is said to roll and the rotation is w.

• If the aircraft rotates about the Z axis the aircraft is said to yaw and the rotation is K.

Z K  (yaw) 

Y � (pitch) 

X ro (roll) 

Figure 7. 5 The three rotations of a camera: w (roll); <P (pitch); K(yaw) 

Scalar changes occur across a photograph with w or <P rotatioll but K rotation does not cause any 

scalar change. For example if the aircraft rolls to port then the scale of the photograph on the left 

hand side is larger than on the right hand side. Similarly, if the aircraft pitches nose up, the scale at 

the top of the photograph is smaller than the scale at the bottom of the photograph. Kappa rotation 

or yaw occurs in a plane parallel to the ground so there is no scalar effect but the relative 

orientation of the photograph to the flight line is altered. The changes in scale and orientation of 

the photograph caused by these rotations are illustrated in 7.6. The scenario presented here 

represents a perfectly flat terrain, where the terrain is uneven the scalar changes across the image 

become very complex. 
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Figure 7.6 the effects of rotations in ffi (roll); � (pitch); K(yaw) on scale and orientation of a 

vertical aerial photograph over flat terrain 

7.2. ORTHOPHOTOGRAPHS 

7.2.1 .  Introduction 

The off-the-camera vertical digital aerial photograph has often been used inappropriately for the 

same purpose as its topographic map counterpart. Use of these unrectified vertical digital 

photographs as maps is common practice and may be attributed to the obvious spatial relationships 

between map and photograph, and to the often practiced method of fitting and matching 

consecutive photographs using digital image processing software to form a mosaic_ Such 

uncontrolled mosaics do not have the metric or geodetic accuracy of the cartographer' s  map 
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giving a perspective view of the landscape, in contrast to the strictly orthogonal view of a map, 

and should not be used as maps. 

The orthogonal view can be derived from a digital photograph by correcting for the attitude of the 

camem at the instant of image capture and by removing displacement errors resulting from the 

height of objects within the photo scene, collectively known as exterior orientation pammeters. In 

addition, distortions due to camem pammeters, known as interior orientation parameters, must be 

accounted for. 

There are nine orientation elements of a near-vertical photograph to be addressed using 

photogrammetric techniques to produce an orthorectified photograph. The nine orientation 

elements are made up of six outer-orientation elements and three inner-orientation elements. 

Outer-orientation elements include three translations of the camera in cartographic space, 

represented by the eastings [X], northings [Y] and height [Z] of the camera above a datum plane, 

and three rotations of the camem, represented by the roll [m], pitch [<j>] and yaw [K] of the aircraft. 

The inner-orientation elements which are known to a high degree of accumcy, upon camera 

calibmtion, include the calibrated focal length or Principal distance[fl] of the lens and the location 

of the principal point as represented by the shifts in the x direction [PPx] and y direction [PPy] . 

The applied science of digital photogrammetry corrects for these errors, accounts for the 

distortions and derives reliable 3-dimensional measurements from the photograph supported by 

quality assumnce reports. The fundamental premise upon which orthorecti:fication is based is the 

derivation of height information using differential parallax in a stereo pair of (almost) vertical 

photographs. 

7.2.2. Measurement of height from stereo photography 

Human beings are able to perceive objects in three dimensions through a complex process in the 

brain that integrates two images of the same scene, viewed from slightly different positions 

because the eyes are approximately 6cm apart If the same object is viewed first by one eye and 

1 20 



then by the other there is a change in appearance of the object. This difference in appearances of 

objects due to change in perspective is called 'stereo parallax' and is the basis of 3D stereo 

viewing and height measurement from stereo photography. Stereo photography emulates human 

3D vision but unlike binocular vision where an object is viewed from 2 different positions 

simultaneously, a pair of photographs is taken from 2 different camera positions. A stereo pair of 

photographs consists of 2 adjacent overlapping photographs in the same flight line. The amount 

of parallax of a point is directly related to the elevation of the point and to the distance between 

the two exposures. This phenomenon can be used for the measurement of distance and height 

following a simple procedure represented diagrammatically in Figure 7.7. This procedure is 

summarised as follows. 

• The Principal Point (PP )is identified in both photographs. 

• The conjugate principal point (CPP) is identified in both photographs - this is the 

relative location of the principal point in the one photograph, on the other 

photograph in the pair. 

• The distance between the PP and the CPP is measured in both photographs, Pbl 

and Pb2. 

• 

• 

• 

• 

The photographs are aligned with the PP and CPP on both photographs in a 

straight line. 

The distance between the top of the object in both photographs (dT) and between 

the base of the objects (dB) is measured. 

The average photobase (P) is calculated .from: P = (Pbl +Pb2)12 . 

The differential parallax (dP) is calculated from: dP = dB-dT 
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Figure 7.7 Height measurement from a stereo pair of photographs using differential parallax 

The height may be calculated from: 

H = A  X (dPI(P+dP)) 

Where: H is the difference in height between the top and base of the object. A is the altitude of 

the aircraft above the ground datum. dP is the differential parallax. P is the average base length. 

For accurate measurement absolute paralla'{ should be used, this is the x coordinate of the object 

to be measured on the left image minus the x coordinate of the same object on the right image. 

7.2.3. Stereo cover in a block survey 

To capture photography with stereo coverage of a block requiring more than one flight line, 

sequential photographs must have at least 60% forward overlap and there must be about 20% side 

overlap to ensure complete coverage without gaps. Figure 7.8a shows the overlap for a single 

flightline and Figure 7.8b shows the overlaps for 2 flight lines. The degree of side lap can be 

varied and if a very high accuracy mosaic is required suffering the minimum effects of tilt and 

terrain distortion possible, the overlapping area can be increased so that a smaller central part of 

the individual models that are used to produce the mosaic is used. 
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Figure 7.8a Forward overlap in a single flightline 
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Figure 7.8b Side overlap in two flight lines 

7.2.4. Digital photogrammetry 
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Until recently photograrnmetric techniques for the ex1raction of elevation data from stereo pairs of 

photographs required expensive analytical stereo plotters (Welch, 1 992) but softcopy 

photogrammetry is now becoming increasingly available on low cost PCs and Workstations. 

Walker ( 1 999, p. 469) has remarked that (presently) the great majority of the imagery used in 

digital photograrnmetry is not inherently digital but is obtained from digitising film images from 

metric aerial cameras using photogrammetric scanners. Recently there has been an upsurge in 

interest in the photogrammetric capabilities of digital cameras within the photograrnmetric 

community (Mills et a/., 1 996; Ahmad & Chandler, 1 998; Robson & Shortis. 1 998; Clarke et a!., 

1 998; Shortis et al. , 1 998) and whereas the both the smaller array size cameras (such as the Kodak 

DS 200 and DS 420) and the larger array size (DS 460) have proved useful for close range 
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photogrammetry, Ahmad and Chandler have suggested that the DS 460 camera might also have 

potential where higher accuracy is not required and where the budget is minimal. 

The increasing availability of digital cameras with larger array sizes is likely to give rise to a 

proliferation of the totally digital approach and in these early days of application of these new 

technologies it is important to push back the boundaries and develop new application areas and 

methodologies. even if the preliminary investigations do not yield such accurate results as the well 

established methods using metric photography and analytical stereoplotters. In this way, incremental 

progress can be achieved and in addition, advances in the technology can be implemented expediently 

as and when they become available. 

This ideology is not without its critics. for example, Gooch et a!., (1 999) believe that as digital 

photogramrnetric systems become more sophisticated and the level of automation increases, the 

technical gap between the user and the system grows, leading to compromise and diminished benefits 

from the system. These types of concerns notwithstanding. one of the objectives of this study is to 

ascertain whether colour infrared digital imagery can be used to produce affordable, digital terrain 

models (DTMs) and orthophotography on a regular basis, that could be of use to the dune manager. 

The rationale for implementing this investigation is based on the premise that this is just the type of 

scenario that answers Ahmad and Chandler's description, where the budget is usually very small and 

there is no need for very high accuracy elevation models, as typically very little contemporaneous data 

exists and that some data is better than none. provided that a quality assurance report can be made 

available along with the data. 

The particular photogrammetric software used here is VirtuoZo 2.0 running on a Silicon Graphics 02 

workstation running under Irix, although a PC version also exists running under Windows 98 and NT. 

This will not be described in this chapter since the photogrammetric workflow will be described in the 

methodology in Chapter 8. 
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CHAPTER S 

METHODOLOGY 

8.1. INTRODUCTION 

This chapter will document the methodology used for a totally digital approach to data collection 

for orthophoto map production using the ADPS since this has not been previously documented 

and has become an important aspect of this research in its own right. This methodology is not 

limited to use for this particular application so it has been written with the broader context of its 

application to digital aerial survey in mind. 

To avoid tedium and for clarity, the details of the methods of analysis are better explained in 

chapters that will deal with individual case studies and particular analytical techniques. A general 

description of the data will be given here, but individual site descriptions will be included in the 

appropriate case studies. In this way the relevance of the analytical techniques used for each 

scenario will be readily apparent to the reader. 

8.2. DATA DESCRIPTION 

8.2.1. General description 

The photographic data used in this research was acquired during the course of the 'DUNES' 

project, one of 29 projects within the ELOISE (The European Land-Ocean Interaction Studies) 

project cluster, sponsored by the European Union within its Marine Science and Teclmology 

(MAST) and Environment and Climate programmes. The 'DUNES' project was conceived as 

identifying the condition and vulnerability of sand dune systems using a suite of innovative tools 

designed for ease of use by the dune manager. The Aerial Digital Photographic System was a 

major component of this suite of tools and aerial images were acquired for many of the dune sites 

of south-west U.K., western France, and the Gulf of Cadiz. 
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It is not uncommon for geomorphological studies to have recourse to aerial photography which 

was captured for a variety of reasons and almost certainly without consideration for the particular 

requirements of geomorphological investigation (Thomes & Brunsden, 1997). Such requirements 

include the temporal frequency with which the data is captured since short sequences of long time 

interval may provide unsound evidence of geomorphological processes and lead the investigator to 

make erroneous inferences, sometimes with dangerous consequences. The data used in this study 

was not primarily intended for mapping change but rather for reconnaissance purposes and was 

therefore not ideally suited to the task of monitoring change in space and time. However, it was 

readily available and seemed to provide the opportunity to evaluate the digital camera, because it 

was of good quality, and was captured at reasonable intervals ( I  yr. and 2yrs.), albeit each epoch of 

data was captured with successive prototypes of the ADPS. It has been used with the 

shortcomings borne in mind. 

Images of the U.K. and France have been selected to assess the usefulness of colour infrared 

photography to detect and I or measure a number of key parameters of interest to the dune 

manager. These include, for example, detection of indicators of anthropogenic pressure such as 

campsites, roads, car parks and pathways through the dunes and measurement of changes in 

morphological features such as the retreat I advance of the dune front, areas of bare sand, areas of 

vegetation units and the volume of blowouts. Four sites, one from SW England and three from 

France, have been selected as case studies to investigate the use of CIR digital imagery for 

particular types of analysis. These are: 

• 

• 

• 

Ile d'Oleron, Western France, to measure dune front recession . 

Dossen, Northern France, to detect sediment redistribution . 

Ile de Noirmoutier. Western France to measure areas of blowout development 

and dune accretion. 

• Holywell bay, South-West England, to measure volumes of morphological 

features and to assess the aerial digital photography for orthophoto map 

production. 
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A small scale map showing the locations of the 4 case study sites is given in Figure 8. I .  Large 

scale maps are provided with each case study. 

Ho�l Bay 

FRANC� 

lie de Noirmoutier 

- lie d'Oieron 

Figure 8. 1 Map showing location of the 4 case study sites 

tOO 200 
kilometres 

Simple visual inspection of digital photographs can yield a wealth of infonnation regarding the 

condition of dune systems and their hinterlands, but because the photographs are not rectified it is 

not possible to make absolute measurements of features on the ground. In the following 4 

chapters, methods of analysis and measurement will be explored using 20 and 3D rectification 

and the results of different image analysis techniques will be presented 

For each of the case studies, brief site descriptions will be given, highlighting pertinent points, 

along with the results of the analysis and some discussion, and, although this might be an 

unconventional thesis fonnat it is hoped that this approach will enable the reader to follow the 

thread of the work more easily. 
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8.3. DATA COLLECTION AND ANALYSIS

8.3.1.  Organisation of the study 

The cost of acquiring and processing aerial photography is relatively high, especially for cost-

conscious research projects, so a methodology must be adopted which aims to achieve a maximum 

degree of accuracy as economically as possible. This remit requires an integrated approach to the 

process from planning to completion, and to this end a processing chain has been developed that 

provides a systematic approach enabling this aim to be achieved. It is convenient to divide the 

processing chain into 4 main elements, which follow logically from one to the next, although it is 

possible to enter or leave the chain at any one of the 4 main divisions depending on user 

requirements. These are shown in Figure 8.2 . 

This processing chain has been developed and refined throughout the course of the research 

reflecting developments in computers and associated peripherals and in other new technologies as 

well as lessons learnt in the field and in the laboratory. The greatest driver has been the 

availability of new hardware and software such as new models of the digital camera, additional 

GPS receivers allowing differential post processing and real time satellite differential positioning, 

camera calibration software, photogranunetric software and image processing software . 

logistics and mission planning 

primary data capture 

� 
data processing 

maps/value added data/reports 

Figure 8.2 The 4 major elements of the processing chain 
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Each of these major divisions of the processing chain is subdivided into many parts and some of these 

are explained in sequence below. 

8.3.2. Logistics and mission planning 

Planning is an e:-.1remely important part of the data collection methodology since meticulous 

planning at the outset is the key to a successful operation. The first element of the processing 

chain is concerned with establishing a clearly defined purpose of use for the photography, 

planning the ground survey and planning the air survey. The major parameters that significantly 

affect quality, mission logistics and cost when adopting an all digital approach to map production 

are: 

• the format of the camera 

• the ground pixel resolution at point of capture 

• the block area of the project site 

• the smvey altitude 

• the required scale of the final map 

• the compression method used for image data storage 

Each of these parameters is addressed during logistics and mission planning. The components of the 

first major element of the processing chain for logistics and mission planning is shown in Figure 8. 3 .  
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Figure 8.3 Logistics and mission planning 

8.3 .2. 1 .  Assessing the type of imagery required 

Defining application requirements to ensure that the imagery collected is fit for the purpose of use is 

not a trivial task because users are not usually familiar with specifYing application requirements in 

digital terms (5.3.4). Ideally, the spatial resolution should be chosen so that the information needed 

can be acquired using the least data, because any oversights at this stage can result in inferior quality 

imagery and an exhausted budget. For example, the ground pixel resolution dictates the scale of the 

final map product, and it is of paramount importance that the digital photography is captured at a 

resolution that can satisfY the user's mapping requirements. An increase in the linear ground coverage 

of the pixel returns a reduction in the number of overlapping photographs and stereo models necessary 

to cover the project site. The number of ground control points required, storage and plotting media 

data processing time and aircraft flying hours are all reduced with a corresponding cost benefit. This 

might at first seem to be attractive to the user, but results in a reduction in resolution of the digital 

photograph which diminishes the overall accuracy to which ground detail may be co-ordinated in both 

plan and height and may ultimately be unsuitable for the task in hand. 
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For some applications, e.g. vegetation mapping, colour infrared photography is required, but for other 

applications e.g. planning, the user may prefer true colour photography. In addition the user may need 

to comply with particular data standards or formats and may need to archive and distribute the data in 

a particular way. It is good practice to explore opportunities for 'added value' as this may affect the 

primary data acquisition parameters. 

8. 3. 2. 2. Air and ground survey logistics and cost 

Air and ground survey logistics addresses issues such as relocation of the survey aircraft and crew 

from their base to the survey site. The type of terrain and ease of access are important considerations 

for ground control point collection planning and any photographic requirements which affect 

operations such as time of day, season or state of tide must be considered fully. All of these logistical 

filctors influence the timing and the cost of the mission. 

8.3.2.3. Camera metrics 

Camera calibration allows interior orientation of the photographs during which process distortions 

due to camera geometry are removed (7.2. 1). The principals of photogrammetry depend on the 

accuracy of the camera and in past few years there has been a wealth of research involving the 

metrics of both small format analogue and digital cameras (Short, 1992; Mills et al., 1996; Mills 

& Newton, 1996; Fraser, 1997; Robson & Shortis, 1998; Clarl<e et al., 1998) relying on self 

calibrating bundle adjustment to calculate the camera parameters. 

The DS 460 camera, fitted with a 28mm lens, set at infinity, was calibrated from a test pattern 

projected onto a near planar laboratory wall. A multi-station convergent network of 8 images of 

the pattern were recorded and imported to 'EOS Systems Photomodeller Pro' camera calibration 

software which automatically calibrates the camera as shown in Figure 8.4. 
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Figure 8.4 Convergent network of 8 images of the test pattern projected onto a near planar wall 

In this way the principal distance (f), principal point offset from image centre (PP .. and PPy) and 

the radial distortion (K1) were calculated, these are shown in Table 8. 1 .  

f (mm) PPx (mm) PPy <mmJ KI 

28.8458 14.5650 9.6553 0.00014600 

Table 8. 1 Camera calibration parameters for the DS 460 CIR camera with a 28mm focal length 

lens at infinity 

Calibration should be repeated at regular intervals (air survey cameras are typically calibrated 

every six months or so) and because this is such a simple procedure it can be repeated before each 

survey if necessary. 
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8.3. 2. 4. Mission and flight track planning 

Mission and flight track planning was achieved using the interactive mission planner described in 

detail in 6.6. Following consideration of the type of photography required, the dimensions of the 

survey block, the minimum and maximum elevations within the survey block and the desired ground 

pixel resolution of the imagery the number of images per line and the number of flight lines is 

calculated. From this, the required image data storage capacity as well as the density of ground 

control points that were needed for rectification is calculated. Navigation planning is all-important 

and it is the responsibility of the navigator to ascertain whether there are any flying restrictions in and 

around the survey block. Navigation is by autonomous GPS using the method described in 6.6.6. 

8.3.2. 5. Ground control point planning 

Where accurate detailed maps are available it is often possible to plan the ground control point 

collection before the air survey has taken place. Where existing maps are poor, or in locations where 

there are no maps, but where there are many natural targets it may be necessary to plan control point 

collection after the photography has been collected when potential targets can be identified in the 

photographs. Where there are no maps and few or no natural targets, such as in the intertidal zone, 

location of artificial targets is planned and implemented inunediately before the survey. In the latter 

case careful planning and team co-ordination is essential to ensure that the survey is scheduled for low 

tide with enough time for deployment of the targets so that they are in place and clearly visible when 

the aircraft passes overhead. 

8. 3.2. 6. Meteorological constraints 

Regardless of any human imposed conditions the ultimate controlling factor over an aerial survey is 

the weather and in particular, cloud cover. It is essential to consult a long-range (5 day) weather 

forecast before the decision to mobilise can be taken for an aerial photographic survey. The DS 460 

camera has been shown to be capable of acquiring imagery even in overcast conditions and can often 

be flown below cloud cover when traditional film based survey cameras could not (6.3.3.2). 
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8.3.3. Primary data acquisition 

The components of the primary data capture element of the processing chain are set out in Figure 8.5

aima1f location &p��-J 

GO 
photographic data a!pture 

data archiving 

rellight identi:lication 

/"� .. 
<0�ey� "-.. > NO 

YES 
gTOlUld control acquisition 

Figure 8.5 A processing chain for primary data acquisition 

8. 3. 3. 1. Digital image data 

Tirree aerial photographic surveys were flown of the dune sites described above in June 1 996, 

June 1 997 and May 1 999. In all cases the camera was mounted vertically in a light aircraft 

(Partanavia) and for each survey the camera was fitted with a 28 mm focal length lens and an 

Omega 650BP300 CIR filter to acquire colour infrared photography. To maintain continuity and 

comparability of the data sets each sortie was flown at a nominal 90 knots. 4.090 ft above ground 

level (AGL) resulting in a pixel resolution of approximately 40 em. Photocoverage, flight line 

spacings, required survey ground speed, aircraft altitude, magnetic media requirements and 

camera framing rates were calculated using the flight planner (6.6). Flight track waypoints and 

aircraft altitude from the planner were uploaded to a GPS receiver and routes were constructed, 
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enabling the GPS to automatically compute the navigation infonnation for use in flight Table 8.2 

details the date and type of imagery collected at each of the dune sites. 

Dune site June 1 996 June 1997 May 1 999 

Holywell Bay DCS 420 CIR DCS 460 CIR DCS 460 CIR 

Dossen DCS 420 CIR DCS 460 CIR DCS 460 CIR 

Ile de Noirmoutier DCS 420 CIR DCS 460 CIR DCS 460 CIR 

lie d'Oleron DCS 420 CIR DCS 460 CIR DCS 460 CIR 

Table 8.2 Camera series and filter type used for each survey at each site 

8. 3. 3. 2. Data archiving and photo index generation 

Data archiving is a very important part of digital air survey and again must be carried out in a 

disciplined manner if data loss is to be avoided. Unlike film based survey where the film is stored 

until it is processed, often at the end of a mission, digital data should be archived as soon as 

possible after landing. This approach ensures that the data are written to a read only medium 

eliminating the possibility of overwriting the files, the storage cards are cleared for the next sortie, 

and the data can be checked for missed frames. In addition the images are ready for use within 

hours of the survey. In this case the data were archived at the end of each sortie to CD-ROM in 

TIFF -ep format A searchable photo index was produced in Map Info for ease of retrieval of image 

frames. Each image is indexed by type, location, camera parameters and archive details as shown 

in the example from lie d'Oleron, France, in Figure 8.6. Image centres are denoted as pink or red 

dots on the map for DS 420 or DS 460 respectively. 

8. 3. 3. 3. Reflight identification 

One of the advantages of digital aerial survey over analogue is that the data can be quality 

controlled for reflight identification whilst the aircraft is still on site. Thumbnail images may be 
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accessed and viewed at the same time as data archiving so that any missed frames can be captured 

as soon as is convenient. When the air survey is complete ground control data can be collected . 

' '":<!5111£:! 

Figure 8.6 Image index in Maplnfo for easy retrieval of image locations 

8. 3.3. 4. Ground control data 

Ground control for some of the imagery was acquired using post processed differential GPS with 

2 Magellan ProMark X CP receivers for the 1 996 and 1997 surveys and using real time 

differential GPS with the Omnistar system for the 1 999 survey. In each case ground control data 

was collected after the survey was flown so that hard copy of the images was available for use in 

the field to ensure adequate distribution of ground control points. This method of ground control 

data collection limited control of the photographs to the landward side of the dune front as it was 

not practical to deploy targets in the intertidal zone owing to the geographic extent of the project 

area and the financial constrnints of the project budget. 
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8.3.4. methodology for data analysis 

8. 3. 4. 1 .  Data processing and data analysis 

The method chosen for data analysis is directly related to the the type of imagery, the available 

ground control and the intended purpose of use. Figure 8. 7 is a simplified view of the likely 

routes taken depending on the type of imagery available. The actual routes chosen will be 

ex-plained in more detail in the relevant case studies but an overview of image rectification and 

orthophoto production will be given, as digital photography presents a special case for image 

processing and photogrammetric software. 

collate and select data 

visual inspection & interpretation 

L---__..-----1 maps I value added data 

Figure 8. 7 The image analysis routes for stereo and non-stereo digital photography 

8.3.5. Geometric correction 

Geometric correction rectifies the geometric errors inherent in imagery. There are a number of 

methods used to correct for geometric errors and the type of algorithm that is chosen and the 
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degree of accuracy of the the result depends largely on the type of imagery and control data that is 

available. The coordinate space of an image defines the location of the image in cartographic 

space, if it has been corrected using real world coordinate ground control. Without real world 

coordinates, an image may be corrected to another image, in which case its coordinate space is its 

location in relation to that other image. Both of these types of correction have been used in this 

study. In some sites adequate ground control was available for rectification to cartographic space 

but at other sites, ground control was impossible to achieve either because a GPS receiver was not 

available at the time and I or because the features on the photographs were not recorded on IGN 

maps. 

Polynomial correction is usually used to transform an image from an unknown (raw) projection 

into a known projection where ground control is available in the x and y dimensions only (a 2D 

solution). Ground control points are located on the raw image and matched either with points on 

an image in the desired projection, or with coordinates taken from a map. The algorithm that is 

used models the distortions in the image by fitting a mathematical function through the ground 

control points. The image is then rectified using a best fit solution, often referred to as 'rubber 

matting' (Earth Resource Mapping Pty Ltd, 1 999). 

Of the three polynomial alogorithms, namely linear, quadric and cubic, linear warping requires the 

least number of ground control points but delivers the least accurate solution. A quadratic 

solution requires more ground control and provides a better fit than the linear solution and the 

cubic polynomial which requires yet more ground control delivers the best solution of the three. 

Polynomial transforms reduce global distortions in the image but they do not resolve local 

distortions within an image. To remove the effects of camera distortions and displacements in an 

image a camera model and a digital elevation model (DEM) are required (to provide control in the 

z dimension) giving a 3D solution. Using stereo imagery and photogrammetric software it is 

possible to generate a DEM which can then be used to create an ortho-rectified image. This 

approach significantly improves the geometric rectification but also increases the cost. There is a 

clear need for both 2D and 3D rectification procedures, as the lower cost 2D solution is often 

138 



adequate for coarser resolution monitoring and mapping, whereas investigations requiring high 

accuracy measurements may have recourse to the more accurate 3D solution. One of the aims of 

this study is to develop an appreciation of the methodologies involved in digital photogrammetry 

for orthorectification and this is outlined in 8.3.6 

8.3.6. Pbotogrammetric processing 

8.3. 6. 1. Defining the input and output parameters 

The production of orthophotos using softcopy photogrammet:Jy involves a straightforward set of 

procedures where the computer is provided with the basic data needed to perform the calculations. 

In the first place the survey block is defined which establishes the number of lines, number of 

frames per line, imaging scale, the direction of flight, the magnitude of the overlaps and the 

required output resolution. Gooch and Chandler (1998) have advised that great care must be 

exercised in defining the strategy parameters which control the production of the digital elevation 

model (DEM) as the wrong specification can have a significant effect on the overall accuracy of 

the elevation model. VirtuoZo, the software used to process ADPS imagery can generate the 

correct strategy parameters based on a set of facts identified in the block and model setup 

facilities where data input and output parameters are defined. Figure 8.8 is a screen grab of the 

block setup window showing the input and output parameters that are specified. 

