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Abstract

The study of the fine-grained social dynamics between children is a methodological chal-

lenge, yet a good understanding of how social interaction between children unfolds is impor-

tant not only to Developmental and Social Psychology, but recently has become relevant to

the neighbouring field of Human-Robot Interaction (HRI). Indeed, child-robot interactions

are increasingly being explored in domains which require longer-term interactions, such as

healthcare and education. For a robot to behave in an appropriate manner over longer time

scales, its behaviours have to be contingent and meaningful to the unfolding relationship.

Recognising, interpreting and generating sustained and engaging social behaviours is as

such an important—and essentially, open—research question. We believe that the recent

progress of machine learning opens new opportunities in terms of both analysis and synthe-

sis of complex social dynamics. To support these approaches, we introduce in this article a

novel, open dataset of child social interactions, designed with data-driven research method-

ologies in mind. Our data acquisition methodology relies on an engaging, methodologically

sound, but purposefully underspecified free-play interaction. By doing so, we capture a rich

set of behavioural patterns occurring in natural social interactions between children. The

resulting dataset, called the PInSoRo dataset, comprises 45+ hours of hand-coded record-

ings of social interactions between 45 child-child pairs and 30 child-robot pairs. In addition to

annotations of social constructs, the dataset includes fully calibrated video recordings, 3D

recordings of the faces, skeletal informations, full audio recordings, as well as game

interactions.

Introduction

Studying social interactions

Studying social interactions requires a social situation that effectively elicits interactions

between the participants. Such a situation is typically scaffolded by a social task, and conse-

quently, the nature of this task influences in fundamental ways the kind of interactions that
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might be observed and analysed. In particular, the socio-cognitive tasks commonly found in

both the experimental psychology and human-robot interaction (HRI) literature often have a

narrow focus: because they aim at studying one (or a few) specific social or cognitive skills in

isolation and in a controlled manner, these tasks are typically conceptually simple and highly

constrained (for instance, object hand-over tasks; perspective-taking tasks; etc.). While these

focused endeavours are important and necessary, they do not adequately reflect the complexity

and dynamics of real-world, natural interactions (as discussed by Baxter et al. in [1], in the

context of HRI). Consequently, we need to investigate richer interactions, scaffolded by socio-

cognitive tasks that:

• are long enough and varied enough to elicit a large range of interaction situations;

• foster rich multi-modal interactions, such as simultaneous speech, gesture, and gaze

behaviours;

• are not over-specified, in order to maximise natural, non-contrived behaviours;

• evidence complex social dynamics, such as rhythmic coupling, joint attention, implicit turn-

taking;

• include a level of non-determinism and unpredictability.

The challenge lies in designing a social task that exhibits these features while maintaining
essential scientific properties (repeatability; replicability; robust metrics) as well as good practi-

cal properties (not requiring unique or otherwise very costly experimental environments; not

requiring very specific hardware or robotic platform; easy deployment; short enough experi-

mental sessions to allow for large groups of participants).

Looking specifically at social interactions amongst children, we present in the next section

our take on this challenge, and we introduce a novel task of free play. The task is designed to

elicit rich, complex, varied social interactions while supporting rigorous scientific methodolo-

gies, and is well suited for studying both child-child and child-robot interactions.

Social play

Our interaction paradigm is based on free and playful interactions (hereafter, free play) in

what we call a sandboxed environment. In other words, while the interaction is free (partici-

pants are not directed to perform any particular task beyond playing), the activity is both scaf-
folded and constrained by the setup mediating the interaction (a large interactive table), in a

similar way to children freely playing with sand within the boundaries of a sandpit. Conse-

quently, while participants engage in open-ended and non-directed activity, the play situation

is framed to be easily reproducible as well as practical to record and analyse.

This initial description frames the socio-cognitive interactions that might be observed and

studied: playful, dyadic, face-to-face interactions. While gestures and manipulations (including

joint manipulations) play an important role in this paradigm, the participants do not typically

move much during the interaction. Because it builds on play, this paradigm is also primarily

targeted to practitioners in the field of child-child or child-robot social interactions.

The choice of a playful interaction is supported by the wealth of social situations and social

behaviours that play elicits (see for instance parts 3 and 4 of [2]). Most of the research in this

field builds on the early work of Parten who established five stages of play [3], corresponding

to different stages of development, and accordingly associated with typical age ranges: (a) soli-
tary (independent) play (age 2-3): child playing separately from others, with no reference to

what others are doing; (b) onlooker play (age 2.5-3.5): child watching others play; may engage
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in conversation but not engage in doing; true focus on the children at play; (c) parallel play
(also called adjacent play, social co-action, age 2.5-3.5): children playing with similar objects,

clearly beside others but not with them; (d) associative play (age 3-4): child playing with others

without organization of play activity; initiating or responding to interaction with peers; (e)
cooperative play (age 4+): coordinating one’s behavior with that of a peer; everyone has a role,

with the emergence of a sense of belonging to a group; beginning of “team work.”

These five stages of play have been extensively discussed and refined over the last century,

yet remain remarkably widely accepted. It must be noted that the age ranges are only indica-

tive. In particular, most of the early behaviours still occur at times by older children.

Machine learning, robots and social behaviours

The data-driven study of social mechanisms is still an emerging field, and only limited litera-

ture is available.

The use of interaction datasets to teach artificial agents (robots) how to socially behave has

been previously explored, and can be considered as the extension of the traditional learning

from demonstration (LfD) paradigms to social interactions [4, 5]. However, existing research

focuses on low-level identification or generation of brief, isolated behaviours, including social

gestures [6] and gazing behaviours [7].

Based on a human-human interaction dataset, Liu et al. [8] have investigated machine

learning approaches to learn longer interaction sequences. Using unsupervised learning, they

train a robot to act as a shop-keeper, generating both speech and socially acceptable motions.

Their approach remains task-specific, and they report only limited success. They however

emphasise the “life-likeness” of the generated behaviours.

This burgeoning interest in the research community for the data-driven study of social

responses is however impaired by the lack of structured research efforts. In particular, there is

only limited availability of large and