. .. 
Setup Block '. . t . · , l ' ,  • �>,· j • • ... , .... · .\:"� 4 ,, . : •'· , ' ,  ·�·:,�' · ! ·\ . , ·, �  :' - �D 

Figure 8.8 the block setup window showing input and output parameters 
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8.3. 6.2. Interior and exterior orientation 

Digital images present a special case for off the shelf photogrammetric software since most 

packages have not been designed with digital photographs in min� rather they have been designed 

for large format photography where fiducial marks at the four comers of the photographs are at a 

known calibrated distance from the principal point, enabling an interior orientation to be 

calculated. The absence of fiducial marks is a potential problem, but digital images do not suffer 

from the problem reported by Short ( 1 992) whereby small format film image negatives have 

rounded comers. Instea� digital images can be considered as metric since there is no appreciable 

distortion of the CCD under normal operational conditions, and the comers of the image are 

identified as fiducials. This information is recorded as an image mask in the camera parameter file 

along with the camera calibration details. The interior orientation of both the left and right images 

in each model is calculated using the camera calibration data and the image mask, this procedure 

removes distortions in the image due to camera distortions and relates the image coordinate 

system to the camera coordinate system, providing accurate mapping from ground space to image 

space. 

8.3. 6.3. Relative and absolute orientation 

The ground control points are recorded in a GCP file to enable relative and absolute orientation of 

the image pairs. Ground control points are identified on both the left and right hand images for 

each model (conjugate points). Following the input of two or three points on both photographs in 

the model, VirtuoZo is capable of finding the conjugate point in the second image with a good 

degree of precision when the remaining control points are identified in the first image, allowing a 

considerable saving in time over other software packages. Points can be edited by the user. 

An automatic relative orientation operation which typically generates more than one hundred 

common points relates the overlapping areas of the left and right images. The entire overlap area 

of the image pair is displayed on screen to give an overview and a high zoom window allows the 

user to position the point correctly. Figure 8. 9 shows the relative orientation window, matched 

points are numbered and depicted on the screen with red crosses. 
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Figure 8. 9 The relative orientation window in VirtuoZo 

The y-parallax residual errors for each related point is then calculated and the left and right 

portions of the stereo model are resampled to remove y-parallax so simplifying the calculations 

required to solve for elevation. The images are then matched so that x-parallax can be calculated 

and hence the elevation. In VirtuoZo, image matching is accomplished by a set of algorithms that 

use probability relaxation and neural network techniques (Zhang et a!., 1996) and a full 

explanation of these may be found in the paper by Zhang et a/. (op. cit.) The reliability factor for 

each conjugate pair describes the matching reliability giving the user guidance on editing 

unreliable points. The match editing window is a stereo view of the model that enables the user to 

edit points, lines and polygons by smoothing. interpolation. surface fitting and rematching. 

Absolute orientation using the ground control points allows the stereo model to be mapped into a 

real world co-ordinate system. 

8.3. 6.4. Generation ofthe DE!vf and orthoimage 

There is sometimes confusion over the terms DEM and DTM and in VirtuoZo both are used in the 

documentation to mean either one of two data sets. To some. a OEM is the unedited version of the 
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data set where, for example, the heights of buildings are included in the model and a DTM is the 

version of the data set where buildings, trees, telecom masts etc. have been edited out of the model 

and only the actual land elevations appear in the modeL The definition put forward by Maune, 

( 1 996, p 1 3 1) states that "The term DElvf is the digital cartographic representation of the elevation 

of the land at regularly spaced intervals in x andy directions" . The DTM as defined by Maune 

"incorporates the elevation of significant topographic features on the land which are irregularly 

spaced so as to better characterise the shape of the lancf' 

In VirtuoZo, the DEM is created on a regular grid and the DTM is created on an irregular grid but 

either of these may or may not be edited to remove features and I or anomalies. Anomalous 

elevations or 'spikes' occur in the data due to matching problems areas such as the sea where the 

entire landscape is moving. The orthoimage is created based on the DTM and the corresponding 

original image. 

Using conventional photography and photogrammetric techniques, the heights of well defined 

points can be obtained with a precision of II  10 000 of the flying height (Slama, 1980; Wolf. 

1983) and for a typical flying height of 1 500m this corresponds to a vertical position of ±0. 1 5m 

(With a 1 50mm focal length lens this would capture photography at I :  10 000 scale). For softcopy 

photogrammetry vertical accuracies equivalent to 0. 5 to I pixels have been reported by Brown & 

Arbogast, ( 1 999). Manzer, ( 1 996) has reported accuracy of 50 microns at the photo scale and to 

make a direct comparison with Slama's and Wolfs statement this equates to an accuracy of 

50cm for a 1 :  1 0000 image using a photogrammetric quality scanner. 

8. 3. 6.5. Mosaicing 

Mosaicing is the combination of several images into an image mosaic covering a (usually) large 

area (Mek & Brand, 1998). When the individual images are orthorectified, the mosaic may be 

used as a map. Mosaicing is a fully automated process in VirtuoZo and only requires the operator 

to select the area to be mosaiced. 
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8.4. SUMMARY 

The advantages of using a system such as VirtuoZo is that much of the processing requires very 

little human interaction once the parameters have been defined. With the increasing availability of 

digital technologies, it is quite feasible that these tools will be within the reach of many 

environmental managers and that they will provide a cost effective way of monitoring the natural 

world, especially when the misgivings put forward by the experts in the various fields are 

addressed. 

There have been a number of studies involving aerial photography of sand dune systems and 

photograrnmetric processing (van der Hagen et al. , 1 998: Droesen, 1 999) and several studies 

investigating the use of digital photography for photogrammetric purposes (Mills et al. , 1996; 

Ahmad & Chandler, 1 999). In addition, Eleveld et al. , (2000) have investigated the use of video 

to derive relief of sand dunes on the island of Ameland in the north of The Netherlands, and 

recently, Livingstone et al., ( 1 999) have compared aerial video and digital photography using a 

hand held Kodak DS 460 camera for terrain modelling on a coastal spit, but this is perhaps the 

first investigation applying digital photography to measurement of change in sand dune systems 

and is an incremental step in the assessment of the utility of the cameras. 
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CHAPTER 9 

CASE STUDY 1 - measurement of recession at De d'Oieron 

9.1. INTRODUCfiON 

Visual inspection of 3 epochs of digital photography acquired in 1 996, 1 997 and 1 999 revealed 

what appeared to be substantial changes to the dune site at lie d'Oleroa including evidence of 

overwash lobes and dune recession. This analysis will focus mainly on the dune recession between 

the beach-front car park on the D l26E, and the distal end of the system around the Passe de 

Gatseau, but other changes such as the significant overwash deposits, particularly at the southern 

end of the system, will also be highlighted. Only limited GPS data for ground control was 

available for rectification, but sufficient path intersection points were available from a topographic 

map (IGN Ile d'Oleron, 1 3 30 OT 1 :25 000) to enable first order correction. In addition, a dune 

cliff recession map independently surveyed by the Office National des Forets (ONF) was available 

to provide an independent check on the recession rates obtained from the digital photographic 

surveys. 

9.2. SITE DESCRIPTION 

lie d'Oleron lies equidistant between La Rochelle and the mouth of the R. Gironde. The island is 

about 27 km long and about 12 km at its widest, the long axis trending NW I SE. Figure 9. 1 is an 

outline map of the island with an inset showing its relationship to the mainland. 
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Figure 9. 1 Outline map of Ile d'Oleron with inset showing La Rochelle to the north and the River 
Gironde and Bordeaux to the south 

Much of the northern half of the island is underlain by a solid basement in the form of a rock 

p1atfoJlll, whereas south of the Plage de Vert Bois there is no solid geology exposed at the surface. 

A large west facing dune complex stretches almost the whole length of the island, although it is 

rather patchy in the north. The final 12.5 km south from La Perroche to the southern tip of the 

island consists of a massive dune complex of over 1700 ha in area, clothed in the planted Foret 

Domaniale de St Trojan. The forest and the dune system are maintained by the ONF. Figure 9.2 

shows the extent of the dune area, the distribution of campsites and car parks, the major paths and 

tracks through the dunes, the extent of the forest and the region of interest within the dune system 

outlined in red. 
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Figure 9.2 Map of the southern end of lle d'Oleron showing study area 

In the past, a seaward growth of the dunes in this region of interest has been recorded, and 

between 1864 and the end of World War 2 just above l kilometre of accretion had occurred in a 

westerly direction (IGN TOP 25 1333 OT). Recent ( 1999) observations made in the field and in 

discussion with the local ONF manager confirmed that this coastline is now retreating. 
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Accounting for this erosion and coastal retreat is not the principal purpose of this case study but it 

is useful to have some understanding of the processes at work and although it is not possible to 

give a comprehensive analysis here, some of the factors and processes can be readily identified in 

the field and these are reported below. 

• First, longshore drift of sand southwards along the west face of the island has been restricted 

by the construction of numerous groynes (few of which are marked on the topographic maps) 

and harbour installations as at La Perroche and Cotiniere (some 10 km to the north). These 

have undoubtedly interrupted sand supply to the south depriving the beach and hence the 

dunes of their primary sediment supply. Plate 9. 1 is a CIR aerial view of the harbour at La

Perroche with the harbour wall at top right, submerged pipeline and a substantial stone-block 

groyne on the beach at far left. This is the second in a series of five such groynes, the next 

three to the south of this one.

Plate 9. 1 Aerial view of the harbour at La Perroche, lie d'Oleron 
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The impact of these groynes on sediment supply to the dunes is exacerbated by the fact that 

they have been constructed so that they run out across the beach to meet a rocky outcrop, thus 

causing a much larger obstruction to sediment flow than would have resulted from the groynes 

alone, with sediment diverted a further kilometre or so off shore. The small town of Ia 

Perroche lies immediately behind the harbour. 

• Second, the development of the forest cover on the dunes has reduced the (substantial) former 

exchange of sand between the dunes and the beach. Westerly winds still transport sand from

the beaches and the bare dunes inland, but the forest cover now traps the sand and prevents 

the reverse flow, especially during winter when easterly winds would have returned sediment 

to the shore. 

• Finally, whilst Ile d'Oleron has benefited economically from the growth in coastal recreation,

some sites now show considerable wear from human pressure. The result of this sediment 

starvation and trampling pressure is manifested in erosion of the dune face to form sand cliffs,

and devegetation of the leading edge of the dunes, exlJosing them to both wave and wind

erosion. Plate 9.2 shows the cliffed dune around the mid-point of the region of interest where 

the cliff face is around 2 m high. Successive strand lines can be seen, the highest of these 

having reached the toe of the cliff, evidenced by the seaweed stranded on the beach. This

photograph, taken in September 1 998, shows how the dune is prone to very rapid erosion

through wave attack, especially in stormy conditions.

According to a map of the dune front provided by the ONF, the rates of retreat of the dune face in 

the three years between 1 995 and 1998 ranged from 15 m in the north of the system, to 70 m at the 

distal end of the system. This map was produced from measurements made at 1 00 m intervals 

along the dune, normal to the coastline. 
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Plate 9.2 Sand cliffs resulting from rapid erosion of the dune front, lle d'Oleron, Sept. 1998 

The changes in this dune complex detailed above, and in particular the rapid rates of retreat, 

provide an excellent opportunity to assess the usefulness and accuracy of digital photography in 

detecting linear change, namely in the retreating line of the dune cliff. 

9.3. IMAGE REGISTRATION 

9.3.1. Mosaicing and registration 

Since the image data was captured using a photographic system which was continuously evolving 

and the data was primarily intended for reconnaissance purposes, the images were not ideally 

suited to the task of registration and mosaicing. For example, the forward overlap at 20% was 

inadequate for photogrammetric processing in the 1996 and 1997 data sets and in addition, the 

imagery had been captured following the coastline rather than following planned flight lines with 

the result that the relative orientation of adjacent photographs was sometimes well in excess of ten 

degrees. Plate 9.3 below shows the relative orientations of three frames from the 1996 epoch 
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demonstrating the fairly severe rotation as the aircraft followed the coastline and the small fonvard 

overlap that was achieved with the DS 420 camera mounted with the short axis parallel to the 

flight line. Accurate image registration, therefore, proved challenging for the various types of 

software available and so slightly unconventional techniques were required to achieve the desired 

results. 

Plate 9. 3 Relative orientation of the photographs of De d' Oleron from the 1996 epoch 

During the 1 999 survey the camera was mounted with its long axis parallel to the flight track, 

enabling stereo coverage of the dunes. This greater along track coverage, and the 60% overlap 

between photographs proved easier than the 1996 and 1 997 photographs (which had been captured 

with the short axis parallel to the flight line) in producing a mosaic. The 1999 survey therefore 

became the base mosaic, registered to UTM projection, WGS84 datum, Zone 30 North. The 19% 

1 50 



and 1 997 photographs were then registered to the 1999 mosaic. Registration and mosaicing were 

carried out in ER Mapper v. 6. 1 ,  and in the absence of elevation data, this was in 20 mode (8. 3.5). 

This type of geo-correction yields less accurate measurements than orthophoto rectification but it 

is still a valuable source of information, and is a far more cost efficient option where very high 

accuracy is unnecessary. The net result was three co-registered mosaics, permitting an assessment 

of changes between 1 996 - 1 997 and 1 996 - 1 999 surveys. 

Since this is a coastline in retreat to avoid confusion the 1996 mosaic was declared the reference 

mosaic even though the 1 999 images were used to produce the base mosaic. In this way the 

erosion rate of the dune front could be recorded in chronological order. 

9.3.2. Error analysis 

9. 3.2. 1. Determination of registration error 

In investigations like this where much of the landscape is potentially mobile it can be difficult to 

say with certainty whether differences in location of features between epochs are due to error or 

due to change or to both. Never-the-less, it is important to try to quantify the error as erosion rates 

can only be as accurate as the data from which they are derived. Apart from any errors inherent in 

the data, errors introduced by the measurement methods must be accounted for and in this case the 

primary source of measurement error was thought to be in misregistration of the mosaics. 

Therefore, before the rate of coastal retreat could be measured co-registration errors between the 

mosaics were investigated. An example of misregistration can be seen in Plate 9.4 which shows 

part of the 1 996 mosaic in red and the 1 999 mosaic in green. Regions of misalignment of the path 

show clearly in either red or green. Care in interpreting such features must be exercised as this 

apparent misalignment could actually have been caused by erosion of the sides of the path rather 

than misalignment (although here the more likely cause is misregistration since other features in 

the image show similar red I green misalignment). For this reason, any measurements made 

involving paths should use the centre of alignment to minimise errors. 
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Plate 9.4 Composite image showing misregistration between images 

To measure this misregistration the mosaics were imported to Maplnfo Professional 5.5. Forty-six 

randomly distributed features occurring in all three epochs, including trees and vegetation units, 

path junctions, buildings and other human artefacts, were identified and digitised. The x and y co­

ordinates of each individual feature were compared, and the relative registrntion errors between 

the 96 - 97 and 96 - 99 mosaics were determined. The results are recorded in Table 9. 1 .  This error 

analysis also includes digitising errors but it was thought unnecessary to separate the two here. 

96x-97x 96y-97y 96x-99x 96y-99y 

Minimum (m) -3 .2 1  -2.58 -2.85 -3.6 

Maximum (m) 1 . 9  1 .77 2 . 1 2  3 . 2 1  

Mean (m) 0.06 -0.06 -0. 1 2  0.4 

Std. Deviation 1 . 13698 1 . 05456 1 .2247 1 .6 159 

Count 44 44 44 44 

RMS (m) 1 . 1278 1 .0445 1 . 2699 1 .7671 

Table 9. 1 Summary statistics for misregistratioo between the 1996 mosaic and the 1 997 and 1999 

mosaics for De d'Oleron 
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Table 9. I shows that for the 96 - 97 image, the RMS errors for both dimensions are of the order of 

1 m indicating that, on average. the dune cliff could be located to within ± I m of its position 

relative to the 96 image. The errors for the 1 999 mosaic are slightly larger at I .  26 m in x and I .  76 

m in y. For this type of application this could be regarded as a reasonable level of accuracy 

Moore, 2000; Anders & Byrnes, 1 99 1 )  who have reported that on NOS-T sheets the shoreline is 

mapped to 0.5 mm accuracy at the map scale but that stable features are mapped with greater 

accuracy and commonly to ±3 m) 

9.3. 2.2. Determination of the sample size 

A number of observations were taken to determine the sample size required for the error 

estimation at the 95% confidence level. A sample size calculation based on standard statistical 

analysis using the formula: 

2oX = 0.5 0' {fn J = 0 5 

(McClave & Sincich, 2000) 

where cr is the standard deviation of the sample, X is the sample mean, n is the number of 

observations required and 0.5m is the chosen confidence interval (tolerance) about the population 

mean. 

The results of this calculation are given in Table 9.2. These results confirm that 42 samples were 

sufficient to satisfy the error estimation requirements of the worst case registration and since 44 

observations had already been made no further observations were necessary. 

96x-97x 96y-97y 96x-99x 96y-99y 

Min sample size 20.68386216 1 7 . 79367358 23 .99875095 4 1 .  7826 1 3 l l  

(2 1 )  ( 1 8) (24) (42) 

Table 9. 2 Minimum sample size required to assess the error in registration 
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The errors quoted here must be borne in mind where any measurements are discussed and a 

similar table of error estimation will be provided for each case study. To avoid tedium, the 

potential error will not be quoted alongside each measurement. 

9.4. MEASUREMENT OF THE DUNE CLIFF RETREAT

The mosaics were opened in turn in Maplnfo and the dune cliff crest lines were digitised. This 

enabled simultaneous display of the cliff crest in all three epochs. As well as the crest line, there 

were a number of other linear features on the photographs including; tide marks, strandlines, tyre 

tracks and the cliff base, therefore. to ensure that the correct line was chosen, a stereo viewer was 

used to scrutinise hard copy of pairs of images where they overlapped. 

It is common practice in shoreline mapping from aerial photography to use the line between wet 

and dry sand as a pro'-'1' for shoreline position (Mortoll 1 99 1 :  Shoshany & Degani, 1 992) and to 

make measurements from this line but this is well known to vary with tidal and seasonal changes 

(Dolan et a/. , 1 980; Smith & Zarillo, 1 990) as well as with tidal range. beach slope, sediment size, 

wind and wave height (Dolan et al., 1 980). To avoid errors associated with measurements from 

an unreliable datum a baseline coinciding with U1M 30N casting 635900 was established, 

running approximately 4000m from the north to the south of the area of interest. Using random 

number tables, 90 points were identified between the northern and southern limits of the baseline. 

Figure 9.3 shows the positions of the sample points numbered at every l Oth point along the 

baseline, with points 1 and 90 at 55 .25 m and 3 97 1 . 19 m from the start of the baseline 

respectively. 
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Figure 9.3 Sample point locations along the baseline, lie d'Oleron 

Orthogonal transects were then constructed from each random point located on the baseline to 

intersect the dune cliff line for each epoch. The location of the intersection in the x direction was 

recorded for each of the randomly generated y values and because the photographs were registered 

to a planar coordinate system, erosion of the dune front at each of the points was readily quantified 

by subtraction of the x coordinates. The digitised dune cliffs, base line and orthogonals are 

shown in Figure 9.4. This map shows part of the area of interest between sample points 50 and 

7 1  where considerable erosion has occurred. 
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Figure 9.4 Position of the dWie cliff in 1 996, 1 997 and 1 999, Ile d'01eron 

Table 9.3 gives the results of the analysis of the dWie front positions with reference to the 1 996 

image at each of the 90 data points. Negative values occurring in 96-97 column denote accretion. 

From Table 9. 3 it can be seen that between 1 996 and 1997 the minimum and maximum values for 

retreat of the dWie front were -5. 1 7  m (accretion) and 28. 12 m; for 1 997 to 1 999 these values were 

0.46 and 48. 14 and for 1 996 - 1 999 the minimum erosion measured was 2.58 m and the maximum 

58.47. These rntes of erosion are in genernl agreement with the groWid surveyed map provided by 

the OFN, and shown in Appendix 1, according to which. between 1 990 and 1 998 retreat of the 

distal end of the spit was of the order of 1 20 m, and between I 996 and 1 998, retreat was of the 

order of 34 m. 
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sample rust along CfOSJOO erosion eros JOn sample rust along eroswn erosion erosion 

point baseline (m) 96-97 (m) 97-99 (m) 96-99 (m) potnt basehne (m) 96-97(m) 97-99 (m) 96-99 (m) 

I 55.2477 2.45 6 54 8.99 4<i 2 1 54.66 -0.48 25.99 25.51 

2 1 1 1 939 3.79 6 . 19 9.98 47 2218 57 -0.75 2202 21.27 

3 140.941 0 12.35 12.35 48 2242.45 3 33 2 1 .25 24 58 

4 1 46.977 0 17 06 1 7.06 49 225439 3 8 1  19.06 22.87 

5 180.703 1 0.52 0.4<i 1 0.98 50 2294 42 4.1 1  18.9 23.01 

6 228.602 799 1 1 .61 19.6 51 2543 49 5.84 2 3 73 29.57 

7 270.202 53 5.02 1 0.32 52 266137 9.36 22.19 3155 

8 286.474 5.18 5 10.18 53 2755 1 7  1 435 1 7 18 3 1  53 

9 293 692 5.04 5.07 10 I I  54 2761 07 1 4 1 18.24 32.34 

1 0  343.297 -0.56 I I . l 2  10.56 55 2763 3 8 53 1 8.38 26 91 

I I  367.968 -2.68 1 1 .05 8.37 56 2775.37 1 4.88 19 72 34.6 

1 2  399 069 -5. /7 7.75 2.58 57 2781 54 1 5.33 18.91 34.24 

1 3  435.026 -/.4 II 04 9 64 58 2789.42 1 1 .72 19.25 30.97 

1 4  450. 1 18 -1.21 1 1 . 1 1  9.9 59 2805 03 1 5.79 1 7.49 33.28 

1 5  522.031 6.92 7.29 14.21 60 2806.48 1 6 . 1 6  1 7 4  33.56 

1 6  530. 168 7.09 6.69 13 78 6 1  2814 74 13 4 1 7 9 1  3 1 .31  

17 569.93 1 .23 l U I  12.34 62 2820.39 13.o7 19 07 32.14 

1 8  575.967 0.41 1 1 .29 I I  7 63 2976. 16 15.42 25.6 41 .02 

1 9  695.386 -/.96 7.47 5.51 64 2994 1 5.35 26.23 41 .58 

20 699 322 -2.38 7 4.62 65 3062.77 1 9 . 1 5  25.3 44.45 

2 1  761.394 0.91 1 6.73 1 7 64 66 3068.67 16.76 30. 1 1  46.87 

22 771236 0.28 1 5  72 16 67 3076.02 1555 28.38 43.93 

23 856.273 5.46 1 2.13 1 7.69 68 31 1 3 1 6  19 56 26.73 4<i.29 

24 864.803 6.02 9 7  1 5. 72 69 3127.2 19.6 24.91 44.51 

25 996.689 -2.01 1 5.66 1 3.65 70 3229 04 18.1 23 66 4 1 76 

26 1 01 1 1 2 -1. 74 16.26 1 4.52 71 3327 72 23.4<i 26.93 50.39 

2 7  1 0 1 7.69 -1.15 13.99 1 2.84 72 3358 03 24 68 27 79 5247 

28 106545 -/.02 10.27 9.25 73 3419 84 25.54 26.63 51. 1 7  

19 1 1 29. 1 -0.27 7.86 7.59 74 3420 89 25 91 16.37 52.28 

30 1 220.04 -0.59 8 69 8 1  75 3435 85 23.66 24.79 48.45 

31 1 26007 -1.41 10.69 9.28 76 3480.47 26.08 25 66 51 .74 

32 1 262.04 -1.23 10.42 9 19 77 3535.46 28.12 26.97 55 09 

33 1 373.45 0.6 7.73 8.33 78 3555.4 26.9 25.99 52.89 

34 1374.76 0 2  7 84 8 04 79 3586.77 24 43 23 81 48.24 

35 1 4 1 7.67 1.05 8.31 9 36 80 3626.79 19.77 24.68 44 45 

36 1526.2 8.95 2.78 I I  73 81 3639.52 20 86 23.65 44.51 

37 1721 .73 0.55 1 6.88 17.43 82 3645 82 2 1 .04 24.24 45.28 

38 1 733.41 2.35 1 4 96 1 7 31 83 3648.84 22.05 23 38 45.43 

39 1 759.53 4.29 12 I 1 639 84 3650.54 20 84 24.56 45.4 

40 1815.17 -3 57 24.73 21 1 6  85 36844 13.34 29.87 43 2 1  

41  1 849.55 -0.09 22 09 22 86 3831 38 20 1 5  29 52 49 67 

41 1 899 68 0.86 22.53 23.39 87 3869.96 1 9 1 4  3369 52 83 

43 1906.9 -I 54 22 28 20 74 88 3918.65 14.48 39 5 53.98 

44 19918 0.64 22.66 23 3 89 3971 66 10.56 47 91 58 47 

45 2 125.66 -2.69 26.95 24.26 90 3972 19 10. 1 4  48 ) 4  58 28 

Table 9.3 .  Erosion of the dune cliff at 90 sample points, He d'Oleron 
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9.5. OVERWASH DEPOSITS 

Erosion of the first major dune ridge has resulted in ovenvash features with the sea penetrating the 

dune slack between the first two ridges. Field observations made in September 1 998 at this site 

established that between the northernmost car park and the next (teardrop shaped) car park the 

dune crest was between 4 and 6 m in height To the south of this, the first dune crest was around 

1 .  5 m high, and there was evidence to suggest that at this time some relatively minor ovenvash 

had occurred where the crest was low. Plate 9.5 shows the typical lobe-shaped morphology of an 

ovenvash deposit at Ile d'Oleron, with the sand carried well back into the dune slack behind the 

dune ridge. Flotsam such as dead seaweed and driftwood can be seen on the sand and dune grasses 

have begun to re-emerge through the deposit. This photograph was taken from the dune ridge 

looking north-east across the dunes. 

Plate 9.5 Lobe-shaped ovenvash deposit at Ile d'Oleron, Sept. 1998 

The aerial survey in May 1 999 showed that since the 1998 visit there had been major changes over 

a distance of several kilometres in this section of coast, with even the relatively high sand cliffs 

being overtopped by waves. Over-wash lobes extended up to 80 metres inland across the paths 
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behind the dune. Part of the site close to the Passe de Gatseau, at the southern end of the dunes , 

showing significant overwash is presented in Plate 9.6 - a CIR aerial view from the 1 999 survey. 

Plate 9.6 Aerial view of overwash deposits at southern end of De d'Oleron, May 1 999 

The changes that occurred between the 1997 and 1999 surveys are shown in Plate 9.7, where the 

1 997 mosaic is displayed as a greyscale image through the green channel and the 1999 mosaic is 

displayed as a greyscale image through the red channel. Loading the images in this way allows 

images from two epochs to be displayed simultaneously, and allows ready recognition of changes 

that have taken place. Most notable are the very large washover lobes on the 1999 image towards 

the south of the site which appear in red due to the fact that the dry bare sand returns a very high 

signal through the red channel. Had these features been present in the 1 997 image there would 

have been a very high signal in the green channel also and the washover lobes would have 

appeared in the composite image in tones of yellow. This phenomenon can be seen in the dry bare 

sand where the dune has been denuded of vegetation prior to the 1997 photography and appears 

bright yellow. 
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Plate 9.7 lle d'Oleron, 1997 mosaic in green channel, 1 999 mosaic in red channel. 
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Whilst it is not the intention of this work to interpret the mechanisms of coastal retreat in the 

various sites selected for evaluation of the aerial digital photography, analysis of the pattern of 

retreat has revealed interesting changes in the erosion and it is clear from Figure 9.5,  which shows 

a plot of recession of the dune cliff at the sample points, that the greatest degree of retreat has been 

at the distal end of the system, with just under 60 m measured during the three year period. 
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Figure 9 .5  Retreat of the dune front 1 996 - 1997 (± 1 . 12m) and 1 996 -1999 (± 1 .76m) 

In the period 1996 - 1997 there was little or no retreat for the flrst 2000 m south of the start of the 

survey baseline and in fact some accretion appears to have occurred here. At about 2200 m the 

plot reveals a sharp increase in recession as far as the 3500 m marker, with a slightly less marked 

recession to the end of the baseline. The changes between 1 996 and 1 999 show about 10 m of 

recession as far as 1 500 m along the baseline, with marked recession again apparent to the south 

of that marker. The parallel trend of the two plots is very marked. There appears to be a pivot 

point on both plots, to the south of which marked erosion occurs, and that between 1997 and 1999 

that pivot has shifted some 700 m to the north. Whether this observation is significant or not is 

impossible to say using such a short time series of data and analysis of this change is for future 
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work. What is important here is that although this data was not collected with this type of analysis 

in mind and was not ideally suited to this task, the results appear to be encouraging. The detailed 

plots of change in the position of the cliff crest line obtained from the analysis of the digital 

photography underscore the value of the ADPS and is an indication of the robustness of the data 

and the method. 
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CHAPTER 10 

CASE STUDY 2 - redistribution of sediment at Dossen 

10.1. INTRODUCTION 

Digital aerial swveys are available for the three epochs already listed at Ile d'Oleron, namely 

1 996, 1 997 and 1 999. The 1 996 swvey is incomplete, in that a small section of the seaward edge 

of the dune is missing on one image. This is not thought to be a major problem as the techniques 

used at this site can still be gainfully applied, and field knowledge of the site enabled an estimate 

of the small missing section. 

The dune face is subject to both erosion and deposition of mobilised sand, and the digital 

photographs are used to map these changes in the distribution of sediment. A further complex 

change has enhanced the value of Dossen to this study. Simple inspection of the images from 

1 997 and 1 999 reveal markedly increased deposition of sand in front of the west facing dune cliff, 

as well as lobes of sand deposited over vegetated areas behind the dune front (Plate 10. 1 a & b). 

These new spreads of sand cover significant areas of the dunes, and the form and distribution of 

the deposits suggests that overwash is a possibility. The reality is somewhat different and field 

evidence supports the view that sand driven ashore by wind and waves has been ramped against 

the sand cliff, eventually spilling over the cliff top as an advancing wind blown deposit burying 

the existing vegetation. This highly dynamic environment makes this an ideal site to demonstrate 

the effectiveness of aerial digital photographs for monitoring changes in the area of the dune and 

in sand redistribution. and, as with Ile d'Oleron, the value of the rectified digital images lies in 

providing evidence of change and process. 
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Plate 10. 1 (a) DS 460 CIR. photograph. May 1997, Dossen 

Plate 10. 1  (b) DS 460 CIR. photograph, May 1999, Dossen 
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10.2. SITE DESCRIPTION 

The dune site of Dossen and the Foret de Santee is a relatively small site (125 ha) located 

immediately to the west of the ferry port of Roscoff on the north coast of France. The location of 

the site is marked with an arrow in Figure 10. 1 .  
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Figure 10. 1 Map showing the location of the dune site at Dossen to the west of Roscoff on the 

north coast of Brittany 

The dunes and the related sediment supply have accumulated in the embayment formed by the De 

de Siec and the rocky headland at Tevenn and Figure 10.2 gives a more detailed map of the dune 

site and its immediate vicinity. The area of interest is marked with a red box and includes most of 

the dune front at this site extending into the estuary of the River Hom. 
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Figure I 0.2 The dune site at Dossen showing region of interest 

The apron of sand exposed by extreme low tide is over 700 m wide within the embayment, and is 

derived from sand driven onshore by westerly winds and by waves, in addition to sediment 

delivered into the bay from two relatively small rivers, namely the Hom and the Guillec. The 

dune front trends north I south and is orthogonal to the prevailing wind and waves. The northern 

part of the sand dune complex is now covered by the small settlement of Dossen, whilst the 

southern portion of the dune complex is used as a campsite, set amongst the scrub and tree cover 

defined as the Foret de Santee. 
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Wave erosion of the dWle face has been active for some time (pers. obs.) and enrochements have 

been necessary to protect the settlement in the northern part of the dWle complex from attack; in 

this area almost the entire coast has been rock protected. 

Plate 10.2 Enrochement in front of the dune at Dossen 

The policy of enrochement has more recently been extended to the central complex where dune 

cliffing by the sea was active. Here, this management has proved ineffective, in that 

discontinuous rows of large stone blocks have been placed in front of the cliffed dune below the 

high water line, resulting in wave turbulence behind the blocks and consequently even more rapid 

excavation of the friable sand cliff. Plate 10.2 shows part of the enrochement in front of the 

central dune complex. The face of the dune displays typical symptoms of erosion with discrete 

clumps of vegetation sloughing off the dune and creeping down the face before removal by wave 

attack. Much of this eroded sand appears to have been driven southwards along the dune face into 

the estuary of the R Horn, resulting in a net transfer of sand from the west facing sand cliff to the 

distal end of the complex. The southern section of the dune lying within the sheltered estuary of 

the Horn has grown considerably with attendant colonisation by dune grasses such as Agropyron 
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and Marram. Plate 10.3 shows nwnerous embryo dunes forming at the southern section of the 

dune site at Dossen, looking across the embayment, with the lie de Siec in the background. 

Plate 10.3 Clumps of dune building grasses forming embryo dunes at Dossen 

10.3. IMAGE REGISTRATION AND ERROR ASSESSMENT 

1 0.3.1. Image registration 

Images from the three epochs were rectified, mosaiced and co-registered as detailed in section 9. 

(lie d'Oleron). This is a standard technique and will not be further explained here, except to 

indicate that it was again carried out in ER Mapper without heighting data (20) but this time the 

I 997 mosaic was chosen as the base mosaic because the orientation of the camera with the short 

axis parallel to the flight line gave more opportunities to select ground control points from those 

collected using GPS and from the IGN 1 :  25000 map. 

1 1.3.2 Error analysis 

The accuracy of the mosaicing and co-registration processes is indicated in Table 10. 1 ,  as well as 

the required sample size of 37 observations derived from the formula given in 9.3.2.2. RMS data 
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suggest that the mean errors are less than 1 . 5  m. The sample size satisfies the sample size 

requirement for all calculations. 

96x-97x 96y-97y 97x-99x 97y-99y 96x-99x 96y-99y 

Minimum (m) -2.7 -2 .8 -3 .8 -2.8 -2.74 -2.74 

Maximum (m) 2 .8 2.6 3 .01  2 .9 1 .42 3 .22 

Mean (m) 0. 1 9  O.Q l -0.3 0.03 -0.4 0. 1 

Std. Deviation 1 .24 1 .52 1 .35 1 .25 0.84 1 .4 

Count 37 37  37  37 37 37  

RMS (m) 1 .23 1 .50 1 .38  1 .23 0.82 1 . 35 

Required sample 25 37 30 26 1 2  32 

Table 10. 1 Sununary statistics for registration errors between the three epochs, Dossen 

10.4. CHANGE DETECTION 

Mosaiced images were opened in Maplnfo 5 .5  and the beach I dune interface in each epoch was 

digitised. Figurel0.3 shows part of the plot of the three dune fronts. It should be noted that the 

west facing section consists of eroded sand cliffs, whilst in the south. facing the estuary of the 

river Horn, some erosion - and latterly considerable deposition - has taken place. 
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Figure 10.3 Part of the dune field with digitised dune fronts for three epochs showing areas of 

erosion and deposition. 

Using these shoreline plots, areas of erosion and deposition as defined by the positions of the dune 

fronts in successive epochs were delimited as closed polygons. These are shown in Figure 10.4 a 

and b. The patterns and extent of deposition and accretion are quite different within and between 

epochs and whilst it is not the intention to account for these variations in either space or time, 

some discussion is essential in order to demonstrate the full value of the digital images in this 

context. The period between the 1 996 and 1 997 epochs saw erosion along the whole dune face 
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south ofthe main beach access point, the latter situated at the northern limits of the maps in Figure 

10.4 a and b. In the northern zone, this was limited to just a few metres retreat of the sand cliff, 

but in the central zone the retreat in 1996 - 1 997 was up to 25 m at its widest point and between 5 

and 15 m over much of the southern zone. 

No rthe rn zone > 
I 

Ce ntral Zone 

r 

• Erosion 1 996-1 997 

Erosion 1 997-1 999 

0 - 50 
metres 

Figure 10.4 (a) Erosion 1 997-1 999 & 1996-1 997 at Dossen. Foret de Santee, Brittany 

Erosion in the two-year period 1997-1999 was rather less marked, with minor retreat in the 

northern zone, and continued - but much less pronounced retreat in the central zone ( l m  to 9 m). 

There was almost no erosion of the dune face in the southern zone during this two-year period. 
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Figure 10.4 (b) Accretion 1997-1999 & 1996-1997 at Dossen, Foret de Santee, Brittany 

The most striking comparison between the two plots is the relative areas eroded and accreted with 

far less accretion than erosion over the site as a whole. The area of accretion between 1996 and 

1997 is small and almost absent from the central zone. The regime looks quite different in the 

two-year period between 1997 and 1999 with a large area of accretion in the southern zone and 

more minor deposits in the central and northern zones. These plots are useful for showing at a 

glance where the changes have occurred, and from them the actual areas of the zones of accretion 

and erosion have been calculated in .Maplnfo v5.5. 
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Table 10.2 records the surface area of the dune eroded in each of the three zones for each time 

interval and also records the total area eroded for each time interval. The gross erosion for 1 996 _ 

1 999 is also recorded for each zone and for the entire dune system. Similar results are recorded 

for accretion. The net erosion for each of the zones between 1 996 and 1 999 is recorded. 

Northern zone Central zone Southern zone Entire system 

Erosion 96-97 (m1) 1 85.84 4335.8 1620.66 6 142.3 

Erosion 97-99 (m2) 269.37 107 1 .76 42.82 1 383 .95 

Erosion 96-99 (m2) 455.2 5407.56 1663 .48 7526.24 

Accretion 96-97 (m1) 1 1 1 .7 3 .8  1 37.43 252.95 

Accretion 97-99 (m2) 1 50.8 2 10 .2 1 525.8 1886.8 

Accretion 96-99 (m1) 262.5 214 1663 .23 2 1 39.73 

Net erosion (m1) 192.7 5193.6 0.25 5386.51 

Table 10.2. Erosion and deposition resulting in changes in the surface area of the dune between 

1 996 and 1 999, Dossen. 

These data emphasise the considerable variation between epochs, with 6 142 m2 eroded in 1 996-

1997 and only 1384 m2 (22% of the 1 996- 1 997 total) eroded in the two year period 1 997-1 999. It 

is worth emphasising that between 1 997 and 1 999 even the rapidly eroding central zone lost only 

25% of the surface area eroded in the 1 996-1997 period. Investigations might well centre on the 

record of storm activity and their coincidence with high tides during the 1 996-1999 period, but 

equally, the influence of the poorly placed enrochement which was intended to protect the central 

zone should also be considered. The degree of turbulence caused by waves breaking over the 

enrochement, a discontinuous line of boulders placed at the foot of the sand cliff is thought to 

have considerably aided the erosion of the sand dune cliff. 
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During the period 1996-1997 there was relatively little accretion around the dune massif, with 

only 253 m2 of deposition recorded over the entire system. In the second period there was mther 

more accretion ( 1887 m2) with 80% of this occurring in the southern zone where nearly 1526 m2

of sediment was deposited between the vegetated massif and the estuarine drainage channel of the 

river Hom. During this period, erosion in the southern zone was almost negligible with only 43m2

recorded. 

Over the course of the entire study, the whole system has suffered net erosion of some 5386 m2

representing 0.4% of the entire dune system. Most of this erosion (96%) occurred in the centml 

zone with 5 1 94 m2 lost. The areas of erosion and accretion in the southern part of the dune system 

were remarkably similar with 1663 .5  m2 eroded and 1663.2m2 accreted. These extraordinarily 

closely matched values should not be taken too literally as they reflect the change in surface area 

and do not give any indication of the volumes of sediment involved, but they do provoke 

consideration of the dynamic dune I beach interchanges that are frequently cited in the literature 

(Carter, 1988; De Ruig, 1 989; Arens &Weirsma, l994; Bennet & Olyphant, 1998) and it is a 

possibility that some of the sediment lost from the central eroding part of the dune has been 

redistributed to the southern zone by aeolian transport and longshore drift. 

10.5. SEDIMENT REDISTRIBUTION 

10.5.1. Sand deposited on tbc beach 

The fate of the sand eroded from the central section is of considerable interest given the large 

surface area libemted from the sediment sink of the dune. The colour infrared photography 

ensures a clear difference between the wet and dry sediment, and the mpid drainage and drying out 

of elevated sand features at low tide gives a ready appreciation of the relief of the beach sediment. 

Plate 10.4 illustrates this phenomenon where dry sand appears in brighter tones than wet sand. 
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The lobate feature at bottom centre of the photograph is a large accumulation of sand which 

appears to have tracked along the coast in an east-south-easterly direction by some 190m between 

1996 and 1 999 into the estuaiy of the Hom. 

Plate 10.4 Colour infrared digital photograph showing sand deposit in the estuaiy of the R Hom 

and wind blown sand on the dune at Dossen, May 1999 

The extent and movement of this sand lobe has been traced using Maplnfo and Figure 10.5 shows 

the relative positions of the sand lobe for each epoch as well as the extents of the dry sand, the wet 

sand, the river channel and the dune front during the three survey missions. As would be expected, 

the progression of the lobes towards the south and east has displaced the river channel, and this 

clearly establishes the physical existence of the lobes. 
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Figure 10.5 The progressive shift of sand lobes along the dune face and displacement of the 

estuarine channel of the River Horn, Dossen 

The fate of this sand since June 1999 has not been further investigated in this assessment of the 

value of the digital photography, but could include attachment to the accreting southern section of 

the dune field, and /or, return to the bay via flood discharges from the rivers Hom and Guillec. 

This sand would then replenish the sediment cell in the bay, to eventually be delivered back to the 

beach and the dune. There are suggested examples of such closed cell sediment circulation at 

several other sites in Brittany - for example the Anse de Morgat, Crozon and Les Sables Blancs, 

Lesconil (J-Cl Bodere pers com.). Further observations of future erosion and depositional trends 

at this site could be extremely informative. 
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10.5.2.Aeoliao deposits on tbe dune 

At most dune sites, during periods of strong onshore wind, there is transport of sand from the 

beach to the inland surfaces of the dune. Lag deposits of coarse sand, granule sized clasts or shell 

fragments on the bare seaward facing dune front bear witness to this process as the finest sand 

fractions are winnowed by the onshore winds and redeposited inland. Deposition from this 

process is sometimes almost imperceptible, especially on vegetated dunes, as the mobilised sand is 

trapped and concealed by the vegetation cover. Occasionally very strong onshore winds may 

drive discrete spreads of available sand onto the dune surface, and the 1999 image (Plate 10.4) 

shows the result of this process. 

Deposition took place between June 1 997 and May 1 999. The relationship of the spreads of sand 

deposited on the vegetated dune surface to the sand mobilised by erosion in (especially) the 

central zone of the dune face is not clear from the photographs alone. In the field, the mechanism 

of this deposition is quite explicit i. e. beach sand has been driven against the eroded sand cliff. 

and has built up as a wide ramp which has eventually overtopped the 4m cliff crest. Sand has then 

been driven up the ramp by the wind and has then either cascaded down the lee slope into the dune 

slack behind the dune fron� or has been blown into the slack burying all but the tallest vegetation. 

In addition, paths normal to the beach have acted as conduits along which sand has been driven to 

the interior. Figure 10 .6 maps the extent of the thick windblown deposit depicted in Plate 10.4 

and shows a schematic representation of the process of aeolian deposition. 
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Figure 10.6 Extent of the wind blown deposit on the dune at the southern end of Dossen site, May 

1999 

Thick spreads of sand (little or no vegetation visible through the sand) deposited in this way cover 

approximately 5200 m2 of the dune surface, with a further 850 m2 covered by a rather thinner 

layer, with some vegetation showing through the overlying sand. Together these deposits account 

for around 0.5% of the surface area of the dune and this value almost certainly underestimates the 

area affected because much sand has been concealed by vegetation. Such processes are not 
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particularly unusual, but in this case the extent of the sand spreads is large and far exceeds other 

small-scale examples observed in the field. This suggests that the large amounts of sand available 

for this redistribution from beach to dune has been enabled by a particular factor, possibly sand 

mobilised by the erosion of the central zone of the dune, providing further illustration of the 

dynamic relationship between the beach and the dune. Monitoring this type of sediment 

mobilisation is of great interest to the dune manager as well as to the local population as it is just 

this kind of event that causes great concern to property holders now as it has in the past (see 

3 . 1 .2) .  

As illustrated above, images from the three epochs have provided detailed and relatively accurate 

information on sediment distribution and change within the Dossen dune site. The images also 

infer processes that are active, for example erosion and deposition along the dune front, but they 

also suggest other processes that could be investigated, such as the progressive movement of sand 

lobes towards the south east, and the redistribution of sand onto the dune surface. The value of 

these images is reduced by the lack of elevation data for ground control and that only one set of 

photographs was captured in stereo. The creation of digital elevation models for each epoch 

would have enabled orthophoto production and calculation of volumes of sediment mobilised by 

erosion, rather than the less useful measurements of surface area. This would have, in tum, 
assisted in tracking the redistribution of sediment following erosion. Never-the-less aerial digital 

photography lends itself to surveillance of this kind and the dune manager with modest computing 

skills can very rapidly create informative maps. 
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CHAPTER l l  

CASE STUDY 3 - measurement of surface change at De de Noirmoutier 

1 1. 1. INTRODUCTION 

The southern part of the dune coast at Ile de Noirmoutier was surveyed in all three photographic 

missions i.e. 1 996, 1997 and 1 999. Preliminary inspection of the images has revealed a variety of 

features including settlements, campsites and sports facilities, as well as evidence of erosion and 

accretion. Field observations have substantiated photo-interpretation and confirmed progressive 

change from north to south of this linear dune, varying from marked erosion in the northerly 

section, south of Village de Ia Tresson, to marked accretion at the southern (distal) end of the spit. 

German blockhouses isolated on the beach 60 to 70 m in front of the dune readily testify to marine 

erosion and retreat of the dune front and in the north there is evidence of considerable erosion of 

the dunes in the form of large blowouts. 

This investigation will centre on surface changes to the dunes from La Gueriniere to la Fosse 

(shown in Figure 1 1 .2) and this site will be used to assess both erosion and accretion as well as the 

development of blowouts. The destruction of the vegetation cover in the northern section will be 

used as the vehicle to demonstrate the detection of erosion using aerial digital photography and in 

contrast the southern part of the dunes will be used to demonstrate the detection of colonisation by 

new vegetation. However, whilst it is relatively easy to demonstrate the sudden loss of vegetation 

cover around the margins of blowouts because of the sharp change in surface cover, it is much 

more difficult to show the more gradual changes resulting from colonisation of newly prograded 

dune surfaces with sparse and patchy vegetation. One of the advantages of using multispectral 

digital imagery over its film counterpart is that image processing routines can often reveal 

information that is otherwise inaccessible in hard copy (5.3 .2). Even so, the distal end of the spit 

near Pointe de Ia Fosse provides a severe test of the usefulness of the ADPS. 
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1 1.2. ILE DE NOIRMOUTIER - THE PHYSICAL CONTEXT 

The lie de Noinnoutier is approximately 18 km in length and lies some 23 km south of the mouth 

of the river Loire on the west coast of France. Figure 1 1 . 1  is an outline map of the site with an 

inset showing the relationship of the Ile de Noinnoutier to the mainland. 

Figure 1 1 . 1  Outline map of the lie de Noinnoutier with inset showing its location south of the 

River Loire 

The island can be considered to be in two sections; the bulbous northern section which is 

underlain by leucogranites of late Variscan age forming the Pointe de L'Herbaudiere (with minor 

lower Eocene deposits at the eastern extremity of that part of the island) and the southern section 

that extends south-eastwards from the Pointe de L 'Herbaudiere as a narrow causeway to join the 

southern part of the island at le Devin. The southern part is a narrow Holocene sand spit some 1 5  

km long with a maximum height above sea-level of 20m, although much of i t  i s  actually lower 
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than this. This ridge is backed by a very large and partially reclaimed marais with extensive salt 

pans and polders and the main road from the northern section is built across the marsh. The island 

terminates in the south at the Pointe de la Fosse and is separated from the mainland by the deep 

water channel known as the Goulet de Fromentine. The southern part of the island which affords 

the study site for this investigation is mapped in more detail in Figure 1 1 .2. 

� � 

D 
D 

500 1 000 

metres 

Figure 1 1.2 Southern section of lie de Noinnoutier. showing the major settlements and dune sites 

The sand dune coastline is generally orientated to the south-west facing the North Atlantic Ocean 

and is thus exposed to high winds and waves. The sand dune ridge that forms the western spine of 
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the island protects a series of linear settlements extending from La Bosse (off the map) through La 

Gueriniere, Les Sables d'Or, Le Midi, Barbatre to La Fosse near the southern extremity. In general 

the sediment supplied to the dunes is fluvio-marine in origin, and in particular is derived from the 

River Loire and the several small rivers that drain into the Baie de Bourgneuf, and from the 

products of coastal erosion in the north of the island. 

1 1.3. SURF ACE CHANGES BETWEEN VILLAGE DE LA TRESSON AND LE MIDI - EROSION 

1 1.3.1. Site description 

The dunes in the more northern part of this region of interest are badly damaged and this has 

prompted a variety of management strategies including the erection of notice boards of the type in 

Plate 1 1 . 1 . These have been designed both to warn visitors that the dune protects the settlement 

and that the vegetation cover is crucial to the survival of the dunes and to inform visitors about 

dune flora and dune habitats. 

vn:uo.E " LES SABLES D"OR • i 
CfTTf DUftf EST VOTRf SfULf PROTECTIOn 

COftTRf romn _ LA VEGETATIOn 

LUI EST lftDISPENSABLf . nous LA PLACOnS 

SOUS VOTRf SAUVEGARDE 

M E � C ! 
.. 

Plate 1 1. 1  Educational notice boards at Les Sables d'Or and La Tresson, lle de Noirmoutier 

Photographic evidence of the degraded dunes in the northern part of this region of interest at 

Village des Sables d'Or (also known as Village de 1a Tresson) includes severe cliffing of the dune 

front (Plate 1 1.2, September 1 998) which has led to the installation of zig-zag shaped fences to 

encourage deposition at the cliff foot (Plate 1 1 . 3  May 1 999 and Plate 1 1.4 September 1 999). 
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Plate 1 1 .2 Broken fencing and cliffing at Village de la Tresson. Ile de Noinnoutier, Sept. 1998 

Plate 1 1 .3  New zig-zag fencing at Village de Ia Tresson, De de Noirmoutier, May 1999 
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Plate 1 1 .4 New zig-zag fencing on dune at Village de Ia Tresson, looking north-east, Sept. 1999 

In addition, very large blowouts which open onto the beach have formed just south of Village de 

Ia Tresson, and these are illustrated in Plates 1 1 .5 and 1 1 .6. Plate 1 1 .5 is an annotated 'off the 

camera' (raw) aerial digital photograph and has not been georegistered, and the dunes here face 

south-west into the prevailing south-westerly winds. Plate 1 1 .6 is a view of the same part of the 

dunes and beach taken from the dunes. Tills section of beach is not immediately backed by 

housing, but numerous foot-paths and vehicle tracks are visible, and path development, as a result 

of human pressure, has played a role in the development of these large, active blowouts within this 

section. These blowouts have developed where destruction of the vegetation cover has resulted in 

deflation hollows with consequent loss of sand. In addition to trampling pressure caused by 

visitors on foot, there is evidence that these dunes have been subjected to on dune car driving -

which is very destructive of the vegetation cover, and the most recent images display evidence of 

motorcycle activity. 
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Plate 1 1 .5 Aerial view of part of the dune between Village de Ia Tresson and le Midi, May 1999 

Plate 1 1 .6 View of blowouts and blockhouses from the top of the first dune ridge, September 1999 
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In addition to the traffic which has destroyed the anchoring vegetation, resulting in the current 

degradation, erosion has also been facilitated by the relatively steep dune face presented to the 

prevailing westerly wind which drives the dry sand out of the hollows, mantling the grass sward 

behind the line of blowouts. In Plate 1 1 . 5 this appears as several light red lobate features 

immediately behind the blowouts. The process has also been exacerbated by a fall in the level of 

the beach which remains wet at low tide, reducing the supply of wind blown sand from the beach 

to the dune. This impoverishment reduces the potential to repair the effects of wind erosion. The 

drop in the beach level is probably the result of the installation of groynes and other structures to 

the north, interfering with the southerly longshore drift of sediment as at lle d'Oleron The sand 

cliffs that have developed in the dunes immediately in front of the houses in the Village de Ia 

Tresson represent a further, although adjacent threat, to this site. 

The severely eroded dunes described above terminate in the south in a housing development 

known as Le Midi, which is constructed almost to the edge of the beach. At Plage du Midi the 

dune site is also under considerable pressure, both from this housing development and a major 

campsite immediately adjacent to the beach, built on what should naturally be mobile dune. This 

type of building activity undertaken without regard for the natural processes at the coast is 

expensive to defend and is distressing for the owners once the rate of erosion becomes apparent 

In addition to the pressures exerted by the development here, the condition of the beach suggests 

that sand levels are falling here also, evidenced by the beach sand apron remaining wet at low tide, 

and it's becoming increasingly covered in pebbles. 

With a reduced sand supply, there has been intensive wear of the very narrow dune belt separating 

the housing development and the campsite from the beach. In front of the houses, the dune has 

virtually disappeared, mostly replaced with an enrochement designed to protect the investment in 

housing. In front of the campsite, poor management has allowed a period of intensive wear, 

caused by free access across the dune to the beach. These features can be seen in Plate 1 1 .7, a CIR 
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photograph from the 1 999 survey, and the enrochement is indicated with arrows. Blowouts can be 

seen inunediately to the north (photo left) of the housing development. 

Plate 1 1 .7 Blowouts, housing and camp site at Plage du Midi, lie de Noinnoutier, May 1999 

The camp site is relatively empty at this time, as the survey was flown at 'low season' and only 

the permanent caravans are in the site, whereas during the season the entire enclosure is packed 

with tents and mobile homes (pers. obs.). When the campsite is busy this narrow piece of 

remaining dune is subject to intense pressure. Plates 1 1 .7 and 1 1 .8 show the proximity of the 

campsite to the dune front and although there are fences between the campsite and the dune some 

are poorly maintained, and they are an inadequate deterrent to visitors. To counter this, a number 

of walkways have been laid down recently and a new substantial fence has been constructed 

between the beach and the foredune. 
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Plate 1 1 . 8  Campsite, dune and beach at Plage du Midi, Tie de Noirmoutier 

-

. .  
�--

Plate 1 1 .9 Re colonisation of foredune immediately to south of campsite at Le Midi. 
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This more enlightened management policy has enabled some of the remaining dune surfaces to 

revegetate, and, not far to the south, as the balance between erosion and accretion changes, zig� zag 

sand traps have even begun to lead to accretion and colonisation by dune grasses in front of the 

eroded dunes (Plate 1 1 .9). 

11.3.2. Image Analysis of Blowouts between Village de Ia Tresson and Le Midi 

Whereas blowouts are a natural phenomenon in sand dunes, and indeed desirable for ensuring the 

availability of free sand to sustain typical dune habitat, the location of these in particular, at the 

very front of the dune, makes them a hazard with regard to protection of the settlements behind the 

foredune. These morphological changes to the dune front look likely to continue for some time 

without management intervention and would therefore be classified as fragile components of the 

dune system (Rust & llienberger, 1 996). A simple technique which could be used by dune 

managers to monitor the progress of active blowouts is demonstrated in this analysis. 

11.3.2. 1. Image registration 

Images from the three survey epochs have been used to monitor the growth of the blowouts in this 

area. Using the 1 :25000 IGN map 1 1250T topographic sheet, De de Noinnoutier, to derive 

control points, the 1997 CIR images were geocorrected and mosaiced in ER Mapper (2D mode) to 

UTM WGS84, 30N. This mosaic was used as the reference to which the 1996 and 1999 images 

were in turn rectified because in this case, the swath width of the 1997 images enabled the 

selection of more control points from the map than either of the 1 996 or 1999 image sets. A 

complete mosaic of the study site showing relationship of settlements to the beach, major access 

paths and blowouts is shown in Plate 1 1 . 1  0. 
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erosion 

Camp site site 

i l lage de Ia Tresson 

Le Midi housing 
;evelopment 

Zone of accretion 

Plate 1 1 . 10 Georectified mosaic of the study area at lie de Noirmoutier showing blowouts in the 

north and accretion in the south 
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The accuracy of the mosaicing and co-registration processes is indicated in Table 1 1 . 1 , as well as 

the required sample size derived from the formula given in 9.3 .2.2. The sample size satisfies the 

sample size requirement for all calculations, where 0.5m was again the chosen confidence interval 

about the population mean. RMS data suggest that the mean errors are less than 1 .4 m. 

96X-97X 96Y-97Y 97X-99X 97Y-99Y 

Minimum (m) - 1 . 5 1  -0.93 -0.53 -2.53  

Maximum (m) 0.69 0.97 2.09 1 . 76 

Mean (m) -0.71  0. 1 0. 1 6 0.69 

Std. Deviation 0.6 0.52 0.62 l . l8 

Count 23 23 23 23 

RMS (m) 0.6 1 0.52 0.66 1 .34 

Required sample 8 5 7 23 

Table 1 1. 1  Summary statistics for registration errors between the three epochs. 

1 1 . 3. 2. 2. Change detection 

Each of the colour infra-red mosaics was converted to a single band, greyscale, image. Two of the 

mosaics were then displayed in ER Mapper, one in the green band and one in the red band 

producing a bi-temporal composite image. One band was made semi-transparent, allowing both 

bands to be viewed simultaneously so that differences between the two epochs could be seen. 

Figure 1 1 . 3  illustrates this procedure. 
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Figure 1 1.3 Stages in producing a red·green difference image 

Epochs I and 2 
displayed 
simultaneoWily 

Displaying the images in this way allowed a comparison of areas of vegetation and bare sand 
between epochs. For simplicity of interpretation, images from just two epochs were compared 

each time, with the mosaic from the earlier epoch displayed in the green band, and that from the 

later epoch displayed in the red band. 

To assist with interpretation of the bi-temporal composite images, digital values of three classes of 

feature namely, dry bare sand, dune vegetation and wind blown deposits were interrogated. Ten 

thousand pixels were sampled for each class in the 1997 CIR image for red, green and blue values. 

The mean values are recorded in Table 1 1 .2  

red ( 700 ·950J.Lm) green(500· 700J.Lm) Blue (350-500J.LID) 
class of feature mean DN mean DN Mean DN 

Bare dry sand 236 253 1 84 

Dune vegetation 63 28 5 

Windblown sand 96 74 39 

Table 1 1 .2 Mean digital value for dry bare sand, dune vegetation and windblown deposit on the 

dune 
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In Table 1 1 .2 it can be seen that dry bare sand returns the brightest signal in each waveband. 

Dune vegetation returns the least bright signal in all bands and sand deposited in the dunes returns 

values in between the other two classes in all bands. This can be used to determine where areas of 

change exist and this is best explained using the bi-temporal images produced for this case study. 

Plate 1 1 . 1 1  shows a subset of the bi-temporal composite of 1996 and 1997 mosaics. The 1996 

image is displayed in the green band and the 1997 mosaic is displayed in the red band. 

Plate 1 1 . 1 1  Bi-temporal image ( 1996 green, 1997 red) showing active blowouts south of the 
Village de Ia Tresson , lle de Noirmoutier, France 
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Where identical features occur at the same pixel locations in two images the digital values at those 

locations are equal. Since equal amounts of red and green produce yellow, pixels with equal value 

in both bands in a two-band, red-green image are yellow and this must indicate no change. In this 

1996 -1997 composite image much of the beach is unchanged, although the extent of dry sand is 

different with more dry sand in the 1 997 image indicating a lower state of tide. Red areas around 

the edge of the blowouts show where new areas of bare sand have developed, since dry bare sand 

returns a high signal, especially in the near infrared. The extent of the wind blown sand is clearly 

visible and shows as mottled pink and green plumes extending inland from the blowouts. 

Plate 1 1. 12 Bi-temporal image (1997 green, 1999 red) showing active blowouts south of the 

Village de Ia Tresson , lle de Noirmoutier, France 
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Plate 1 1 . 12 is a bi-temporal image constructed from the 1 997 and 1 999 epochs, and shows further 

erosion of the blowouts and also loss of some isolated dune fragments on the foreshore. Green 

plumes behind the blowouts are wind blown sand deposits on the 1997 image and the red mottled 

plumes are those on the 1999 image. 

Plate 1 1 . 13 Bi-temporal image ( 1996 green, 1999 red) showing active blowouts south of the 

Village de la Tresson , Ile de Noirmoutier, France 

The full extent of the change in the blowouts is demonstrated in Plate 1 1 . 13 .  Tonal values are as 

already described in Plates 1 1 . 1 1  and 1 1 . 12. Whilst Plate 1 1 . 13 shows an apparent overall 

increase in the erosion around the upper rim of the blowouts, especially in the central blowout, 

inspection of Plates 1 1 .  1 1  and 1 1 . 12  in sequence reveals that there has been spatial variation in the 

intensity of the erosion, first concentrated on the northern face and then on the eastern face. 
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These images are very effective in demonstrating change detection, but to quantify the extent of 

the change in surface area, the rim of the blowouts in each epoch have been digitised in Map Info v 

6.0 and are shown in Figure 1 1 .4. 

. .. Metres== 

Figure 1 1 .4 Digitised blowouts as source data for Tables 1 1 .3 and 1 1 .4, and relate to change 

detection shown in Plates 1 1 . 1 1, 1 1 . 12 and 1 1 . 1 3  

The area of each blowout for each epoch i s  recorded in Table 1 1 .3  and Figure l l .5 is a graphical 

representation of this data showing an increase in the area of all blowouts year on year although 

the largest of the three, blowout 2, appears to have changed least 
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Blowout 1 area (m2) Blowout 2 area (m2) Blowout 3 area (m2) 
1 996-1997 976.25 2512.97 1 455.71 

1 997-1 999 1 2 1 3 .49 3 168.54 2447. 10 

1996-1999 1 870.92 3249.84 3226.50 

Table 1 1 .3 Areas ofblowouts south of Village de Ia Tresson June 1996 to June 1 999 

3 500.00 

3000.00 

-;;;- 2500.00 " £ 
8 2000.00 � "' ;:1 _g I 500.00 
"' " � 1 000.00 

500.00 

2 3 
Blo'-'<>ul s I , 2 and 3 

Figure l l. 5 Chart showing increase in area of the three blowouts 1 996 to 1 999 

In Table I I . 4 the number of square metres eroded from each blowout for each epoch and the 

percentage increase in the surface area of each blowout is recorded. The total area of increase in 

each blowout over the entire study period is also recorded as is the percentage increase in area 

over the entire period. 
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increase in blowout area Blowout I Blowout 2 Blowout 3 

area eroded 1 996-1 997 (m2) 237.24 655.57 99 l .39  

area eroded 1 997-1999 (m-) 657.43 8 l .30 779.4 

area eroded 1 996- 1 999 (m-) 894.67 736.87 1770.79 

% increase 1 996-1 997 24.30 26.09 68. 10 

% increase 1 997-1 999 54. 1 8  2.57 3 1 .85 

% increase 1 996- 1 999 9 1.64 29.32 121.64 

Table 1 1 .4 Increase in the area of the blowouts 1 996-1 997, 1997-1999 & 1 996-1999 and 

percentage increase over the same periods. 

These values recorded in Tables 1 1 . 3  And 1 1 .4 indicate the very rapid changes that are occurring 

along this stretch of the Ile de Noirmoutier coast. Over the three year period between 1 996 and 

1999 blowout I has increased by just under 92%, blowout 2 has increased by almost 30% and 

blowout 3 has more than doubled in size with a 1 2 1% increase in area. In total close to 3 400 

square metres of dune vegetation have been destroyed by the advance of these very active 

deflation hollows. It is quite probable that large volumes of sand have been lost from the dune, 

since blowouts tend to deepen as they increase in surface area but without elevation data it is not 

possible to quantify this and this remains a limitation of this method. 

One other interesting change has been detected in the development of the blowouts. Figure 1 1 .6 

shows changes in the perimeters of the blowouts relative to the increase in area. Two of the 

blowouts ( 1  and 3) show a small decrease in perimeter against an increase in area followed by an 

increase in both parameters. Blowout 2 shows a concordant increase in perimeter with area 

followed by a decrease in perimeter against a further increase in area. In a sense, these patterns 

are consistent, and suggest that a period of expansion in area can leave irregular or crenulated 
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edges to the blowouts, with relatively long perimeters, and that these irregularities are likely to be 

eliminated in the next phase of growth, possibly through subsequent collapse of turf rolls. 
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Figure 1 1 .6. Relationship between blowout area and perimeter, Village de la Tresson. 

Using such a small data set as this (both in space and time) the explanation put forward might be 

considered to be merely conjectural and the information itself may be of little value. However, 

the type of information here, which seems to be indicating the process of growth in the blowouts 

could be very useful for substantiating this (and other different inferences), if sufficient 

observations at a high enough frequency were available, and this could be a further advantage of 

the digital approach to change analysis in natural environments. 

11 .4. SURF ACE CHANGES BETWEEN LA FRANDIERE AND POINTE DE LA FOSSE - ACCRETION 

1 1.4.1.  Site description 

At the distal end of the spit, the dunes are backed by woodland enclosed by substantial wire 

fences, which separate housing at La Fosse from the beach and dune by several hundred metres. 

This system is administered by the Office National des Forets (ONF) and although some tracks 

link the spinal road of the island to the beaches, access for vehicles in this section is limited by 

200 



barriers, and because of this, public pressure on these dunes is relatively light with the few visitors 

well distributed along the shoreline. In general the tourist industry is at a low level with many 

visitors arriving on foot from the local community. 

The sand supply to these dunes is good, witnessed by the large sand banks immediately offshore, 

and the southerly longshore drift, and as a result, these dunes are prograding. These sand banks 

are shown in Plate 1 1 . 14 and the newly accreting dune appears as small light red patches seaward 

of the dune front. The following photograph, Plate 1 1. 15 is a view of the same stretch of coast 

looking south towards Pointe de la Fosse, and here the very light green band of vegetation at the 

dune front is newly colonising dune grasses, growing seaward of the original fence line which can 

be seen in the foreground of the picture. This photograph also shows large quantities of seaweed 

on the beach and this is another important factor in the development of embryo dunes because 

decaying organic matter provides nutrients and a microclimate for vegetation growth as well as 

trapping wind blown sand. 

Plate 1 1 . 14 Large deposits of sand offshore at the southern end of the dunes at La Fosse, lie de 

Noinnoutier, May 1 997 
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Plate 1 1 . 15 Prograding dune at La Fosse, lle de Noinnoutier, September 1998 

1 1.4.2.Image Analysis of accretion between La Frandiere and La Fosse 

Erosion of features such as blowouts can, as demonstrated above, be very rapid, and there is little 

problem in detecting such change using the ADPS. The colonisation of accreting dunes is much 

more subtle however, and attempts to monitor these changes are detailed in this section. 

For this technique to be useful, the quality of the image to image registration must be very high, 

because of the small changes involved. On this type of terrain dGPS data is ideal as there are 

usually no previously recorded control points available. In this case, there was no dGPS data 

available for this southern part of the dunes and inadequate control point data on the available 

map. In order to demonstrate the effectiveness of the technique, unregistered images were co­

registered in ER Mapper in 2D mode and the 1997 image was co-registered with the 1999 image. 

Table 1 1 .5 records the errors in co-registration of the images but the values given are in pixels 

and not metres. The nominal ground pixel resolution for these images is 32cm so with error 

values of approximately 1 pixel, errors are in the region of 0.3 metres. 
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97x-99x 97y-99y 

Minimum (pixels) - 1 . 9  -2.86 

Maximum (pixels) 1 . 9 1  1 . 9  

Mean (pixels) -0.05 -0.44 

Std. Deviation 0.944 1 .072 

Count 32 32 

RMS (pixels) 0 .93 1 . 14 

Required sample 23 29 

Table 1 1 .5  Co-registration of the CIR images of the southern part of Noirmoutier. Note units are 

in pixels and not metres. 

Detection of change following the same procedure used to detect change in the blowouts was 

difficult to interpret. This was because the signal from bare dry sand was very bright whereas the 

response of the vegetation (especially the dune grasses) was much lower. and the change in the 

vegetation in the two images could not be discerned. To overcome this problem. the images were 

inverted so that bright pixels with high values were assigned new low values and vice versa. In 

this way the low value vegetation pixels were assigned high values whilst the beach sand pixels 

were assigned low values. The new inverted images were then displayed as two-band. green-red 

images with the 1 997 image in the green channel and the 1 999 image. in the red channel. The 

results are shown in Plate 1 1 . 1 6. 
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Plate 1 1 . 16 Inverted NIR responses of the 1 997 image (green channel) and 1999 image (red 

channel) displayed as a bi-temporal composite image showing vegetation colonisation of the 

accreting dune coast near La Fosse, lle de Noirmoutier, France 

The key to interpreting this image lies in identifying the beach, which is displayed as a very dark 

toned strip running from top to bottom of the image, slightly left of centre. To the image left of 

the beach bright red tones mark the dead seaweed on the beach, and given that this is a bi-temporal 

image, changes on the beach other than sand redistribution must be expected and will show as red 

tones. To the photo right of the beach, the newly colonising vegetation is again shown in bright 

red tones, identifying the increase in vegetation cover between 1997 and 1 999. Not only are the 

changes at the accreting dune front clear, but recolonisation of the paths and de-vegetated areas at 

the back of the dune can be seen. 
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Although this image is not geocorrected and therefore is not in true cartographic space it still 

provides useful information to the dune manager and whilst it is not possible to make absolute 

measurements of change, it is possible to make relative measurements of change from one epoch 

to another giving the dune manager a good guide to trends in changes over time. 

In Chapter 1 2  a more rigorous approach to image correction, orthorectification, will be 

demonstrated using stereo digital photographs with more accurate ground control and softcopy 

photogrammetry. Orthorectification allows more reliable measurement from aerial photographs 

than is possible using the techniques demonstrated in Chapters 9, 10 and 1 1 . 
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CHAPTER 12 

CASE STUDY 4 - measurement of volume at Holywell Bay 

12.1.INTRODUCTION 

Continual monitoring of dune sites can be used to measure the response of the landscape to 

environmental change, regardless of the agents of that change, and these measurements could 

include the amount of sediment moved, the direction of the movement and the timing and 

magnitude of the events (Brown & Arbogast, 1 999). Measurement of the timing of events will 

depend on the frequency of the monitoring programme and often the interval between successive 

surveys using traditional methods has been too long to measure high frequency events at the coast. 

Using new technologies such as digital imaging and digital photogrammetry it should be possible 

to increase the monitoring frequency to an appropriate level at a palatable cost. 

The techniques that have been used in the previous 3 case studies can all be regarded as 2 

dimensional, and these have revealed some useful information, regarding coastline retreat, the 

extent of sediment redistribution (that is the surface areas of change), the direction of movement 

(erosion and accretion at Dossen, movement of the sand lobe at Dossen) and to some extent the 

timing and magnitude of the events (the retreat of the dune face between epochs at lle d'Oleron). 

To fully exploit the spatial data contained within a stereo pair of photographs digital terrain 

modelling techniques must be used which provides three dimensional data that can be used either 

graphically or statistically to extract information. The elevation model may be used to measure 

volume, and if a time series is available a DEM of change can be created to measure historical 

topographic change. In addition, once the photographs are orthorectified they are planimetrically 

correct and can be used to make accurate measurements of point, line and polygon data. If these 

techniques produce reliable products that are 'fit for the purpose of use' then they may well be 
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used to elicit new infonnation from previously under exploited archived photography that can 

often be found in coastal dune managers' offices, for as far back as photography of acceptable 

quality is available. Although the accuracy of data is of prime importance, the main putpose of 

this analysis is to assess whether colour infrared digital photography can be used to produce 

orthorecti:fied imagery that can be of use to the dune manager with acceptable accuracy of the 

results. 

The photographs from the 1997 survey of this small dune site were captured in stereo mode. 

Unfortunately neither of the other two surveys provided useful data with stereo cover, in 1 996 the 

overlap was insufficient and in 1 999 the data was of poor quality owing to cloud cover and very 

turbulent conditions causing tilt displacements (7. 1 .3.2) well in excess of those acceptable for 

stereo correlation. Never�the-less the 1 997 imagery was used to produce a DEM and from this 

orthorectified imagery and an orthophoto mosaic. Ground control data was collected using 

differential GPS and further control was available from the OS 1 :2 500 map sheet, Plan SW 7659 

- 7759, 1 972. 

t2.2.SITE DESCRIPTION 

Holywell Bay is situated on the north coast of Cornwall, SW England, 5 km south-west of 

Newquay. This is a small dune system of approximately 20 hectares and it faces north west to the 

Celtic Sea. Figure 12. 1 is a map showing the location of the site. A more detailed view of the dune 

site is given in Plate 12. 1 .  This is an uncontrolled photomosaic made from 10 individual DS 460 

CIR frames, mosaiced together in Adobe Photosbop. This type of mosaic does not have the 

geometric integrity of an orthophoto mosaic but never-the-less it is a very useful product showing 

the dune site in context of the surrounding area and giving guidance on the extent and condition of 

the dunes. It is important to note that this mosaic is not orientated in cartographic space. 
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Figure 12. 1 Map of Ho1ywell Bay, Cornwall. 

Plate 12. 1 Uncontrolled mosaic of Holywell Bay showing the dunes, golf course and town of 

Holywell, Cornwall 
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There are several camp-sites to the south east of the dunes and there is a large military camp 

nearby. The village of Holywell provides modest tourist facilities and there are good road access 

and car parking facilities for the beach. The south-west coastal path runs through the dunes and 

part of the hind dune system, the Kelseys, is a golf course. The site appeals both to families and 

the surfing fraternity as the beach is gently sloping and the surf on this stretch of coast is 

particularly good. 

The site is in both private and public ownership and is divided by a broad pathway running from 

the back of the dunes to the beach. The northern part is owned and managed by the National Trust 

and the southern part is owned and managed by the local council. Management strategies differ in 

the two parts and this is reflected in the difference in status of the two sides of the dune system. 

In the past, the southern part has been badly eroded by public pressure and there has been little 

attempt to restrict access to vulnerable parts of the dune, although wooden walkways have been 

constructed on major paths through to the beach to encourage visitors to use them This strategy 

has not protected the dunes here with the result that there are many paths criss-crossing the dunes, 

some of which are deeply incised. More recently, the owners have adopted a more active 

management strategy with fenced paths and planting schemes on badly eroded parts of the dune. 

In contrast, the northern part has been more effectively managed and the general public has been 

denied access to a large part of the system. In this part of the system the dune front is much less 

eroded than in the southern part, although there are several very large active blowouts and 

numerous former blowouts which have become recolonised by marram grass. Where the terrain is 

suitable, areas have been enclosed and grazing by cattle has been re-introduced by the National 

Trust in order to restore species diversity in the dune vegetation (S.Crummay, Cornwall C. C., 

pers. com.). 
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A further management strategy that possibly contributes to the unevenness of visitor impact on the 

two parts of this dune is that imposed by the very stringent life-guard protocol observed during the 

summer vacation period. Bathers and surfers are actively encouraged to stay within the safe 

bathing flags and these are located at the southern end of the beach. Consequently visitors tend to 

confine themselves to this southern section and in so doing, tread the shortest path to this part of 

the beach through the dunes. 

12.3.GROUND CONTROL 

At the time of the survey, real time differential collection was not an option because although 

several service providers, including Racal Landstar and Fugro Omnistar, were operational they 

were beyond the budget of this research. Instead, a subscription was made to Focus FM (C & 

MT), a Real Time Correction Mode (RTCM) service provider, transmitting correction data 

between 87. 5 and 108 Mhz, alongside Classic FM, a commercial radio station. Unfortunately, the 

service was newly commissioned and the dune site at Holywell Bay was out of range of the 

nearest transmitter. Since then relay transmitters have been installed and coverage is much 

improved. 

Post processed differential positioning was used to collect ground control data using 2 Magellan 

ProMark X CP GPS receivers. Two flight lines each of 5 individual frames were sufficient for 

coverage of the dune system. The photographs were rnosaiced rapidly in Adobe Photoshop and 

the uncontrolled mosaic, overlaid with a clear plastic sheet, was taken into the field to assist with 

the ground control survey. Points were chosen on the ground that were clearly visible in the 

image and these were marked on the plastic overlay. In addition, detailed diagrams were hand 

drawn to give descriptions of each point to assist with identification of the points in the images at 

the time of relative and absolute orientation. The points were well dispersed throughout the area 

ensuring that each model (stereo pair) bad at least 6 control points in common, for rectification. 

The ground control was collected in UTM projection, referenced to the WGS84 datum. The base 
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station was set up on top of a rocky outcrop on the beach with an unobstructed view of the satellite 

constellation. This is shown in Plate 12.2 

Plate 12.2 Setting up the GPS base station on a prominent outcrop with an open view of the sky 

Between 100 and 700 data points were collected at one second intervals at each of the remote 

stations, the number of points depending on the dwell time at the remote station and on the 

satellite sets used . The location of the remote points and the base station (marked with a yellow 

spot) is shown in Plate 12.3.  

The data was post processed using Magellan proprietaiy software. The statistics report provides 

accuracy assessment of the differential correction and from this the mean standard deviation was 

calculated and this result is recorded in Table 12. 1 .  

mean sd in x (m) mean sd in y (m) mean sd in z (m) 

2.74 1 . 5 1 2.28 

Table 12. 1 The mean standard deviation for differential correction of the GCPs 
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Plate 12.3 The location of the GCPs and the base station at Holywell Bay 

12.4.PHOTOGRAMMETRIC PROCESSING 

12.4.1.Data input 

The images from both flight lines were inspected for overlaps and at this stage line 2 was found to 

have incomplete stereo cover. Line one was complete and was processed accordingly. The 5 

TIFF format images were imported to VirtuoZo and converted to 24 bit BIP (band interleaved by 

pixel) images. The header information is stored in ASCII format in a separate support file 

detailing the number of rows and columns, whether the file is greyscale or colour, if the image is 

metric or non-metric and the pixel size etc. The results of the camera calibration were input to the 

camera parameter file so that interior orientation of the images could be calculated. The ground 

control data was uploaded :from Excel to the GCP file to enable absolute orientation and elevation 

extraction 
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12.4.2.Biock and model setup 

The input and output parameters were specified during block and model setup as described in 

8.3.6. 1 .  The DEM interval was set to 2m and the contour interval was set to 5m. The output scale 

was specified at 1 :5 000. Of the 4 models (stereo pairs) only three were required to provide 

orthorectified photographs of the entire dune front. Model number 1 is at the northern end of the 

system and includes the golf course and pasture to the north-east of the dunes, as well as the 

northern part of the dunes. Model number 2 is the central model and is mostly dune. Model 

number 3 is at the southern end of the system and includes the southern part of the dune, part of 

the town and cliff-top grassland above and to the south of the dune system. 

12.4.3. Interior, relative and absolute orientations 

Inerior, relative and absolute orientations were run on each of the three models. During relative 

orientation VirtuoZo generates common points identifiable on the overlapping area of both images 

in the model. These are measured relative to the fiducial marks in the camera mask and are 

influenced by such factors as the type of terrain, the amount of vegetation in the image and the 

texture of the surface. The beach area presents difficulties because it is relatively featureless and 

textureless. The sea presents a different problem in that it is constantly moving so it is impossible 

for the software to generate sensible common points. Absolute orientation maps the model to real 

world coordinates and it is possible to optimise this calculation by viewing the control point 

location in stereo mode and repositioning if necessary, by incremental shifts of one fifth of a pixel. 

12.4.4. DEM I DTM extraction 

The image matching procedure calculates the statistics for a defined window around a given pixel 

in the first image. The second image is searched for the window that best matches the window in 

the first image and the difference in the location of the centre pixels in both windows is used to 

calculate the elevation at that point. The calculation is based on the projection of the pixel location 

of the centre of each match window onto the ground coordinate system. The image match 

parameters were set to 5 as this gave a window large enough to produce a reasonable result in a 
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relatively short time. According to Gooch et al., ( 1999) the right balance has to be struck between 

allowing the system to find sufficient matched points and allowing it to create 'false fixes' .  A 

large window size increases the chance of success but also increases the chance of false fixes. 

Furthermore, it has the effect of generalising the terrain and potentially lowers the accuracy (peaks 

are lowered and troughs are raised). A large window is usually needed where the image content is 

low, and it may be for this reason that the software struggled to give a good result on the beach. 

The match parameters have a direct influence on the number of points generated in the DTM. 

Before the DTM I DEM were created the image match was edited to remove spurious information 

such as spikes and troughs around the edges caused by edge effects. Editing allows the elevation 

'postings' superimposed on a triangulated stereo pair to be changed using the stereo view. It is 

possible to edit individual postings or groups of postings by enclosing those areas where there are 

obvious anomalies, within a polygon. Anomalies are then removed by smoothing or interpolation 

between chosen points In these images, spikes in the sea were removed by applying a constant 

level of zero elevation to all areas below the tidemark and small troughs and spikes on the beach 

were removed by smoothing. Each entire model was smoothed once using the gentle smooth 

facility to improve the representation of the shape of the landscape. Giles and Franklin (1 996) 

demonstrated significant improvements in slope angle, incidence angle and curvature on 

smoothing, and that the accuracy of the elevation of control points did not suffer substantially 

during the process. 

After match editing the DTM was created. During this process a height is calculated for each of 

the match points in the image (on an irregular grid). The DEM is generated from the DTM on a 

regular grid. The grid spacing was specified at 5m intervals. The grid file can be used to produce 

perspective and isometric plots and can be used to provide cross sections and profiles of the study 

area. An example of perspective and isometric plots will be give in sections 12 .4.6 and an 

example of the structure of the DEM is shown in section Table 12.3. The contour file generated 

from the DEM is discussed in 12.4.5. 
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12.4.5. Contoured ortbopboto 

Contour plots can give a reasonable representation of the general site morphology and can indicate 

steep slopes and breaks of slope. The orthophotographs and contour image files were created for 

each model and the contoured orthophotographs of Models 1 ,  2 and 3 are shown in Plates 12.4 a, 

12 .5  and 12.6 respectively. The orthophotos are orientated north with a contour interval at Sm. 

These photographs have been clipped in the interest of decreasing the file size for display 

purposes, but still contain the dune which is the most important feature in this investigation. It is 

important to note that because these images have been clipped they are not displayed at the same 

scale. Plates 1 2.4b and 12.4c show detailed views of the othophoto of Model I .  These two 

extracts show contrasting areas in the contour image, although the maximum and minimum 

elevations are similar in both extracts, the morphology of the contour plots is markedly different 

reflecting the different types of landscape in the two plots. 

Plate 12.4a Contoured orthophoto created from Model l 
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Plate 12.4b Detail of the dune front (left), and the headland north of the dune system (right) 

Plate 12.5 Contoured orthophoto created from Model 2 
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Plate 12.6 Contoured orthophoto created from model number 3 

12.4.6.Perspective views 

Once the orthophotos have been created it is possible to display them from different perspectives 

using the drape function. This allows the orthophoto to be draped over the elevation model to give 

a 3D representation in 2D space. Displaying the images in this way assists the user with further 

verification of the DEM such that any obvious anomalies that were missed during the match edit 

process on the planforrn stereo view become obvious when viewed from a different perspective. 

Perspective views also assist with photo-interpretation giving the user a better understanding of 

the morphology of the site, and give a different perspective on the spatial relationships of 

geomorphic features. For example digitising drainage networks and crest lines and assessing slope 

aspect can be significantly improved with reference to the perspective view (Welch & Remillard 

1 996). Plate 12 .7a shows an orthophoto draped over the DEM (top) and the isometric view of the 

DEM grid (bottom) of Model 2 looking east from the beach. Plates 12.7 b and c show different 

perspective views of the same orthophoto drape. 
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Plate 12. 7a Dmped orthophoto and isometric view of the DEM grid looking east 

Plate 12. 7b Perspective view of a subset of Model 2 looking north 
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Plate 12. 7c Perspective view of Model 2 looking north west 

These particular perspective views have been included to enable visualisation in the form and 

spatial relationships of the blowouts within this study site. As can be seen, the blowouts are 

located within or on the margins of a deflation corridor leading inland from the beach. For the 

dune manager, line of sight information enhances decision making on such entities as placement 

and replacement of fences and paths etc. For example, routing a path through the large relict 

blowout revealed in (particularly) Plate 12. 7c would certainly be a imprudent decision, risking 

reactivation of this feature. 

The types of information in particular that can be assessed from these photographs is related to the 

nature of colour infrared imagery and the spectral response of vegetation. Checking the 

relationship between spatial location and vegetation type provides further evidence to support the 

verification of the DEM. This facility is not available to the same extent using either colour or 

greyscale photography. At this particular site the vegetation structure is relatively homogeneous 

but there are a few patches of shrubby vegetation which appear on the high ground This point is 

worthy of mention, because although it is not very well demonstrated here it is potentially very 
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useful in dunescapes and other landscapes where there is greater differentiation between foredune 

and hind-dune species. 

12.4. 7. Orthophotomosaic 

An orthophotomosaic was created in VirtuoZo from the individual orthorectified images by 

merging the DEMs from each model forming a single continuous image. Such an orthorectified 

mosaic may be used as a map. Plate 12 .8  is the contoured orthophoto map of the dune site at 

Holywell Bay. Unfortunately the mosaic is incomplete due to insufficient forward overlap in the 

second flight line. Plates 12 .9  a, b and c are perspective views of the mosaic. 

12.4.8. Quality assurance report 

The Quality Assurance (QA) report file contains a list of the results of all the processes that have 

been performed and provides the user with a means of checking the quality of the georeferencing 

of the photographs and the output products such as the DEM, DTM and contoured 

orthophotograph. A summary of the Q A data for the absolute orientation of each of the models is 

provided in Table 12.2 .  The full QA reports are provided Appendix 2 .  

Absolute orientation residual values RMS (m) 

mx my mxy mz 

Model l 1 .4395 1 . 1742 1 .8577 1 . 90 

Model 2 2. 1067 1 .6767 2.6925 1 . 55 1 1 

Model 3 0.7714 1 .099 1 1 .3427 6.6092 

Table 12 .2 Absolute orientation residual values for models 1,2 and 3 

The mean xy values for models 1 ,  2 and 3 are mostly within or close to those stated for the 

National mapping accuracy standards (NMAS) that requires well defined horizontal features to be 

within ±0.3mm of their correct position at the 68% confidence level at the map scale. For this 
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Plate 1 2 .8  Contoured orthophoto mosaic of the dune front at Holywel l  Bay 
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Plate 1 2. 9a Perspective view of the dune system at Holywell  Bay looking east 
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Plate 1 2 . 9b Perspective view of the dune system at Holywel l  Bay looking north west 
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Plate 1 2 .9c Perspective view of the dune system at Holywell Bay looking south east 
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imagery, captured with a nominal 40cm ground pixel, the best map scale achievable at O. l mm 

output is around 1 :4000. The models were processed at 1 :5000 and this would equate to a NMAS 

mapping accuracy standard requirement of 1 .5  m. This result also shows that if the imagery was 

truly captured with a ground sampled distance of 40cm the error is in the region of between 1 .  9 

and 5 .25 pixels in x, 2.7 and 4 . 1  pixels in y and 4 and 1 6  pixels in z dimensions. The results are 

less accurate than was anticipated but there could be several reasons for this. First, the 

photography was not collected for photogrammetric purposes but for reconnaissance, and the 

relative orientations between the photographs in the models was greater than is ideal. Second, 

softcopy photogrammetry has been designed for black and white and true colour photography, and 

these images are CIR The CIR photographs captured using the ADPS have been shown by 

Thompson (pers. com.)(6.3 .6, Table 6.4) to be of inferior resolution (by approximately 20%) as 

compared with the true colour imagery so the pixel resolution would be degraded to 

approximately 50cm resolution and the accuracy would then be within 1 . 5  to 4.2 pixels in x, 2 . 1  -

3 . 3  pixels in y and 3 . 1 to 1 3  pixels in Z. Third, the errors are compared against the NMAS 

requirement; the RMS values are given at the 95% confidence level and the NMAS requirement 

is stated for the 68% confidence level. The elevation values at 3 . 1  to 13  pixels are well beyond 

those quoted by Welch ( l989) for vertical accuracies equivalent to 0.5 to 1 pixel, but this was for 

scanned aerial film photography and processed by an experienced photogrammetrist. 

Regardless of the shortcomings of the photogramrnetric processing here, model 2 was further 

processed to extract higher resolution (2m) elevation data in the DEM so that measurements of 

volume could be made. Reprocessing the data does not improve the accuracy (mean xy 2.7m, 

mean z l .Sm) but produces elevations at a higher frequency. The errors inherent in the data were 

not felt to be a problem since they were not to be compared with data from any other source as the 

intention is to use one data set, edited to simulate several different scenarios. In this way, the 

relative errors between the data sets is zero. 
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12.5.DETERMINATION OF BLOWOUT VOLUME

12.5.1. Introduction 

Volumetric analysis is an important technique in studies involving geomorphological 

considerations such as sediment budgets, landform analysis etc. Indicators of the condition of sand 

dune systems are often expressed by vegetation changes and morphological changes, and many 

are readily identified using digital imagery. For example, blowout development can be 

symptomatic of a dune system in danger, hence the extent and distribution of blowouts is of great 

interest to the manager. In Chapter 1 1, it was established that it is possible to track the progress of 

blowouts in the dune, in terms of their planimetric area, using georeferenced data from different 

epochs of digital photographs. Contoured orthophotographs provide information regarding the 

morphology of a site. and maps produced from two or more different epochs should provide 

contour plots that show changes in morphology where they have occurred, but it is difficult to 

quantify the changes objectively by sight. One of the greatest advantages of using a OEM is the 

possibility of calculating volumes of materials that have been added to, lost from or redistributed 

within the system for areas contained within the file. Using orthorectified digital imagery and a 

DEM it should be possible to extract volumetric data, and with a time series. differences in 

volume might be calculated by subtracting the grid from one epoch from that of another epoch. 

The result is a grid surface that shows areas of net change. Areas that return a zero value show 

either no change or areas where outputs are equal to inputs over the time series of the elevation 

models. 

12.5.2.Pbotogrammetric processing at a bigber resolution 

To investigate whether these data are useful for producing measurements of volume, Model 2 was 

revisited and processed at a higher resolution, to extract a OEM with 2m grid spacing and 2m 

contour interval named DEM(O ). To economise on time and disc space only that part of the model 

containing the dune system was processed and this higher resolution orthophoto is shown in Plate 

12 . 10. 
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Plate 12 . 10 Contoured orthophoto with 2m contour interval of a subset of Model 2. 

12.5.3. Calculating the volume of the blowouts 

Since a time series of digital data was not available, a DEM of change could not be calculated To 

simulate this, a crude estimate of the pre-erosion surface was constructed using a planar 

interpolation to provide a datum with which the measurements of the contemporaneous surface 

could be compared. Figure 1 2.2 is a cross section of a stylised blowout with the estimated pre-

erosion surface marked with a dotted line. 

pr�osion surfuce - / 
.. ·· 

Figure 1 2.2 Cross section of a blowout in the dune with estimated pre-erosion surface 

227 



Three discrete blowouts (blowout l ,  blowout 2 and blowout 3) were selected for the investigation 

as marked on Figure 12 .4. and these were processed in a series of steps as shown in Figure 1 2.3 ,  to 

extract the necessary information. 

create DEM 0 with 2m grid, calculate volume of DEM, create orthophoto 

delineate blowout 2 

delineate blowout 3 

Figure 12 .3  Workflow for calculation of blowout volumes using DEM of difference 
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Figure 1 2.4 Orthophoto drape showing selected blowouts 

12.5. 3. 1. Editing the DEM 

To create the estimated pre-erosion SUiface of blowout 1 ,  the orthophoto created from DEM (0) 

was opened and the match edit facility was used to delineate the rim of the blowout in stereo 

mode. The elevation postings within the delineated polygon were selected and then edited by 

interpolation, to produce a planar surface. A new OEM was created, named DEM ( 1 ). The 

process was repeated for blowouts 2 and 3 and the results were saved as OEM (2) and DEM (3) so 

that DEM (2) contained edited SUifaces for blowouts 1 and 2, and DEM (3) contained edited 

surfaces for all three blowouts. 

The OEM of the unedited model (DEM 0) was exported to excel. The volume of the entire model 

was calculated using Simpson's rule (Appendix 3) to find the area under the curve for each row of 

the DEM The volume was then calculated by multiplication of this area by the length of the side 

of the DEM grid, in this case 2m. The procedure was repeated for OEM ( 1 ). The volume of 

DEM ( 1 )  was subtracted from the volume of DEM (0) to give the DEM of difference. Since the 

only difference between the two DEMs was the reconstructed surface across the blowout, the 

result is the volume of the eroded mass (or the volume occupied by the blowout). The whole 
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procedure was repeated for DEM 2 (which contained blowouts 1 and 2), and DEM 3 (which 

contained blowouts 1,2 and 3).  A small extract of the DEM (0) is shown in Table 12 .3 .  

346950 5584194 0 2 2 564 233 

-32 -28 - 1 3  1 0  2 1  20 1 3  3 -5 -13 
-21 -25 -2 1 - 1 4  - 1 2  - 1 6  -24 -29 -27 -17 I 25 63 89 96 9 1  77 59 43 32 
27 25 2 1  1 5  1 0  1 3  1 9  3 5  47 so so 47 so 5 5  6 1  6 8  76 84 87 9 1  
96 1 0 1  1 0 8  1 1 4  1 1 9 1 24 128 134 140 1 43 
1 43 144 145 149 1 5 2  I S !  148 143 138 133 
1 29 1 25 1 2 1  1 1 7 1 1 2  1 0 8  105 104 103 1 04 
104 1 1 6 1 23 1 23 1 2 1  120 1 17 1 1 4  1 1 1  108 
108 1 1 4 125 134 139 1 39 1 3 8  137 136 134 
134 138 141 141  142 1 5 1  1 57 1 56 1 55 1 6 1  
1 6 8  170 169 170 170 172 176 178 176 176 
223 225 225 224 223 226 232 236 234 232 
228 226 226 224 223 222 226 23 1 232 232 
232 230 231 233 234 233 232 234 241 247 
254 258 266 276 284 286 284 287 292 296 
304 3 1 6 327 328 327 328 332 335 336 342 
350 354 356 362 367 372 375 379 389 395 
393 390 388 391 397 400 400 399 399 398 
396 392 387 384 381 380 379 379 379 382 
385 387 389 394 402 401 405 412 421 426 

427 427 435 446 447 448 447 448 446 45 1 

460 469 478 480 478 476 476 476 476 476 

476 476 476 476 476 476 476 476 476 476 

476 476 476 476 476 476 -99999 -99999 -99999 -99999 

-99999 -99999 -99999 -99999 

Table 12 .3  Extract ofDEM (0) 

The extract of DEM (0) is the native ASCII file produced in VirtuoZo. The first line of the file is 

the descriptor giving the UTM x and y coordinates of the bottom left cell of the DEM. The value 

0 refers to the offset height, and in this case it is zero. The DEM interval in x and y are denoted 

by the numbers 2, and 564 and 233 refer to the number of rows and columns respectively. The 

values in all of the other lines are the elevation values expressed in decimetres enabling efficient 

storage of the data, since a decimal point does not need to be stored in every entry in the grid but 

in effect allows the value to one decimal place to be recorded. This is a very small DEM but it 

occupies 1 Mb  of disk space and with a further 1 3 1412 bytes of data (the number of bytes occupied 

by the total number of decimal points required) the file size would increase to 1 . 1 3Mb. (For 

DEMs created from 1 :  10  000 large format aerial photographs, processed to give high resolution 
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DEMs the file sizes can typically be in the order of 6Mb.) The value -99999 refers to areas 

where there is no data, that is the black edge around the elevation model. 

To enable calculations from the data, the header (descriptor line) was stripped off and the file was 

reformatted so that it was readable in Excel. The UTM coordinates of each cell were then entered, 

and, because the DEM was read in from bottom to top (i.e the y values were in reverse order) the 

data set was sorted by y-coordinate value in descending order to invert the matrix. A small extract 

of the DEM in Excel is shown in table 1 2.4. 

REFERENCE DATA UTM30Eastings 

347580 347582 347584 347586 347586 347590 347592 347594 347596 347598 
UTM30Northings 5584494 0 0 0 0 0 29 24 20 1 6  17 

5584492 0 0 0 0 2 23 28 22 18 1 4  
5584490 0 0 18 15 21 31 30 28 24 16 
5584488 1 1  38 55 58 58 43 32 30 29 24 
5584486 73 76 65 60 59 49 33 32 31 31 
5584484 99 95 80 62 55 39 34 33 34 37 
5584482 1 1 2  98 54 4 12 38 33 34 38 40 
5584480 55 43 0 0 0 26 36 36 38 44 
5584478 0 0 0 0 0 23 32 35 40 47 
5584476 13 0 0 0 0 27 41 44 41 45 
5584474 6 4 9 7 6 14 34 41 44 43 
5584472 8 22 30 26 22 21 29 45 45 43 
5584470 1 6  34 36 35 32 31 49 50 47 45 

5584468 29 39 38 37 35 34 41 50 47 45 

5584466 37 41 40 39 38 28 18 24 35 47 

5584464 36 40 42 41 39 29 22 27 35 49 

5584462 39 40 44 43 41 40 42 44 49 51 

5584460 45 48 50 47 44 45 51 53 54 54 

5584458 54 56 56 54 57 57 56 56 56 56 

5584456 58 60 60 63 66 64 61 59 56 55 

5584454 61 61 62 67 69 68 67 64 59 57 

5584452 68 67 66 68 72 70 68 67 64 61 

5584450 72 70 70 71 72 71 69 68 67 65 

5584448 74 76 77 76 74 74 72 70 70 67 

5584446 77 83 83 81 78 75 73 72 7 1  69 

Table 1 2.4 Extract of DEM (0) reformatted in Excel and with UTM northings and eastings 

12.5.4. Results of the calculation of the volume of the blowouts 

A full description of the DEMs of difference are given in Appendix 4. Table 12.5 is an extract of 

the calculation to find the volume of blowouts I and 2 using the results of the DEM of difference 

between DEM2 and DEMl.  
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S/3 F+l Even Odd Area_UCJM"2) VolumeJM"3) 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 
0.67 0 4 -4 1 1 
0.67 0 60 56 23 47 
0.67 0 73 8 1  30 61 
0.67 0 41  42 1 7  3 3  
0.67 0 -1 4  -1 4  -6 - 1 1  
0.67 0 -1 1 2 -1 1 6  -45 -91 
0.67 0 -1 82 -184 -73 -1 46 
0.67 0 -225 -222 -90 -1 79 
0.67 0 -2 1 5  -208 -85 -1 70 
0.67 0 -220 -230 -89 -1 79 
0.67 0 -279 -281 -1 1 2  -224 
0.67 0 -3 1 7  -319 -1 27 -254 
0.67 0 -295 -299 -1 19 -237 
0.67 0 -272 -273 -1 09  -2 1 8  
0.67 0 -225 -229 -91 -1 8 1  
0.67 0 - 1 36 -143 -55 -1 1 1  
0.67 0 -62 -68 -26 -51 
0.67 0 20 2 1  8 1 6  
0.67 0 35 36 14 28 
0.67 0 43 43 1 7  34 
0.67 0 42 35 16 32 
0.67 0 2 0 1 1 
0.67 0 0 0 0 0 
0.67 0 0 0 0 0 

0.67 0 0 0 0 0 

0.67 0 -2 -2 - 1  -2 

0.67 0 25 29 1 1  2 1  

0.67 0 51 55 21 42 

0.67 0 18 27 8 1 7  

0.67 0 -29 -24 - 1 1  -22 
0.67 0 -52 -59 -22 -43 
0.67 0 -59 -63 -24 -48 
0.67 0 -96 -100 -39 -78 

0.67 0 -1 1 0 -1 1 2  -44 -89 
0.67 0 -1 2 1  -122 -49 -97 

0.67 0 - 1 1 0 - 1 1 9  -45 -90 
0.67 0 - 102 -101 -4 1  -81 

0.67 0 -99 -91 -39 -77 

0.67 0 -105 -103 -42 -83 
0.67 0 -84 -88 -34 -68 
0.67 0 -24 -28 -1 0  -20 
0.67 0 5 8 2 5 

0.67 0 22 1 9  8 1 7  

0.67 0 30 26 1 1  23 

0.67 0 27 38 12 25 

0.67 0 1 3 1 1 

0 .67 0 0 0 0 0 

0.67 0 0 0 0 0 

Table 12.5 Calculation of the volume of Blowouts 1 and 2 from the DEM of difference. 

This table shows the structure of spreadsheet for the calculations of 6 1  rows of data and 1 59 

columns. This represents an area on the ground of 3 8796 m2 or 3 .87 ha and contains the DEM of 

difference for the blowouts signified by an interger in all but the first column (S/3) in the table. 

Null values represent no change and therefore the 0 either side of the group of intergers represents 
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the rim of the blowout. Each row in the table relates to one line of the DEM of difference and is I 

strip for Simpson's calculation of the area under a curve. 

The results of the volume calculations are summarised in Table 1 2.6. The estimated mass of sand 

is also given, assuming a bulk density of 1 .8 tm-3 (Powrie, 1 997). 

Total vol (mj) Total mass (kg) 

Blowout I 1798 3237 1 20 

Blowout 2 649 1 168800 

Blowout 3 1471  2648640 

Table 1 2.6 The estimated mass and volume of material eroded from blowouts 1 ,  2 and 3 

12.5.5. Estimation of the error 

These results of the volume calculations appear to give a reasonable representation of the actual 

geomorphic features on the ground but the volumes calculated are only as accurate as the least 

accurate element of the data permits, and this DEM has a vertical accuracy of ±1 .5m. For the 

purpose of this investigation the errors in absolute position of the data in terms of the absolute 

orientation residuals and the GPS derived control data are not considered, nor is the GPS error in 

z. This is because the investigation is using data with a relative positional error of zero. To 

understand the effect that the vertical error might have, the volumes were recalculated with all 

DEM values adjusted to -1 .5m of the DEM of difference value. This gave the maximum error 

value (values in the DEM of difference are -ve because the calculation was made with reference 

to the reconstructed surface). The recalculated values for volume and mass are recorded in Table 

12 .7. 
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BLOWOUT I BLOWOUT 2 BLOWOUT 3 

Volume (mj) 1 798 649 147 1 

Volume max (mj) 2034 769 1662 

Volume min (mj) 1568 529 1 280 

Difference ± (m3) 236 120 1 9 1  

Table 1 2 . 7  The impact of the elevation accuracy on volume calculation 

An elevation accuracy of ± I .  5 metres results in an error band of ± 13% of the estimated volume 

of these relatively small blowouts. 

12.6. SUMMARY 

The results of this investigation have shown how digital small format colour infrared photography 

can be used to produce orthophoto mosaics. ln addition, it has been possible to use the elevation 

data extracted from a stereo model to calculate the volumes of three small blowouts. The results 

were less accurate than had been anticipated but there are several reasons why this might be so. If 

the accuracy of the results are acceptable then these techniques could be used to provide very high 

density data for numerous epochs of photography which could then be used to map areas of 

negative, positive and negligible elevation change. With additional data such as the elevations of 

the substrate, such calculations of volume could be used to estimate the sediment volume of the 

entire site. 

The most likely source of error was probably due to the fact that the photography was actually 

collected for reconnaissence purposes without due consideration for photogrammetric 

requirements. The photography was captured in fairly turbulent conditions and this in itself led to 

scalar changes between (and probably within) images, as well as tilt displacements. Capturing the 
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photography with photogrammetric processing in mind would probably have yielded better 

results. In addition the data was captured in CIR mode where the effects of slight defocussing of 

NIR wavelengths and effects of the CF A add to the difficulties. The next most important 

element lay in the collection of ground control. One of the difficulties encountered was in fmding 

a reasonable collection of ground control points that were relatively stable across the site and 

easily recognised on both photographs in the model. In the period since the field work took place, 

real time differential GPS became available and this would have significantly increased the 

number of control points that could have been collected in one episode. 

The products of this investigation show that the methodolgy used and the data captured by the 

ADPS are robust and that with an improvement in the accuracy of the primary data it could 

provide a very useful tool for the dune manager. 
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CHAPTER 13 

SUMMARY 

13.1 .  INTRODUCTION 

Conclusions drawn from the individual case studies that comprise this study are already discussed 

in the relevant chapters. It would, however, be useful to draw the conclusions from the individual 

parts together in a brief synthesis to give an overview of the major findings of the study. In 

addition this gives the opportunity to evaluate both the data and the methodology adopted as the 

two are inextricably linked in the context of this research. 

The need for a robust method of data collection for coastal mapping has been well established, and 

where time and money are no object traditional film based aerial photography and 

photogrammetry would be the ideal choice. Whilst coastal managers may sometimes have access 

to photographs from regional surveys, they almost certainly do not have sufficient funding to 

commission surveys at a high enough frequency to map the changes of interest. Using archive 

aerial photography is often a compromise because of its scale, spectral properties and its coverage. 

In additiotl because of the intricacies of the changes at the coastal zone operating at a variety of 

different spatial and temporal scales, standard mapping products are unlikely to answer all of the 

needs of the coastal manager. A pragmatic approach to aerial survey is needed that can provide 

imagery which can satisfY as many as possible of the conditions dictated by the complexity of the 

coastal zone. This study has investigated a number of issues associated with the use of digital 

aerial photography for sand dune management including the methodologies for both capture and 

analysis of the imagery and the main conclusions are set out below. 
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13.2. THE MAIN CONCLUSIONS 

13.2.1. Measurement of dune recession at De d' Oleron 

Measurement of retreat at the coastal dunes (particularly in developed areas) is of prime 

importance for a number of reasons, including, scientific study, the determination of safe 

construction setback lines and for management decisions regarding future land use and existing 

property in the dune hinterland 

The dune site at lie d' Oleron is characterised by retreat of the dune front as depicted in maps 

provided by the ONF. These maps were produced from ground survey techniques which 

necessarily involve deployment of personnel in the field The CIR imagery of this site provided 

an opportunity for assessing the usefulness of the ADPS in mapping the changes remotely. Apart 

from a very small amount of accretion that occurred between 1996 and 1997 in the more northerly 

part of the study site, the results of this investigation showed that erosion occurred along the entire 

length of the dune front between 1996 and 1 997 with up to 28. 1 2  m of erosion at the southern end 

of the region of interest. Between 1 997 and 1999 the maximum erosion was in the region of 48 m 

at the southern end of the site. The RMS errors for registration of the imagery were just above 1m 

( 1 . 12, x and 1 .04, y) for the 1 996 - 1 997 match and a little higher ( 1 .26, x and 1 .76, y) for the 

1 997 - 1 999 match. The errors are well below many of the sampled data values recorded. One of 

the advantages of using multitemporal rectified photography to generate digital maps is that the 

measurements of retreat can be continuous along the entire length of the region of interest giving 

a much clearer picture of the spatial dimension of the changes, unlike field methods of 

measurement that involve measurement at discrete intervals. Indeed the detailed plots of change 

in the position of the cliff crest line immediately revealed that the greatest degree of retreat 

occurred at the distal end of the system, with just under 60 m measured during the three year 

period. 
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13.2.2. Redistribution of sediment at Dossen 

The site at Dossen is patticularly suited to mapping changes in the spatial and temporal 

distributions of sediment because of the distinct physical character of the site. The colour infrared 

photography exhibits a clear difference between the wet and dry sediment and this is a very useful 

phenomenon because the rapid drainage and drying out of elevated sand features at low tide gives 

a ready appreciation of the relief of the beach sediment. The images infer processes that are 

active, for example erosion and deposition along the dune front, but they also suggest other 

processes that could be investigated, such as the progressive movement of sand lobes towards the 

south east, and the redistribution of sand onto the dune surface. 

The changes occurring at the dune front at this site were more complex than those at lie d'Oleron 

because they were characterised by both erosion and accretion that varied in both extent and 

distribution between epochs. Over the course of the entire study, the whole system suffered net 

erosion of some 5386 m2 representing 0.4% of the entire dune system. Most of this erosion (96%)

occurred in the central zone with 5 1 94 m2 lost. The fate of the sand eroded from the central section 

is of considerable interest given the large surface area liberated from the sediment sink of the 

dune. The redistribution of sediment on the beach and on the dunes suggest that the large amounts 

of sand available for this redistribution from beach to dune has been enabled by a particular factor, 

possibly sand mobilised by the erosion of the central zone of the dune, which was then 

redistributed to the southern zone by aeolian transport and longshore drift, providing further 

illustration of the dynamic relationship between the beach and the dune. 

13.2.3. Measurement of surface changes at lle de Noirmoutier 

The investigation at this site centred on the measurement of blowouts in the badly damaged dune 

front. A different technique for image analysis was used here to assess the progression of blowout 

enlargement. Bitemporal composite images were created allowing both images to be viewed 

simultaneously so that differences between any two epochs could be seen. These bitemporal 

images provide the dune manager with an excellent indicator of the location and rate of change 
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and of the processes occurring at the dune front. The value of this technique is the speed at which 

these images of difference can be produced, putting the information into the hands of the dune 

manager within a matter of hours of the photographs being captured. Mapping the changes 

revealed that over the three-year period between 1 996 and 1999 two of the three blowouts 

investigated had more or less doubled in area. In total, close to 3 400 square metres of dune 

vegetation have been destroyed by the advance of these very active deflation hollows. It is quite 

probable that large volumes of sand have been lost from the dune, since blowouts tend to deepen 

as they increase in surface area but without elevation data it is not possible to quantifY this and this 

remains a limitation of this method. 

Monitoring accretion is also important for the dune manager since accretion is the goal of many 

management strategies and conversely, natural accretion indicates areas where minimal 

management effort needs to be expended. In this case, accretion is almost certainly due to natural 

factors rather than management intervention but the physical expression of accretion would be the 

same regardless of the agent concerned. One of the difficulties in monitoring accretion over short 

time intervals is that the vegetation is usually neither vigorous nor abundant and so the signal 

received at the sensor is relatively poor. For this reason, the registration of the multitemporal 

images must be very accurate, otherwise the errors are likely to mask or exaggerate the change. 

The technique used in the previous section of this case study for monitoring large erosional 

features was not appropriate, but the problems were overcome by the simple expedient of 

inverting the images. Although this analysis would almost certainly have benefited from using 

higher resolution imagery the results obtained showed potential for this method. The types of 

analyses that have been used at this site are completely unavailable to the dune manager who only 

has access to prints. 

13.2.4. Measurement of volume at HolyweU Bay 

The previous three investigations provided image data that was rectified using 2D control because 

imagery was not available with enough forward overlap to enable parallax measurements between 
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the sequential images, nor was there adequate ground control data to allow a 3D correction. The 

results of this particular case study have shown how digital small format colour infrared 

photography can be used to produce orthophoto mosaics at I :5000 scale when stereo coverage and 

3D ground control is available. Photography at this scale is often used for coastal mapping and 

this in itself is a useful result in that it should be possible to compare archived photography with 

the new digital photography with the minimum of resampling in one or other of the photographs. 

In 1 3.2.3 it was mooted that blowouts tend to deepen as they increase in surface area but that 

without elevation data it is not possible to quantify this. In this case study the extraction of a 

DEM has allowed the calculation of the volumes of three small blowouts using a simulated pre 

erosion surface which appear to give a reasonable representation of the actual geomorphic features 

on the ground and with additional data such as the elevations of the substrate, such calculations of 

volume could be used to estimate the sediment volume of the entire site. 

lJ.J.EVALUATION OF THE METHODOLOGY AND THE DATA 

A critical appraisal of the data and of the methodology used to capture the data and to process it 

will serve to explain many of the errors that have been associated with this study. The single most 

important factor probably lies in the digital photographic data which was intrinsically of high 

quality but which was captured for quite a different purpose. This meant that the data was not 

ideally suited even to 2D rectification because the overlaps were sometimes small and the angles 

of relative orientation were relatively large. In additioa the data was collected with a series of 

different types of digital camera such that the areas covered on the ground in each epoch were 

different, and, even when the same camera was used for more than one epoch the camera was 

rotated through 90 degrees in one epoch relative to the other creating further difficulties for the 

rectification routines. There were good reasons for all of these inconsistencies in the data and they 

reflect the continuous changes that must accompany any research into the use of new technologies, 

where each new development and experience brings greater understanding of the equipment and 
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the techniques best suited to its deployment and exploitation. These difficulties with the primary 

data however can be turned to advantage, since if the methodologies used do produce acceptable 

results using less than ideal data then it is highly likely that much better results could be obtained 

using data captured for the purpose of use. In a sense this data mimics many 'real world' scenarios 

where the photography that is available in a long time series is of variable quality, captured at a 

variety of scales and spectral resolutions and without reliable ground control data. 

The methodology for data collection was improved with each mission so that although the data for 

this research was not ideat refinement of the methodology put forward here, has in the light of 

ex]>erience gained during these and other aerial survey missions, resulted in a processing chain 

that has proved to be very reliable. 

The availability of GPS data for ground control was limited especially for the French dune sites 

and this was due to the remoteness of the sites and the limited budget for the research. The 

accuracy of the GPS data for those sites where it was collected was not as high as might have been 

expected and this was very probably due to inexperience in the field. 

Some of the points of detai l  regarding the collection of ground control were not satisfied and this 

became apparent at the photograrrunetric processing stage of the work. For example, points were 

chosen at inappropriate positions such as on steeply sloping ground and on moving targets such as 

swaying long grass. The decisive factor for image matching is a point's identifiability on the 

digital photogrammetric workstation and there were several areas on the dunes that presented 

difficulties with respect to this. Areas on the beach and on bare sand are difficult for image 

matching because they are relatively tex1ureless. Areas that are constantly moving such as the sea 

and river are impossible to match. Improving the ground control would irrunediately allow a better 

rectification in all three dimensions and this would significantly improve the results of any 

measurements subsequently made from the photographs. 
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13.4.RECOMMENDATIONS FOR FUTURE RESEARCH 

In common with most research projects this study has thrown up as many questions as it has 

answered. This study has been a severe test for the ADPS, but the products have shown both the 

data and the methodology to be robust and that the dune manager with modest computing skills 

could very rapidly create informative maps. Overall, the outcome is a positive one and has 

provided a deal of information where none previously existed. Now that the current ADPS and 

modus operandi have reached maturity. a time series of bespoke data would enable an 

investigation into some of the issues raised but not answered here, such as monitoring the progress 

of sediment stores and investigating processes such as the growth and development of blowouts. 

With an improvement in the integrity of the primary data it could provide a very useful tool for the 

dune manager. In addition, the image analysis techniques could well unlock valuable data which 

have been otherwise inaccessible due to their being held in analogue format and therefore not able 

to be registered one to another. Dune managers have expressed great interest in the system and its 

products and now that many of the issues have been investigated it is quite possible that this could 

become a well used resource for the wider coastal and indeed environmental community. 

Further work could be taken along several different lines of enquiry such as comparison of the 

results achieved here with those from conventional aerial survey and I or the integration with 

archived film data. In each of the case studies the reasons put forward for the processes at work 

were speculative as there was no supporting data collected. Accessing data such as storm 

magnitude and frequency, tidal range and coincidence of high tide with storm activity and wind 

speed and direction data would add interesting dimensions to the results. 

This type of imagery lends itself to integration with other types of digital data in a Geographic 

Information System (GIS) and this is a powerful tool for planning and management. A GIS 

provides continuity in dissemination of information between personnel on the inter and intra 

organisation levels. The maps that were created from the rectified images in this study were useful 
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for showing at a glance where the changes had occurred, and from them it was possible to measure 

features on the ground but integration with other data regarding, for example, ecological data, the 

population pressure at the site, tourist facilities, road access and parking etc. could provide the 

manager with comprehensive data base of information that could be readily retrieved and 

analysed. 

In the near future, the ADPS will incorporate a new camera with a larger array size and faster 

download time and this will enable the capture of stereo photography at a higher resolution. This 

in turn should enable the production of elevation data and maps with higher accuracy. 

These techniques need not be restricted to the management of sand dunes or indeed the coastal 

zone in general, but could be applicable in many environmental resource management and 

mapping situations. 
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PROTOCOLE 
APPENDIX 1 

Pour la carte 1: 

Mesure de la variation du trait de cote a angle droit a partir de poteaux alignes et distants: 
- de 500 m chacun pour les points 0 et 0.5 .  
- de 1 00 m chacun pour les  points -0. 1 a D. 
Orientation par rapport au nord pour les points 0.5 a Al: 354 Gr. 
Orientation par rapport au nord pour les points A2 a D: 54 Gr. 
La mesure s ' effectue tous les ans lors de la deuxieme semaine de septembre. 

Polll' ]a carte 2: 

Mesure de la variation du trait de cote a angle droit a partir de poteau.x alignes et distants de 500 m chacun 
Orientation par rapport au nord pour les points 0.5 a 2: 3 84 Gr. 
Orientation par rapport au nord pour les points 2 a 4: 393 Gr. 
La mesure s 'effectue tous les ans lors de la deuxieme semaine de septembre. 

Polll' Ja cane 3: 

Mesure de la variation du trait de cote a angle droit a partir de poteaux alignes et distants de 500 m chacun 
Orientation par rapport au nord pour les points 4.5 a 5 . 5 :  393 Gr. 
Orientation par rapport au nord pour les points 5.5  a 7.5:  3 84 Gr. 
La mesure s' effectue tous les ans lors de la deuxieme semaine de septembre. 
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Tableau des distances repere - bord de mer par annee. 

annee pt 0.5 pt 0 pt -0. 1 pt -0.2 pt -0.3  pt A1 pt A2 pt B pt c pt D 
1 990 1 68 280 285 278 232 1 34 1 80 1 70 1 92 205 
1 992 1 55 258 260 250 2 1 5  1 28 1 66 1 62 1 92 1 98 
1 994 1 30 240 244 238 204 1 20 1 50 1 55 1 84 1 98 
1 995 80 1 78 1 78 1 76 1 53 95 1 08 1 45 1 72 1 84 
1 996 44 1 28 1 35 1 3 1  1 1 2 90 82 1 36 1 56 1 70 
1 997 37 1 28 1 35 1 3 1  1 1 2 62 55 1 1 0 1 44 1 70 
1 998 1 5  1 0 1  1 05 1 05 1 02 50 52 1 04 1 32 1 49 

an nee pt 1 pt 1 .5 pt 2 pt 2.5 pt 3 pt 3.5 pt 4 
1992 1 60 1 47 98 1 1 6 92 96 1 09 
1994 141  1 20 84 94 78 78 95 
1 995 1 24 1 09 72 84 70 70 79 
1996 1 1 0 1 00 60 68 62 57 65 
1 997 89 77 52 66 62 55 63 
1998 76 68 42 51 56 49 59 

an nee pt 4.5 pt 5 pt 5 .5  pt 6 pt 6.5 pt 7 pt 7.5 
1 996 84 1 05 1 33 1 05 91 83 94 
1 997 78 1 0 1  1 3 1  1 03 88 80 94 
1998 72 1 00 1 29 101  85 80 94 
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APPENDIX 2 

Virtuozo Processing Infonnation Report File 

Interior orientation infonnation: 
(/geotl /Holywell/f2_ l_fl_l . ste) 

.,.. __________________________________________________________ _ 

Left image ( /geotl/Holywellllmageslf2 _ I  ):

Principle Coord. [col X row) : 10 16.253 1530.002 
(xO X yO] : 0.000 0.000 

RMS: Mx. ""  0.000 My == 0.00 1 
Residual: point NO. dx dy 

I 0.000 0.001 
2 0.000 -0.00 1  
3 0.000 0.00 1 
4 0.000 -0.001 
4 0.000 -0.001 

Right image ( /geotl /Holywellllmageslfl_I  ): 

Principle Coord. [col X row] : 101 6.253 1530.002 
(xO X yO]: 0.000 0.000 

RMS: Mx. == 0.000 My == 0.00 1 
Residual: point NO. dx dy 

l 0. 000 0.00 1  
2 0.000 -0.00 1 
3 0.000 0.001 
4 0.000 -0.001 
4 0.000 -0.00 1 

relative orientation infonnation: 
(lgeotl/Holywelllf2 _ I  _fl_ I . ste) 

Relative orientation infonnation: 

Left rotation matrix: 
I 

I 
I 
I 
\ 

0. 97797698 
0 . 14675000 
-0. 1484 1200 

Right rotation matri.x: 
I 

I 
I 
I 

0. 97599202 
0. 14204700 
-0. 1651 100 1 

-0. 14508900 
0.989 1740 1 
0.02201 800 

-0. 14975600 
0. 98809803 
-0.035 15400 

0. 1500360 1 
0.00000000 
0. 98868 102 

0. 158 15200 
0.05903700 
0. 98564798 

\ 

I 
I 
I 
I 
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Right photo rotation angle (rad): 
Phi = -0. 15060499 
Omiga = 0.00000000 
Kappa = 0. 14728200 

Left photo rotation angle (rad): 
Phi = -0. 1 5909800 
Omiga = -0.05907 100 
Kappa = 0. 1427800 1 

Residual: point NO. dq 
I 0.001000 
2 0.004000 
3 -0.008000 
4 -0.005000 
5 0.007000 
6 0.002000 
7 0.004000 
8 0.002000 
9 -0.004000 
10 -0.006000 
l l  -0.004000 
12  -0.004000 
1 3  -0.003000 
1 4  -0.006000 
15  0.000000 
16  0.004000 
1 7  -0.002000 
1 8  0.002000 
1 9  0.008000 
20 -0.004000 
2 1  0.00 1000 
22 0.002000 
23  0.003000 
24 0.002000 
25 0.004000 
26 0.000000 
27 -0.004000 
28 0.007000 
2003 0.004000 

30 0.0 10000 
3 1  -0.001000 
3 2  0.00 1000 
33  0.007000 
34 -0.001000 
35  0.001000 

36 0.000000 

37 0.004000 

38 -0.005000 
39 0.006000 
40 -0.006000 
4 1  -0.002000 
42 0.000000 
43 -0.003000 
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1 0 1 5  -0.007000 
1010 0.005000 
l O l l 0.00 1000 
2001 0.003000 
2002 -0.006000 
2004 -0.001000 
2005 0.000000 
2006 0.009000 
2007 -0.024000 

RMS: Mq = 0.006000 

Absolute orientation information: 
(lgeotl/Holywell/f2 _ 1_ n _ 1 .ste) 

Absolute orientation information: 

Left rotation matrix: 
I 

I 0.04567809 -0.99895614 0.000344 14  

I 0.99820709 0.04563050 -0 .03873530 

I 0.038679 16 0.002 1 1288 0.99924946
\ 

Right rotation matrix: 
I 

I 0.05039242 -0.99715990 -0.05597 137 

I 0. 99849004 0.05 152829 -0.0 1903843 

I 0.02 1 86847 -0.05492746 0.99825084

\ 

Left station coordinates: 

\ 

I 
\ 
I 
I 

\ 

I 
I 
I 
I 

Xs = 347507.824 Ys = 5584570.453 Zs = 1 2 12.945 

Right station coordinates: 
Xs = 347568.493 Ys = 5584878.75 1 Zs = 1 272.905 

Left angle elements: 
Phi = -0.000344 Omiga = 0.038745 Kapa = 1 .525 1 16

Right angle elements: 
Phi = 0.0560 1 1 Omiga = 0.019040 Kapa = 1 .5 1 9236 

Residual: 

No. 
2003 
1015  
1010 
101 1
2001 

dX 
1 .07 14 1 1  

-0.46386 1 
-3.228061 
0.990182 
0.473661 

dY 
-0.270227 
1 .464538 
0. 143962

-2.369516 
- 1 .448706 

dZ 
0.705 1 88 
0.306966 
0.257767 

-2.064780 
2.655789 
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2002 0.857081 -0.309290 0.685659 
2004 2.029926 0.296933 0.373663 
2005 -0.72404 1 0.453232 2.2729 17 
2006 0.45833 1 0. 1 92827 - 1 .0361 06 
2007 - 1 .464628 1 .846246 

RMS: mx = 1 .439545 my = 1 . 1 74182 

-4. 1 57061 

mxy = 1 .857685 mz = 1 .  900 134  

Image matching infonnation: 
(lgeotl/Ho1ywell/f2 _1_ n _ 1 .ste) 

_______ Initial parameters ________ _ 

left image: rows =2473 cohunns = 1 288 
right image: rows =2473 columns = 1 288 

Match window width = 5 
Match window length = 5 
Searching range = 5 
Match grid X_ interval = 5 
Match grid Y _interval = 5 

MATCH BLOCK == 1 
MATCH_LEVEL == 3 
MA TCH_AREAS == 1 8 X 

1 62 : 0 0.0 % 
1 62 : 54 33 .3 % 
1 62 : 80 49.4 % 
162 : 1 03 63.6 % 
1 62 : 1 18 72 .8 % 
162 : 1 30 80.2 % 

162 : 1 36 84.0 % 
162 : 1 37 84.6 % 
162 : 1 40 86.4 % 

MA TCH_BLOCK -- 1 
MA TCH_LEVEL == 2 
MATCH_ AREAS == 54 X 

15 12 : 0 0.0 % 
1 5 1 2  : 580 38.4 % 
1 5 12 : 923 6 1 .0 % 
1 5 1 2 : 1 074 7 1 .0 % 
1 5 12 : 1 144 75.7 % 

9 

28 
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1 5 12 : 1 185 78.4 % 
1 5 12 : 1 223 80.9 % 
1 5 12 : 1 253 82.9 % 
1 5 12 : 1276 84.4 % 
1 5 1 2 : 1288 85 .2 % 
1 5 1 2  : 1294 85.6 % 
1 5 12 : 1302 86. 1 % 
1 5 1 2 : 1 3 1 1  86.7 % 

MATCH_BLOCK == I 
MATCH LEVEL == 1 
MATCH AREAS == 164 X 85 

13940 : 0 0.0 % 
13940 : 3790 27.2 % 
13940 : 5496 39.4 % 
13940 : 6384 45.8 % 
1 3940 : 6996 50.2 % 
13940 : 7468 53.6 % 
13940 : 7845 56.3 % 
13940 : 8 148 58.5 % 
13940 : 8384 60. 1 % 
13940 : 8557 6 1 .4 % 
13940 : 872 1 62.6 % 
13940 : 8843 63.4 % 
13940 : 8948 64.2 % 
13940 : 9044 64.9 % 
13940 : 9 1 1 9  65.4 % 
13940 : 9 174 65.8 % 
13940 : 92 18 66. 1 % 
13940 : 927 1 66.5 % 
13940 : 93 10 66.8 % 
13940 : 9352 67. 1 % 
13940 : 938 1  67.3 % 
13940 : 94 1 5  67.5 % 
13940 : 9441 67.7 % 
13940 : 946 1 67.9 % 
13940 : 9477 68.0 % 
13940 : 9497 68. 1 % 
1 3940 :  95 17 68.3 % 
13940 : 9534 68.4 % 
13940 : 9556 68.6 % 
13940 : 9574 68.7 % 
13940 : 9589 68.8 % 
13940 : 9600 68.9 % 
13940 : 96 14 69.0 % 
13940 : 9626 69. 1 % 
13940 : 9637 69. 1 % 
13940 : 9640 69.2 % 

MATCH_BLOCK == 1 
MATCH _LEVEL == 0 
MATCH _AREAS == 494 X 257 
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126958 : 0 0.0 % 
1 26958 : 1 5794 1 2.4 % 
126958 : 23686 1 8.7 % 
126958 : 29759 23.4 % 
126958 : 35422 27.9 % 
126958 : 40305 3 1 .7 % 
126958 : 44577 35. 1 % 
1 26958 : 48265 38.0 % 
126958 : 5 1259 40.4 % 
126958 : 53670 42.3 % 
1 26958 : 55761 43.9 % 
126958 : 57503 45.3 % 
126958 : 58926 46.4 % 
126958 : 60 1 12 47. 3 % 
1 26958 : 6 1096 48. 1 %  
1 26958 : 6 1 948 48.8 % 
1 26958 : 62665 49.4 % 
1 26958 : 63301 49.9 % 
126958 : 63868 50.3 % 
1 26958 : 6437 1  50.7 % 
126958 : 64783 5 1.0 % 
1 26958 : 65 175 5 1 . 3 % 
1 26958 : 65494 5 1 .6 % 
1 26958 : 65800 5 1 .8 % 
1 26958 : 66090 52. 1 % 
1 26958 : 663 1 8  52.2 % 
126958 : 66534 52.4 % 
1 26958 : 66745 52.6 % 
1 26958 : 66914 52.7 % 
1 26958 : 67095 52.8 % 
126958 : 67246 53.0 % 
126958 : 67390 53 . 1 % 
126958 : 675 1 5  53.2 % 
126958 : 67625 53.3 % 
1 26958 : 67739 53.4 % 

-----------------------------------------------------------

Residuals of Control Points from DEM: 
----------------------------------------------------------------

DEM fi1e: /geotl/Holywel1/f2 _1_ fl_l/product!f2 _1_ fl_ 1 .mde 
Control Point File: /geot1/Holywell!Holygcp 
____________ __________________________ ,.. _______________________ 

NO. X y z dZ 
1009 34772 1 . 3 15  5584646.493 23 .02 1 4.9 17  
1010 347745. 1 89 5584823. 580 36.063 1 .094 
1 0 1 1 347993.247 5584746.976 48.40 1 -0.729 
1 0 1 5  347894.877 5584507.708 34.609 0.673 
102 1  3477 14.779 5584526. 562 3 1 .896 -4.24 1 
2023 347808.000 558452 1 .000 42 .000 - 10.900 
200 1 3477 14.000 5584550.000 24.840 0.960 
2002 347740.500 5584545.000 24. 140 1 . 272 
2003 347789.500 5584525.500 28.277 1 .398 
2004 347762.000 5584537.000 25.940 0.860 
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2005 347653.000 5584566.000 
2006 347628.000 5584523.500 
2009 347954.000 5584534. 500 

1 1 . 3 I6 
9.838 

37.086 

Number of points = 
Mean value 
Absolute mean value= 
Mean square root = 

No. 
dZ <= 1 .0 : 

1 .0  < dZ <= 2.0 : 
2.0 < dZ <= 3 .0 : 
3.0 < dZ <= 4.0 : 
4.0 < dZ <= 5.0 : 
5.0 < dZ <= 6.0 : 
6.0 < dZ <= I O.O : 
10.0 < dZ <= 20.0 : 
20.0 < dZ <= IOO.O : 

1 3  
-O. I  

2 .3  
3 .7 

Percent 
5 38.5 

5 38.5 
0 0.0 
0 0.0 
2 1 5.4 
0 0.0 
0 0.0 
I 7.7 
0 0.0 

1 .284 
0.062 
1 . 9 I4 

-----------------------------------------------------------

VirtuoZo image file infomation (Ortho Image) : 
-------------------------------------------------------------

Image name: I geotl/HolywelVf2 _I_ fl_llproduct/f2 _1_ fl_l .  orl 
Dimensions [row X col] :  1037 X 2 157 
Color model: 24-bits Color Image 
X_ Dimension PixelSize: 0. 10000 mm 

Y _Dimension Pixel Size: O. I 0000 mm 

Geographic infomations: 
----------------------------------------------------------------

Image Scale: 
Rotate angle: 
X_ Ground PixelSize: 
Y _Ground Pixel Size: 

I : 5000 
0.00000000 Rad (0.00000 Deg) 
0.50000 
0.50000 

Bottom_ Left coordinate[ x,y] : 34 7028.000 5584498.000 
348 106.000 5584498.000 
347028.000 55850 16.000 
348 106.000 55850 16.000 

Bottom_Right coordinate[x,y] : 
Top_ Left coordinate [ x,y] : 
Top_Right coordinate[x,y] : 

VirtuoZo image file infomation (Contour Image): 

Image name: /geotl /Holywelllf2 _1_fl_ llproduct/f2 _1_fl_ l . cnt 
Dimensions [row X col] : I 037 X 2 1 57 
Color model: 8-bits GrayScale Image 
X Dimension PixelSize: 0. 10000 mm 

Y Dimension PixelSize: 0 . 1 0000 mm 

Geographic infomations: 
-------------------------------------------------------------

Image Scale: 
Rotate angle: 
X Ground PixelSize:
Y=Ground PixelSize:

I : 5000 
0.00000000 Rad (0.00000 Deg) 
0.50000 
0. 50000 
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Bottom_Left coordinate[x,y1 : 
Bottom_ Right coordinate[ x,y 1 :  
Top_Left coordinate(x,y1: 
Top_Right coordinate[x,y1 : 

347028.000 5584498.000 
348I 06.000 5584498.000 
347028.000 55850I6.000 
348 106.000 55850I 6.000 

-------------------------------------------... --------------------

VirtuoZo image file infomation (Ortho+Contour Image): 

Image name: 
Dimensions [row X col 1 :  

/geotl /HolywelVf2 _I_ fl_l /product/f2 _1_ fl_ l .orc 
1037 X 2 1 57 

Color model: 
X _Dimension Pixel Size: 
Y _Dimension Pixel Size: 

Geographic infomations: 

Image Scale: 
Rotate angle: 
X_ Ground Pixel Size: 
Y _Ground Pixel Size: 

24-bits Color Image 
0. 10000 mm 

0 . 1 0000 mm 

l : 5000 
0.00000000 Rad (0.00000 Deg) 
0.50000 
0.50000 

Bottom_Left coordinate[x,y] : 347028.000 5584498.000 
348 106.000 5584498.000 
347028.000 55850 16.000 
348 106.000 55850 16.000 

Bottom_ Right coordinate[ x,y] : 
Top_Left coordinate[x.,y] : 
Top_Right coordinate{x,y] : 

-----------------------------------------------------------

Virtuozo Processing Information Report File 

Interior orientation information: 
(/ geotl/HolyweiVD _I_ f2 _ I .  ste) 

-------------------------------------------------------------

Left image ( /geoti/Holywell/lrnages/f3 _ I  ) :  

Principle Coord. [col X row] : 
[xO X yO] :  0.000 

1 0 18.000 I530.000 
0.000 

RMS: Mx = 1 .000 My = 0.000 
Residual : point NO. dx dy 

8 1 .000 0.000 

Right image ( /geotl /Holywell/lmages/f2 _I ): 

Principle Coord. [col X row] : 101 8.000 1 530.000 
[xO X yO] :  0.000 0.000 

RMS: Mx =  
Residual: 

1 .000 My = 
point NO. 
8 

0.000 
dx 

1 .000 0.000 

-------------------------------------------------------------

dy 
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relative orientation information: 
(/ geot 1/HolywelUf3 _1  _f2 _I .  ste) 

- -------- -------------------------------------------------------

Relative orientation information: 

Left rotation matrix: 
I 

I 0.99737400 -0.04992700 
I 0.04999500 0.99874902 
I 0.05238900 -0.00262200 
\ 

Right rotation matrix: 
I 

I 0.99472499 -0. 10246600 

I 0 . 1 0257300 0.99335700 

I 0.00064600 0.05238000 
\ 

Right photo rotation angle (rad): 
Phi = 0.05247900 
Omiga = 0.00000000 
Kappa = 0.05001600 

Left photo rotation angle (rad): 

Residual: 

Phi = -0.00473700 
Omiga = 0.05219300 
Kappa = 0 . 10289400 

point NO. dq 
1 -0.002000 
2 -0.002000 
3 0.000000 
4 0. 003000 
5 0.002000 
6 0.005000 
7 0.005000 

8 0.000000 

9 -0.00 1000 
10 -0.003000 
1 1  -0.003000 
1 2  -0.002000 
1 3  0.004000 
1 4  0.002000 
15  -0.003000 

1 6 0. 000000 
1 7  0.002000 
1 8  0.002000 
1 9  -0.003000 
20 0.002000 
2 1  0.004000 
22 0.003000 

23 -0.003000 

24 0.004000 

25  0.004000 

-0.05245500 
0.00000000 
0.9986230 1 

0.00473 1 00 
-0.0521 7000 
0.9986270 1 

\ 

I 
I 
I 
I 

\ 

I 
I 
I 
I 
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26 0.004000 
27 0.00 1000 
28 0.002000 
29 0.002000 
30 0.003000 
3 1  0.004000 
32 0.005000 
33  -0.002000 
34 -0.002000 
35  -0.006000 
36 0.002000 
37  0 .000000 
38 -0.002000 
39 0.002000 
40 -0.006000 
4 1  -0.003000 
42 0.000000 
43 -0.002000 
44 0.003000 
45 -0.005000 
46 -0.002000 
47 0.002000 
48 -0.002000 
49 0.004000 
50 -0.001 000 
5 1  0.003000 
52 0.006000 
53 0.00 1000 
54 -0.005000 
55 -0.005000 
56 0.00 1000 
57 -0.008000 
58 -0.001 000 
59 0.001000 
60 0.003000 
6 1  -0.005000 
62 0. 005000 
63 -0.002000 
64 0.006000 
65 -0.001 000 
66 -0.002000 
67 0.000000 

68 -0.002000 

69 -0.004000 

70 0.00 1000 

7 1  0.005000 

72 -0.005000 

73 -0.006000 
74 0.001000 

75 0.002000 

76 0.00 1000 

77 -0.004000 

78 -0.00 1000 

79 0.006000 

80 0.003000 

8 1  0.000000 
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82 0.001000 
83 -0.004000 
84 0.000000 
85 0.002000 
86 0.00 1000 
87 -0.005000 
88 -0.006000 
1 0 15 -0.003000 
1 008 -0.02 1 000 
1020 0.006000 
1 0 1 9  -0.004000 
1022 0.003000 
1 024 0.012000 
1023 -0.008000 
1 007 0.005000 

RMS: Mq = 0.004000 

Absolute orientation information: 
(I geotl/Holywe1Vf3 _ 1  _f2 _ I .  ste) 

Absolute orientation information: 

Left rotation matrix: 
I 

I 0. 1 1 3 13859 -0.99106783 -0.07059938 

I 0.98666060 0. 10369606 0. 1254908 1 

I -0. 1 1 704903 -0.08385548 0.98957962 

\ 

Right rotation matrix: 
I 

I 0.064 16041 -0.997891 84 -0.009761 55 

I 0. 98297882 0.0615081 1  0. 1 73 1 1670 

I -0. 1 72 1 5 1 33 -0.02070263 0. 98485297 

\ 

Left station coordinates: 

\ 

I 
I 
I 
I 

\ 

I 
I 
I 
I 

Xs == 347429.027 Ys == 5584397.429 Zs = 1 226. 158 

Right station coordinates: 
Xs == 34750 1 .049 Ys = 55848 1 9. 2 1 9  Zs = 1 154.8 14 

Left angle elements: 
Phi == 0.071222 Omiga = -0. 125823 Kapa = 1 .466083 

Right angle elements: 
Phi == 0.0099 1 1  Omiga = -0. 1 73993 Kapa = 1 .508305 

Residual :  
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No. 
1 0 1 5  
1008 
1020 
101 9  
1022 
1024 
1023 
1007 

dX 
- 1 .753 1 0 1  
3 .6361 85 

-2.226330 
0.659259 

- 1 .865890 
2. 1 19795 
1 .400809 

-1 .970726 

dY 
-0.223402 
-3 .372003 
2.298586 

-0.720656 
0.85921 1  

-0.827773 
0.025058 
1 .960979 

RMS: mx == 2. 1 06759 my == 1 .676778 

dZ 
- 1 .444377 
-0.543976 
2 .709976 

-2.480867 
1 .8 1 8646 
0.142770 

-0.00401 5  
-0. 1 98 1 57 

mxy == 2.692586 mz = 1 . 55 1 1 26 

Image matching information: 
(/geotl/Holywell/f3 _1_f2 _l . ste) 

------,....-- Initial parameters --,--------­
left image: rows == 767 columns == 754 
right image: rows == 767 columns = 754 

Match window width = 5 
Match window length = 5 
Searching range == 0 
Match grid X_ interval == 3 
Match grid Y _interval == 3 

MATCH_BLOCK =- 1 
MATCH_ LEVEL ==== 3 
MATCH_ AREAS ==== 4 X  

16 : 0 0.0 % 
16 : 5 3 1 .2 % 

16 : 8 50.0 % 
16 : 8 50.0 % 

MATCH_ BLOCK -- 1 

MATCH_LEVEL ==== 2 

MATCH_ AREAS === 16 X 

240 : 0 0.0 % 

240 : 1 94 80.8 % 

240 : 2 16 90.0 % 

240 : 2 16 90.0 % 

240 : 2 16 90.0 % 

4 

1 5  
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240 : 2 16 90.0 % 

MATCH_ BLOCK == 1 
MATCH_ LEVEL == 1 
MATCH AREAS == 50 X 49 

2450 : 0 0.0 % 
2450 : 2 135  87. 1 % 
2450 : 2274 92.8 % 
2450 : 2320 94.7 % 
2450 : 2335 95.3 % 
2450 : 2345 95.7 % 
2450 : 2352 96.0 % 
2450 : 2364 96.5 % 
2450 : 2370 96.7 % 
2450 : 2372 96.8 % 
2450 : 2376 97.0 % 

MATCH BLOCK == 
MATCH LEVEL == 0 
MATCH AREAS == 255 X 250 

63750 : 0 0.0 % 
63750 : 36122 56.7 % 
63750 : 42941 67.4 % 
63750 : 46076 72.3 % 
63750 : 48277 75.7 % 
63750 : 49792 78. 1 % 
63750 : 5 1 007 80.0 % 
63750 : 5 1 927 8 1 . 5 % 
63750 : 527 1 1  82.7 % 
63750 : 53361 83.7 % 
63750 :  53839 84.5 % 
63750 : 54207 85.0 % 
63750 : 54505 85.5 % 

63750 : 5481 8  86.0 % 

63750 :  55075 86.4 % 

63750 : 55253 86.7 % 

63750 : 55425 86. 9 % 

63750 : 55568 87.2 % 

63750 : 55693 87.4 % 

63750 : 55796 87. 5 % 

63750 : 55895 87.7 % 

63750 : 55965 87.8 % 

63750 : 56037 87.9 % 

63750 : 56094 88.0 % 

63750 : 561 43 88. 1 % 

63750 : 561 96 88.2 % 

--------------------------------------------------------------

Residuals of Control Points from DEM:

-----------------------------------------------------------------
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DEM file: 
Control Point File: 

I geot l !Holywell!f3 _ 1_ f2 _1 /product/f3 _1_ f2 _ 1 .  dem 
/geotl!Holywe11/Holygcp 

----------------------------------------------------------------

NO. 
1008 
1 020 
1 02 I  
2023 
2000 
200I 
2002 
2003 
2004 
2005 
2006 
2007 

X Y Z dZ 
347592.9 1 5  5584477.839 
347634.769 5584368. 169 
3477 I 4. 779 5584526.562 
347808.000 558452 1 .000 
347787.000 5584399.500 
3477I4.000 5584550.000 
347740.500 5584545.000 
347789.500 5584525.500 
347762.000 5584537.000 
347653.000 5584566.000 
347628.000 5584523.500 
347594.500 5584497.000 

1 .653 
7.702 

3 1 .896 
42.000 
27.774 
24.840 
24. 140 
28.277 
25.940 
1 1 .3 16 
9.838 
2.484 

Number of points = 

Mean value 
I2  

- 1 .0 
Absolute mean value= 
Mean square root = 

No. 
dZ <= 1 .0 :  

1 .0 < dZ <= 2.0 : 
2 .0 < dZ <= 3.0 : 
3.0 < dZ <= 4.0 : 
4.0 < dZ <= 5.0 : 
5.0 < dZ <= 6.0 : 
6.0 < dZ <= I O.O : 
10.0 < dZ <= 20.0 : 
20.0 < dZ <= IOO.O : 

1 . 8  
3 .6 

Percent 
8 66.7 

I 8.3 
0 0.0 
I 8.3 
1 8.3 
0 0.0 
0 0.0 
I 8.3 
0 0.0 

1 . 770 
3 .265 
-4. 138  

- 1 1.050 
-0.5I2  
-0.040 
0.060 

-O. I2I  
-0.540 
-0.2 16 

-0. 3 1 3  
-0.034 

VirtuoZo image file infomation (Ortho Image): 

Image name: 
Dimensions [row X col] :  
Color model: 
X Dimension PixelSize: 
Y-Dimension Pixel Size: 

Geographic infomations: 

Image Scale: 
Rotate angle: 
X Ground Pixel Size: 
Y 

-
Ground PixelSize: 

/geotl/Holywell/f3 _ 1_ f2 _1/product/f3 _1_ f2 _ l .orl 
1 16 I  X 1 265 
24-bits Color Image 
0. 10000 mm 

0 . 10000 mm 

1 : 2500 
0.00000000 Rad (0.00000 Deg) 
0.25000 
0.25000 

Bottom Left coordinate[x,y] : 347502.000 5584306.000 
3478I 8.000 5584306.000 
347502.000 5584596.000 
3478I 8.000 5584596.000 

Bottom=Right coordinate[x,y) : 
Top_Left coordinate[x,y] : 
Top_Right coordinate[x,y] : 
-----------------------------------------------------------------
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VirtuoZo image file infomation (Contour Image): 
-----------------------------------------------------------

Image name: 
Dimensions [row X col] : 

/geotl/Holywell/f3 _ 1_f2 _l lproduct/f3 _I  _f2_1 .cnt 
1 16 1  X 1 265 

Color model: 
X_ Dimension PixelSize: 
Y _Dimension Pixel Size: 

Geographic infomations: 

Image Scale: 
Rotate angle: 
X_ Ground Pixel Size: 
Y _Ground PixelSize: 

8-bits GrayScale Image 
0 . 10000 mm 

0. 1 0000 mm 

1 : 2500 
0.00000000 Rad (0.00000 Deg) 
0.25000 
0.25000 

Bottom_ Left coordinate[ x,y] : 347502.000 5584306.000 
3478 1 8.000 5584306.000 
347502.000 5584596.000 
3478 1 8.000 5584596.000 

Bottom_Right coordinate[x,y] : 
Top_Left coordinate[x,y] : 
Top_Right coordinate[x,y] : 

VirtuoZo image file infomation (Ortho+Contour Image): 

Image name: /geotl /Holywell/f3 _ 1_ f2 _l /product/f3 _1_ f2 _ I .  ore 
Dimensions [row X col] : 1 16 1  X 1 265 
Color model: 24-bits Color Image 
X_Dimension PixelSize: 0. 1 0000 mm 

Y_Dimension PixelSize: 0. 1 0000 mm 

Geographic infomations: 

Image Scale: 1 : 2500 

Rotate angle: 
X Ground PixelSize: 

0.00000000 Rad (0.00000 Deg) 
0.25000 

Y Ground PixelSize: 0.25000 

Bottom_ Left coordinate[ x,y] : 
Bottom_ Right coordinate[ x,y] : 
Top_Left coordinate[x,y] : 
Top_Right coordinate[x,y] : 

347502.000 5584306.000 
3478 1 8.000 5584306.000 
347502.000 5584596.000 
347818.000 5584596.000 

-----------------------------------------------------------------

Interior orientation information: 
(I geot l/Holywell/f3 _1_ f2 _ I .  ste) 

------------------------------------------------------------------

Left image ( /geotl /Holywellllmages/f3 _1 ) :  

Principle Coord. [col X row] : 1018 .000 1 530.000 

(xO X yO] : 0.000 0.000 

RMS: Mx =  
Residual: 

1 .000 My "" 
point NO. 
8 

0.000 
dx 

1 .000 0.000 

Right image ( /geotl /Holywell/Images/f2 _ 1  ): 

dy 
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Principle Coord. [col X row] : 10 1 8.000 1 530.000 
[xO X yO] :  0.000 0.000 

RMS: Mx = 1 .000 My = 0.000 
Residual: point NO. d.x dy 

8 1 .000 0.000 

relative orientation information: 
(/ geotl!Holywell/f3 _1_ f2 _1 . ste) 

Relative orientation information: 

Left rotation matrix: 
I 

I 0 .99737400 -0.04992700 

I 0.04999500 0.99874902 

I 0.05238900 -0.00262200 
\ 

Right rotation matrix: 
I 

I 0.99472499 -0. 10246600 

I 0. 10257300 0.99335700 

I 0.00064600 0.05238000 
\ 

Right photo rotation angle (rad): 
Phi = 0.05247900 
Omiga = 0.00000000 
Kappa = 0.05001 600 

Left photo rotation angle (rad): 

Residual: 

Phi = -0.00473700 
Omiga = 0.052 19300 
Kappa = 0. 10289400 

point NO. dq 
1 -0.002000 
2 -0.002000 
3 0.000000 
4 0.003000 
5 0.002000 

6 0.005000 

7 0.005000 
8 0.000000 

9 -0.00 1 000 

1 0  -0.003000 

1 1  -0.003000 

1 2  -0.002000 

1 3 0.004000 

1 4  0.002000 

15 -0.003000 

1 6  0.000000 

-0.05245500 
0.00000000 
0.99862301 

0.00473 1 00 
-0.052 17000 
0.9986270 1 

\ 

I 
I 
I 
I 

\ 

I 
I 
I 
I 
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1 7  0.002000 
1 8  0.002000 
19  -0.003000 
20 0.002000 
2 1  0.004000 
22 0.003000 
23 -0.003000 
24 0.004000 
25 0.004000 
26 0.004000 
27 0.001000 
28 0.002000 
29 0 .002000 
30 0.003000 
3 1  0.004000 
32 0.005000 
33 -0.002000 
34 -0.002000 
35  -0.006000 
36 0.002000 
37 0.000000 
38 -0.002000 
39 0.002000 
40 -0.006000 
4 1  -0.003000 
42 0.000000 
43 -0.002000 
44 0.003000 
45 -0.005000 
46 -0.002000 
47 0.002000 
48 -0.002000 
49 0.004000 
50 -0.00 1000 
5 1  0.003000 
52 0.006000 
53 0.00 1000 
54 -0.005000 
55 -0.005000 
56 0.001 000 
57 -0.008000 
58 -0.001 000 
59 0.001000 
60 0.003000 
6 1  -0.005000 
62 0. 005000 
63 -0.002000 
64 0.006000 
65 -0.001 000 

66 -0.002000 

67 0.000000 

68 -0.002000 

69 -0.004000 

70 0.001 000 

7 1  0.005000 

72 -0.005000 
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73 -0.006000 
74 0.001000 
75 0.002000 
76 0.001000 
77 -0.004000 
78 -0.001000 
79 0.006000 
80 0.003000 
8 1  0.000000 
82 0.001000 
83 -0.004000 
84 0.000000 
85 0.002000 
86 0.00 1000 
87 -0.005000 
88 -0.006000 
10 15  -0.003000 
1008 -0.02 1000 
1020 0.006000 
10 19  -0.004000 
1022 0.003000 
1024 0.012000 
1023 -0.008000 
1007 0.005000 

RMS: Mq = 0.004000 

Absolute orientation information: 
(/geotl/Holywell/f3 _1_f2 _1 . ste) 

Absolute orientation information: 

Left rotation matrix: 
I 

I 0. 1 1 3 1 3859 -0.99106783 -0.07059938 

I 0. 98666060 0. 10369606 0 . 1254908 1 

I -0. 1 1704903 -0.08385548 0. 98957962 
\ 

Right rotation matrix: 
I 

I 0.064 1604 1 -0.99789184 -0.00976 155 

I 0.98297882 0.06 1508 1 1  0. 1 73 1 1670 

I -0. 1 72 15 133  -0.02070263 0. 98485297 
\ 

Left station coordinates: 

\ 

I 
I 
I 
I 

\ 

I 
I 
I 
I 

Xs = 347429.027 Ys = 5584397.429 Zs = 1 226. 1 58 

Right station coordinates: 
Xs = 347501 .049 Ys = 5584819.2 1 9 Zs =  1 1 54.814 

Left angle elements: 
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Phi = 0.07 1222 Omiga = -0. 125823 Kapa = 1 .466083 
Right angle elements: 

Phi = 0.0099 1 1 Omiga = -0. 1 73993 Kapa = 1 .508305 

Residual: 

No. dX dY dZ 
1 0 1 5  - 1 .753 1 0 1  -0.223402 - 1 .444377 
1008 3.636 1 85 -3.372003 -0.543976 
1020 -2.226330 2.298586 2.709976 
1019  0.659259 -0.720656 -2.480867 
1022 - 1 .865890 0.8592 1 1  1 .8 1 8646 
1024 2. 1 19795 -0.827773 0. 142770 
1 023 1 .400809 0.025058 -0.00401 5  
1 007 - 1 .970726 1 .960979 -0. 1 98 1 57 

RMS: mx = 2. 1 06759 my = 1 .676778 

IID.J' = 2.692586 mz = 1 .551 1 26 

Image matching information: 
(/geotl/Holywe1Vf3 _ 1_ f2_l .ste) 

--------:---=-- Initial parameters ________ _ 

left image: rows =2891 columns = 1037 
right image: rows =2891  columns = 1037 

Match window width = 5 
Match window length = 5 
Searching range = 5 
Match grid X_ interval = 5 
Match grid Y _interval == 5 

MATCH_ BLOCK --
MATCH_ LEVEL == 3 
MATCH_ AREAS == 2 1  X 7 

1 47 : 0 0.0 % 
147 : 54 36.7 % 
147 : 75 5 1 .0 % 
147 : 80 54.4 % 
1 47 : 85 57. 8 % 
147 : 89 60. 5 % 
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MATCH_BLOCK o== I 
MA TCH_LEVEL == 2 
MATCH_ AREAS o== 64 X 23 

I472 : 0 0.0 % 
I472 : 658 44.7 % 
I472 : 852 57.9 % 
I472 : 938 63.7 % 
I 472 : 980 66.6 % 
I472 : I010 68.6 % 
I472 : 1040 70.7 % 
I472 : 1067 72.5 % 
I472 : 1089 74.0 % 
I 472 : 1 107 75.2 % 
I472 : I I I 9 76.0 % 
I 472 : I 125 76.4 % 
1472 : 1 I27 76.6 % 
1472 : 1 134 77.0 % 

MATCH BLOCK ='= I 
MATCH LEVEL == 1 
MATCH AREAS == I92 X 69 

13248 : 0 0.0 % 
13248 : 5657 42.7 % 
1 3248 : 6810 5 1.4 % 
13248 : 7298 55. 1 % 
1 3248 : 76 1 9  57.5 % 
1 3248 : 7865 59.4 % 
13248 : 8062 60.9 % 
13248 : 8242 62.2 % 
13248 : 84 1 2  63.5 % 
1 3248 : 8554 64.6 % 
13248 : 8658 65.4 % 
13248 : 8753 66. 1 % 
13248 : 8848 66.8 % 
13248 : 8935 67.4 % 
13248 : 9005 68.0 % 
13248 : 9057 68.4 % 
13248 : 909 1 68.6 % 
13248 : 9 123 68.9 % 
13248 : 9 158 69. I % 
1 3248 : 9 I78 69.3 % 
13248 : 9203 69.5 % 
1 3248 : 9223 69.6 % 
13248 : 9249 69.8 % 
13248 : 9266 69.9 % 
13248 : 9282 70. 1 % 
13248 : 9297 70.2 % 
13248 : 93 14 70.3 % 
13248 : 9323 70.4 % 
13248 : 933 I  70.4 % 
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13248 : 9334 70.5 % 

MATCH_ BLOCK -- 1 
MATCH_ LEVEL == 0 
MATCH_ AREAS == 578 X 207 

1 1 9646 : 0 0.0 % 
1 1 9646 : 29662 24.8 % 
1 19646 : 38587 32.3 % 
1 1 9646 : 43810 36.6 % 
1 1 9646 : 47744 39.9 % 
l l 9646 : 50705 42.4 % 
1 19646 : 53 182 44.4 % 
1 19646 : 55 1 8 1  46. 1 % 
1 1 9646 : 57029 47.7 % 
1 1 9646 : 58537 48.9 % 
1 1 9646 : 59844 50.0 % 
1 1 9646 : 60891 50.9 % 
1 19646 : 6 1800 5 1 . 7 % 
1 1 9646 : 62570 52.3 % 
1 1 9646 : 63223 52.8 % 
1 19646 : 63788 53.3 % 
1 19646 : 64267 53 .7 % 
1 19646 : 64653 54.0 % 
1 1 9646 : 65070 54.4 % 
1 1 9646 : 65392 54.7 % 
1 19646 : 65652 54.9 % 
1 19646 : 65896 55. 1 % 
1 1 9646 : 6609 1 55.2 % 
1 19646 : 66308 55.4 % 
1 19646 : 66478 55.6 % 
1 19646 : 66641 55.7 % 
1 1 9646 : 66798 55.8 % 
l l 9646 : 66927 55.9 % 
1 19646 : 67025 56.0 % 
1 19646 : 67 127 56. 1 % 
1 19646 : 672 12 56.2 % 

______________________ .,. _______________ .,. ____ .., __________ ,.. ________ 

Residuals of Control Points from DEM: 
----------------------------------------------------------------

DEM file: /geot 1/HolywelVf3 _ I_ f2 _ Ilproduct/f3 _ I_ f2_I .mde 
Control Point File: /geotl /Holywell/Holygcp 
------------------------------------------------------------

NO. X y z dZ 

1007 3475 14.41 8 5584285. 422 3.527 0. 3 1 1  

1 008 347592.9 15  5584477.839 1 .653 1 . 302 

10 15  347894.877 5584507.708 34.609 0.673 

10 19  347686.899 5584273.047 12.327 - 1 .069 

1020 347634.769 5584368. 169 7.702 3 . 167 

102 1  3477 14.779 5584526.562 3 1 .896 -4.24 1 

1022 347833. 393 5584391 .33 1 30.372 1 .637 

1023 3 47829.335 5584227.228 25.964 -0.279 
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1024 347973.643 5584222.220 
2023 347808.000 5584521 .000 
2000 347787.000 5584399.500 
2001 347714.000 5584550.000 
2002 347740.500 5584545.000 
2003 347789.500 5584525.500 
2004 347762.000 5584537.000 
2005 347653.000 5584566.000 
2006 347628.000 5584523.500 
2007 347594.500 5584497.000 
2008 348027.000 5584545.000 
2009 347954.000 5584534. 500 
2010  3479 14.500 5584445.500 

Number of points = 2 1  
Mean value -0. 1 

19.506 
42.000 
27.774 
24.840 
24. 140 
28.277 
25.940 
1 1 .3 1 6  
9.838 
2.484 

37.400 
37.086 
36.240 

Absolute mean value= 1 .6 
Mean square root = 2. 8 

No. Percent 
dZ <= 1 .0 : 1 1  52.4 

1 . 0  < dZ <= 2 .0 : 7 33 .3 
2.0 < dZ <= 3 .0 : 0 0.0 
3 .0 < dZ <= 4.0 : 1 4.8 
4.0 < dZ <= 5.0 : 1 4.8 
5.0 < dZ <= 6.0 : 0 0.0 
6.0 < dZ <= 10.0 : 0 0.0 
10.0 < dZ <= 20.0 : 1 4.8 
20.0 < dZ <= 100.0 : 0 0.0 

0. 71 1 
-10.900 
-0.036 
0.960 
1 .272 
1 .398 
0.860 
1 .284 

0.062 
-0.046 
-0.325 
1. 9 14  

-0. 196 

VirtuoZo image file infomation (Ortho Image) : 

Image name: 
Dimensions [row X col] : 
Color model: 
X Dimension PixelSize: 
Y Dimension Pixel Size: 

Geographic infomations: 

Image Scale: 
Rotate angle: 
X Ground PixelSize: 
Y Ground PixelSize: 

/geotl/Holywe1Vf3 _1_ f2_1/product/f3 _1_ f2 _ l .orl 
929 X 2253 
24-bits Color Image 
0 . 10000 mm 

0. 10000 mm 

I : 5000 
0.00000000 Rad (0. 00000 Deg) 
0.50000 
0.50000 

Bottom Left coordinate[x,y] : 346950.000 5584 194.000 
348076.000 5584194.000 
346950.000 5584658.000 
348076.000 5584658.000 

Bottom =Right coordinate[ x,y] : 
Top_ Left coordinate[ x,y] : 
Top_Right coordinate[x,y] : 
________________________________________ ..,. ____________________ _ 

VirtuoZo image file infomation (Contour Image) : 

-----------------·----------------... ------------------------------

Image name: /geotl/Holywell/f3 _I  _f2 _l/product/f3 _1_ f2 _ I . cnt 

Dimensions [row X col] : 929 X 2253 
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Color model : 8-bits GrayScale Image 
X_ Dimension Pixel Size: 0. 10000 mm 
Y_Dimension PixelSize: O. IOOOO mm 

Geographic infomations: 

Image Scale: l : 5000 
Rotate angle: 
X_ Ground PixeiSize: 

0.00000000 Rad (0.00000 Deg) 
0.50000

Y _Ground Pixel Size: 0.50000 

Bottom_ Left coordinate[ x,y] : 
Bottom_Right coordinate[x,y] : 
Top_Left coordinate[x,y] : 
Top_Right coordinate(x,y] : 

346950.000 5584I94.000 
348076.000 5584 I 94.000 
346950.000 5584658.000 
348076.000 5584658.000 

VirtuoZo image file infomation (Ortho+Contour Image): 

Image name: /geotl/Holywe1Vf3 _I_ f2 _llproduct!f3 _I_ f2 _l .orc 
Dimensions [row X col] : 929 X 2253 
Color model: 24-bits Color Image 
X_ Dimension Pixel Size: 0 . 10000 mm 
Y _Dimension PixelSize: 0. 10000 mm 

Geographic infomations: 

Image Scale: I : 5000 
Rotate angle: 
X_ Ground Pixel Size: 

0.00000000 Rad (0.00000 Deg) 
0.50000

Y Ground PixelSize: 0.50000

Bottom_ Left coordinate[ x,y] : 
Bottom_ Right coordinate[ x,y] : 
Top_Left coordinate[x,y]: 
Top_Right coordinate[x,y] : 

346950.000 5584I 94.000 
348076.000 5584I 94.000 
346950.000 5584658.000 
348076.000 5584658.000 

------------------------------------------------------------

Virtuozo Processing Information Report File 

Interior orientation information:
(/geotl /Holywe1Vf4 _1_ f3 _ l .ste) 

___ , ____________________________ -_______________________________ _ 

Left image ( /geot l/Holywe1l!Images/f4_1 ):

Principle Coord. [col X row] : 
[xO X yO] : 0.000 

1018.000 1 530.000 
0.000 

RMS: Mx = 
Residual :  

1 .000 My = 
point NO. 
8 

0.000 
dx 

1 .000 0.000
dy 
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Right image ( lgeotl!Holywellllmageslf3 _1  ): 

Principle Coord. [col X row] : 1018.000 1530.000 
[xO X yO] : 0.000 0.000 

RMS: Mx = 
Residual: 

1 .000 My = 
point NO. 
8 

0.000 
dx 

1 .000 0.000 

relative orientation information: 

dy 

(I geotl !Holywell/f4 _I_ f3 _I .  ste) 

Relative orientation information: 

Left rotation matrix: 
I 

I 0.99267602 -0. 1 1787600 
I 0. 1 1791700 0.99302298 
I -0.02624800 0.003 1 1700 
\ 

Right rotation matrix: 
I 

I 0.9893 1003 -0. 1 1989400 
I O. l l93 1 200 0.99278498 
I -0.08384200 -0.00191900 
\ 

Right photo rotation angle (rad): 
Phi = -0.02643500 
Orniga = 0.00000000 
Kappa = 0. 1 18 19200 

Left photo rotation angle (rad): 

Residual: 

Phi = -0.083 10900 
Orniga = -0.01 195 100 
Kappa = 0. 1 1960500 

point NO. dq 
I -0.009000 
2 0.00 1000 
3 -0.002000 
4 -0.006000 
5 0.005000 
6 -0.002000 
7 -0.001000 
8 -0.003000 
9 -0.003000 
10  0.00 1000 
1 1  -0.003000 
1 2  -0.003000 
1 3  -0.007000 
14 0.002000 

0.02643200 
0.00000000 
0.99965 101  

0.08300800 
0.0 1 1 95 100 
0.9964770 1 

\ 

I 
I 
I 
I 

\ 

I 
I 
I 
I 
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1 5  -0.002000 
16 -0.008000 
1 7  -0.004000 
1 8  -0.00 1000 
1 9  -0.004000 
20 -0.004000 
2 1  -0.001000 
22 -0.006000 
23 -0.005000 
24 -0.002000 
25 0.003000 
26 -0.005000 
27 -0.001000 
28 0.004000 
29 0.004000 
30 0.002000 
3 1  -0.002000 
32 0.000000 
33 -0.00 1000 
34 0.003000 
35 -0.001000 
36 -0.006000 
37 0.003000 
38 -0.003000 
39 -0.00 1000 
40 0.006000 
4 1  -0.003000 
42 -0.004000 
43 0.005000 
44 -0.001000 
45 0.005000 
46 -0.001000 
47 0.006000 
48 0.008000 
49 0.00 1000 
50 0.000000 
5 1  0.002000 
52 0.000000 
53 0.003000 
54 0.005000 
55 0.00 1000 
56 0.003000 
57 0.008000 
58 0.002000 
59 0.006000 
60 0. 009000 
61  0.003000 
62 0.007000 
63 0.003000 
64 -0.003000 
65 -0.007000 
66 0.003000 
67 0.000000 
68 0.004000 
69 0.000000 
70 0.00 1000 
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7 1  0.00 1000 
72 0.005000 
73 -0.002000 
74 0.009000 
75 -0.002000 
76 0.008000 
77 0.002000 
78 0.005000 
79 0.005000 
80 -0.002000 
8 1  -0.001000 
82 -0.006000 
83 0.004000 
84 0.007000 
85 0.00 1000 
86 0.000000 
87 -0.00 1000 
88 0.000000 
89 0.003000 
90 -0.006000 
91  0.003000 
92 0.003000 
93 0.004000 
94 0.00 1000 
95 -0.007000 
96 0.004000 
97 -0.002000 
98 0.004000 
99 0.005000 
100 0.003000 
1 0 1  0.006000 
102 0.000000 
103 0.007000 
104 -0.003000 
105 -0.003000 
I 06 0. 000000 
1003 -0.004000 
1004 -0.024000 
1017  -0.027000 
1005 0.003000 
1002 -0.001000 
10 18  0.002000 

RMS: Mq == 0.005000 

------------------------------------------------------------------

Absolute orientation information: 
(/geotl/Holywe1Vf4_l_f3 _l . ste) 

-----------------------------------------------------------------

Absolute orientation information: 

Left rotation matrix: 
I 
1 0. 10808 170 -0.99392438 -0.02080076 
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0.994 12870 
0.005 14943 

Right rotation matrix: 
I 

I 
I 
I 
\ 

0. 1 0749455 
0.992 8 1865 
-0.052498 10 

Left station coordinates: 

0. 1 08 16497 
-0.02036333 

-0.99400997 
0. 10627583 
-0.0254871 5  

-0.00291 724 
0.99977940 

-0.0 1972484 
0.05492336 
0.99829572 

I 
I 
I 

\ 

I 
I 
I 
I 

Xs = 347394.263 Ys = 5583870.657 Zs = 1 224.471 

Right station coordinates: 
Xs = 347495 . 1 3 1  Ys = 5584309.61 0 Zs =  1 239.787 

Left angle elements: 
Phi = 0.020802 Omiga = 0.002917 Kapa = 1 .4624 1 9  

Right angle elements: 
Phi = 0.0 1 9756 Omiga = -0.05495 1 Kapa = 1 .464 1 58 

Residual: 

No. dX dY dZ 
1 003 0.454846 -0.446525 6.270758 
1004 -1 .269401 -0.557685 -8.281677 
1 0 1 7  -0.764386 - 1 .936236 -9.557571 
1005 0.943953 0.764634 7.092204 

1002 0. 123786 1 .223465 3.360729 

1 0 1 8  0. 5 1 1203 0.952346 1 . 1 15557 

RMS: mx = 0.771 389 my = 1 . 099083 

mxy = 1 .342768 mz = 6.609262 

Image matching information: 
(I geot l/Holywe1Vf4 _ I_ f3 _ I .  ste) 

Initial panuneters -:----:-----:--::-=:----­
-------;l�eft;;:

-
image: rows =2804 columns = 1067 

right image: rows =2804 columns = 1067 

Match window width = 5 
Match window length = 5 
Searching range = 5 
Match grid X_interval = 5 
Match grid Y _interval = 5 
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MATCH_BLOCK ==== 1 
MATCH _LEVEL ==== 3 
MATCH_AREAS === 20 X 7 

1 40 : 0 0.0 % 
140 : 62 44.3 % 
1 40 : 79 56.4 % 
140 : 84 60.0 % 
140 : 85 60.7 % 
140 : 85 60.7 % 

MA TCH_BLOCK == 1 
MATCH_LEVEL == 2 
MATCH_ AREAS == 62 X 23 

1426 : 0 0.0 % 
1426 : 902 63.3 % 
1 426 : l lOO 77. 1 % 
1 426 : 1 135  79.6 % 
1426 : 1 1 57 8 1 . 1 % 
1426 : 1 160 8 1 .3 % 
1426 : 1 172 82.2 % 
1 426 : 1 179 82.7 % 
1426 : 1 187 83.2 % 
1426 : 1 193 83.7 % 

MATCH_BLOCK === 1 
MATCH_ LEVEL ==== 1 
MATCH AREAS === 1 86 X 7 1  

13206 : 0 0.0 % 
13206 : 9034 68.4 % 
13206 : 10235 77.5 % 
13206 : 10726 8 1 .2 % 
1 3206 : 10977 83 . 1 % 
13206 : 1 1 1 5 1  84.4 % 
13206 : 1 1287 85.5 % 
13206 : 1 1413  86.4 % 
13206 : 1 15 12 87.2 % 
13206 : 1 1577 87.7 % 
13206 : 1 1636 88. 1 % 
13206 : 1 1684 88.5 % 
13206 : 1 1 722 88.8 % 
13206 : 1 1 750 89.0 % 
1 3206 : 1 1771 89. 1 % 
13206 : 1 1788 89.3 % 
13206 : 1 1807 89.4 % 
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13206 : 1 1825 89.5 % 
13206 : 1 1842 89.7 % 
13206 : 1 1855 89.8 % 
13206 : 1 1 872 89.9 % 
13206 : 1 1 882 90.0 % 
13206 : 1 1890 90.0 % 
13206 : 1 1899 90. 1 % 

MATCH_ BLOCK -­

MATCH_LEVEL == 0 
MATCH _AREAS == 560 X 213  

1 19280 : 0 0.0 % 
1 1 9280 : 50 144 42.0 % 
1 1 9280 : 63634 53.3 % 
1 1 9280 : 70941 59.5 % 
1 19280 : 76553 64.2 % 
1 1 9280 : 80483 67.5 % 
1 19280 : 83600 70. 1 % 
1 1 9280 : 85929 72.0 % 
1 1 9280 : 8782 1 73.6 % 
1 1 9280 : 89308 74.9 % 
1 1 9280 : 90572 75.9 % 
1 19280 : 9 1 5 1 3  76.7 % 
1 19280 : 92320 77.4 % 
1 19280 : 930 12 78.0 % 
1 1 9280 : 93595 78.5 % 
1 19280 : 94 109 78.9 % 
1 1 9280 : 94532 79. 3 % 
1 19280 : 94878 79.5 % 
1 1 9280 : 95 166 79.8 % 
1 19280 : 9542 1 80.0 % 
1 19280 : 95674 80.2 % 
1 19280 : 95883 80.4 % 
1 1 9280 : 9608 1 80.6 % 
l l 9280 : 96228 80.7 % 
1 19280 : 96380 80.8 % 
1 19280 : 96523 80.9 % 
1 1 9280 : 96661 8 1 .0 % 
1 1 9280 : 96758 8 1 . 1 % 
1 19280 : 96850 81 .2 % 
1 19280 : 96938 8 1 .3 % 

------------------------------------------------------------

Residuals of Control Points from DEM: 

---------------------------------------------------------------

DEM file: 
Control Point File: 

/geot i/HolywelVf4 _1_f3 _1/product/f4 _l_f3 _ l .dem 
/geotl/Holywell/Holygcp 

------------------------------------------------------------

NO. 
1002 
1003 
1004 

X Y Z 
347662.035 558390 1 .381  
3473 1 7.301 5584205.843 
347024.907 5584073. 743 

dZ 
-1 .7 10  
14.598 
47.236 

2.881 
5.334 

-8. 506 

308 



1005 347657.932 5584047.018 
1006 347527.242 55841 92.762 
1017  3480 13 .815  5584086.988 
10 18  347853.69 1 5584081 .770 

- 1 . 168 
15 .400 
1 4.003 
5. 135 

Number of points = 
Mean value 
Absolute mean value= 
Mean square root = 

No. 
dZ <= 1 .0 : 

1 .0  < dZ <= 2.0 : 
2.0 < dZ <= 3.0 : 
3 .0 < dZ <= 4.0 : 
4.0 < dZ <= 5.0 : 
5.0 < dZ <= 6.0 : 
6.0 < dZ <= 10.0 : 
10.0 < dZ <= 20.0 : 
20.0 < dZ <= 100.0 : 

7 
1 . 9  

4.8 
5. 5 

Percent 
0 0.0 

2 28.6 
1 14.3 
0 0.0 
0 0.0 
1 14.3 
3 42.9 
0 0.0 
0 0.0 

6.81 9  
6.876 

-1 .760 
1 . 527 

VirtuoZo image file infomation (Ortho Image) : 

Image name: /geot1/Holywe1Vf4 _l_f3 _ llproduct/f4 1 f3 I .  orr 
Dimensions [row X col] :  98 1 X 2273 

- - -

Color model: 24-bits Color Image 
X _Dimension Pixel Size: 0. 10000 mm 
Y _Dimension PixelSize: 0. 10000 mm 

Geographic infomations: 

Image Scale: 
Rotate angle: 
X_ Ground PixelSize: 
Y _Ground Pixel Size: 

1 : 5000 
0.00000000 Rad (0.00000 Deg) 
0. 50000 
0.50000 

Bottom_ Left coordinate [ x,y] : 346904.000 5583818.000 
348040.000 5583818 .000 
346904.000 5584308.000 
348040.000 5584308.000 

Bottom_Right coordinate[x,y] : 
Top_Left coordinate[x,y] : 
Top_Right coordinate[x,y] : 
-----------------------------------------------------------

VirtuoZo image file infomation (Contour Image): 
------------------------------------------------------------------

Image name: 
Dimensions [row X col] :  
Color model : 
X Dimension PixelSize: 
Y

-
Dimension PixelSize: 

Geographic infomations: 

/geotl/Holywell/f4 _1_ f3 _l /product/f4_ l_f3 _ l .cnt 
98 1 X 2273 
8-bits GrayScale Image 
0. 10000 mm 
0. 10000 mm 

-----------------------------------------------------------

Image Scale: 
Rotate angle: 
X Ground PixeiSize: 

I : 5000 
0.00000000 Rad (0.00000 Deg) 
0. 50000 
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Y _Ground PixelSize: 0.50000 

Bottom_Left coordinate[x,y] : 
Bottom_ Right coordinate[ x,y] : 
Top_ Left coordinate[ x,y] :
Top_Right coordinate[x,y] :

346904.000 5583818.000 
348040.000 5583818.000 
346904.000 5584308.000 
348040.000 5584308.000 

______________ .,.. _____________________________________________ _ 

VirtuoZo image file infomation (Ortho+Contour Image): 
--------------------------------------------------------------

Image name: 
Dimensions [row X col] : 
Color model : 
X_ Dimension PixelSize: 
Y _Dimension Pixel Size: 

Geographic infomations: 

Image Scale: 
Rotate angle: 
X_ Ground Pixel Size: 
Y _Ground PixelSize: 

/geotl/Holywell/f4 _ l_D _l/product/f4_1_D _1 .orc 
98 1 X 2273 
24-bits Color Image 
0. 10000 mm 
0. 10000 mm 

1 : 5000 
0.00000000 Rad (0.00000 Deg) 
0.50000 
0. 50000

Bottom_ Left coordinate[ x,y] : 346904.000 55838 18.000 
348040.000 55838 18.000 
346904.000 5584308.000 
348040.000 5584308.000 

Bottom _Right coordinate[x,y] : 
Top_ Left coordinate[ x, y] : 
Top_ Right coordinate[ x,y] : 
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APPENDIX J SIMPSON'S RULE 

The principle of Simpson's  rule is illustrated in Figure 12 .6. 

y 

5 y=f(x) 

X 

Figure 12.6 Simpson' s  rule for calculating the area under a curve 

Integration between two points x(a) and x(b) can be used to calculate the area under a curve 

y = f(x). Using Simpson's  rule: 

• the area under the curve is divided into an even number of strips (n) each of 

equal width (s). 

• The ordinates are numbered y I ,  y2, . . . . . .  yn+ 1 .  The number of ordinates is one 

more than the number of strips. 

• The area A is then given by S/3 [(F+L) + 4E +2R] 

Where: S = the width of each strip, F + L = the sum of the first and last ordinates, 4E = 4 x the 

sum of the even numbered ordinates, 2R = 2 x the sum of the remaining odd numbered ordinates. 

In this case each strip corresponds to one row in the DEM. The strip width S is 2m, that is the 

specified DEM spacing. The number of ordinates corresponds to the number of columns in the 

DEM. 
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DEM 1 
S/3 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

APPENDIX 4 

F+l Even Odd Areo_UC_(M•2] Volume_(M• J]  
0 1 2  26 7 13 
0 263 233 101 202 
0 613 567 239 478 
0 990 1 066 406 8 1 2  
0 1 856 1 766 730 1 46 1  
0 2 n9 2 665 1 096 2 193 
0 4 239 4 102 1 677 3 355 
0 5 562 5 4 18 2 206 4 41 1 
0 5 633 5 494 2 235 4 469 
0 7 095 7 229 2 856 5 712 
0 8 269 8 430 3 329 6 658 

307 9 720 9 568 3 888 7 n6 
306 9 68 1  9 535 3 873 7 747 
305 9 679 9 516 3 870 7 740 
307 9 705 9 547 3 881 7 763 
312 9 799 9 632 3 918 7 836 
316 9 975 9 802 3 988 7 976 
3 1 4  9 937 9 745 3 970 7 940 
312 9 876 9 7 1 0  3 949 7 898 
314 9 972 9 806 3 988 7 975 
314 10 1 1 6  9 95 1  4 04 5  8 091 
3 1 1  10 238 10 070 4 094 8 187 
310 10 434 10 235 4 168 8 335 
310 10 661 10 506 4 264 8 529 
324 10 837 10 680 4 335 8 67 1  
329 10 990 10 834 4 397 8 794 
313 1 1  103 10 933 4 439 8 879 
315 11 245 1 1 1 1 0  4 50 1  9 002 
319 1 1  444 1 1 288 4 578 9 156 
315 1 1  569 1 1 442 4 632 9 263 
309 1 1  619 1 1  475 4 649 9 298 

312 1 1  612 1 1 434 4 642 9 284 

31 2 1 1  573 1 1 403 4 627 9 255 
306 1 1  541 1 1 388 4 616 9 233 

3 1 9  1 1  444 1 1 294 4 579 9 158 

321 11 305 1 1 146 4 522 9 044 

308 11 266 1 1  104 4 505 9 01 1  

30 1  1 1  21 1 1 1 074 4 466 8 972 

300 11 127 10 938 4 446 8 891 

298 11 009 10 860 4 404 8 807 

295 10 909 10 753 4 362 8 725 

297 10 826 10 682 4 331 8 662 
295 10 814 1 0 688 4 326 8 652 

288 10 806 10 684 4 325 8 65 1  

304 10 800 10 664 4 322 8 644 
298 10 744 10 6 1 2  4 300 8 600 

301 10 697 1 0 559 4 280 8 561 

301 10 720 10 589 4 291 8 581 

305 10 849 10 694 4 339 8 679 

303 10 948 10 793 4 379 8 757 

297 1 1 039 1 0 9 1 0  4 418 8 836 

293 1 1 096 10 991 4 444 8 888 

293 11 276 1 1 132 4 51 1 9 021 

291 1 1  276 1 1 107 4 507 9 01 5  

292 11 254 1 1 123 4 504 9 007 

0 11 277 11 151 4 494 8 988 

0 11 344 1 1 174 4 515 9 030 

0 11 307 1 1 192 4 507 9 01 5  

0 1 1 221 11 099 4 472 8 944 

0 11 226 11 098 4 473 8 947 

0 1 1 309 1 1 165 4 504 9 009 

0 1 1 295 1 1 140 4 497 8 995 

0 11 338 1 1  179 4 514 9 028 

0 11 527 11 371 4 590 9 180 

0 11 747 1 1 550 4 673 9 345 

0 11 435 1 1 609 4 597 9 194 

0 11 448 1 1 631 4 604 9 207 

0 1 1  521 1 1 694 4 631 9 263 

0 11 538 11 729 4 641 9 281 

0 11 64::' 1 1 836 4 683 9 365 

0 11 762 1 1  943 4 729 9 458 
0 11 904 12 084 4 786 9 571 

0 12 066 12 266 4 853 9 706 

TOTAL MASS AT BULK DENSITY OF MATERIAL OF 

TOTAL VOLUME 

1800 [kg!M• 3] 

1 200 194 

2 160 348 960 

[M• 3] 

[kg] 
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DEM 2 
S/3 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

0 67 

F+L Even Odd Aroa_UC_[M•2] Volumo_j111• 3]  
0 1 2  26 7 1 3  
0 263 233 101 202 
0 613 567 239 478 
0 990 1 066 406 8 1 2  
0 1 856 1 766 730 1 461 
0 2 779 2 665 1 096 2 193 
0 4 239 4 102 1 677 3 355 
0 5 562 5 41 8  2 206 4 41 1 
0 6 629 5 498 2 234 4 468 
0 7 035 7 173 2 832 5 665 
0 8 196 8 349 3 299 6 598 

307 9 679 9 526 3 872 7 743 306 9 695 9 549 3 879 7 758 
305 9 791 9 632 3 916 7 831 
307 9 887 9 731 3 954 7 909 
3 1 2  10 024 9 854 4 008 8 01 5  
3 1 6  10 190 1 0 0 1 0  4 073 8 146 
314 10 157 9 975 4 059 8 1 1 9  
312 10 155 9 99 1  4 06 1  8 122 
314 10 289 10 125 4 1 1 5  8 229 
3 1 4  1 0  4 1 1 10 250 4 164 8 328 
31 1 10 5 1 0  10 343 4 �2 8 405 
3 1 0  10 659 10 464 4 258 8 517 
310 10 797 1 0 649 4 3� 8 639 
324 10 899 10 748 4 361 8 722 
329 10 970 10 8 1 3  4 369 8 778 
313 1 1 068 10 897 4 425 8 851 

315 1 1 �2 1 1 067 4 484 8 968 
319 1 1 402 1 1  253 4 562 9 124 

315 1 1 567 1 1  442 4 631 9 262 
309 11 619 11 475 4 649 9 298 

312 1 1  612 1 1 434 4 642 9 284 

312 1 1  573 11 403 4 627 9 255 

306 11 543 1 1 390 4 617 9 234 

319 11 419 1 1 265 4 568 9 137 

321 11 254 1 1 091 4 501 9 003 

308 11 248 1 1 077 4 497 8 994 

301 11 240 1 1 098 4 497 8 994 

300 1 1 179 10 997 4 467 8 935 

298 1 1 068 10 923 4 428 8 855 

295 1 1 005 10 853 4 401 8 803 

297 10 936 10 794 4 375 8 751 

295 10 935 10 790 4 374 8 749 

288 1 0 916 10 803 4 371 8 741 

304 10 902 10 765 4 363 8 726 

::!98 10 843 10 703 4 338 8 677 

301 10 802 10 662 4 322 8 644 

301 10 804 1 0 677 4 325 8 649 

305 10 873 10 722 4 349 8 699 

303 10 943 10 785 4 376 8 753 

297 11 01 7 10 891 4 410 8 820 

293 1 1 068 1 0 965 4 432 8 865 

293 1 1 249 1 1 094 4 498 8 997 

29 1  1 1  275 1 1 104 4 507 9 01 3  

292 1 1  254 11 123 4 504 9 007 

0 1 1  277 1 1 1 5 1  4 494 8 988 

0 11 344 1 1 174 4 515 9 030 

0 11 307 1 1 192 4 507 9 01 5  

0 11 22 1  1 1  099 4 472 8 944 

0 1 1  226 1 1  098 4 473 8 947 

0 1 1 309 1 1 165 4 504 9 009  

0 11 295 1 1 140 4 497 8 995 

0 11 338 1 1 179 4 514 9 028 

0 11 527 1 1  371 4 590 9 180 

0 11 747 1 1 550 4 673 9 345 

0 11 435 1 1 609 4 597 9 194 

0 11 448 1 1 631 4 604 9 �7 

0 1 1  521 11 694 4 631 9 263 

0 1 1 538 1 1 729 4 64 1  9 281 

0 11 642 1 1 836 4 683 9 365 

0 11 762 1 1 943 4 729 9 458 

0 11 904 12 084 4 786 9 57 1  

0 12 066 12 266 4 853 9 706 

TOTAL MASS AT BULK DENSITY OF MATERIAL OF 

TOTAL VOLUME 

1800 [kg/M'3) 

1 204 1 1 3  

2 1 67 40 3  520 

[M'3J 

[kg) 
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DEM3 
S/3 F+L 

0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 
0 67 0 

0 67 0 

0 67 0 

0 67 0 
0 67 0 

0 67 0 

0 67 0 
0 67 0 

0 67 0 

0 67 0 
0 67 0 

0 67 0 

0 67 0 

0 67 0 
0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 
0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

0 67 0 

Blowout1 

81 

,owoL12 

Evon Odd Aroo_UC_(M•2] Volumo_[M•3) 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
4 -4 1 1 

60 56 23 47 
73 81 30 61 
4 1 42 17 33 
-14 - 14 -6 - 1 1  

-1 12 -1 16 -45 -91  
-1 82 -184 -73 -146 
-225 -222 -90 -179 
-215 -208 -85 -170 
-220 -230 -89 -179 
-279 -28 1 - 1 12 -224 
--11 7  --119 -127 -254 
-295 -299 - 1 1 9  -237 
-272 -273 - 109 -218 
-225 -229 -91 -181 
-136 -143 -55 -1 1 1  
-62 -68 -26 -51 
20 2 1  8 16 
35 36 14 28 
43 43 17  34 
42 35 16  32 
2 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
-2 -2 -1 -2 
25 29 1 1  21 
51 55 21 42 
18 27 8 17 

.:�9 -24 - 1 1  -22 
-52 -59 -22 -43 

-59 -63 -24 -48 
-96 -100 -39 -78 

-1 1 0  -1 1 2 -44 -<19 
-121  -122 -49 .137 

-1 1 0  -1 19 -45 -90 

-102 -101 -41 -at 
-99 -91 -39 -77 

-105 -103 -42 -<13 

-84 -88 -34 � 
-24 -28 -10 -20 

5 8 2 5 

22 19  8 17 

30 26 1 1  23 
27 38 1 2  25 
1 3 1 1 

0 0 0 0 
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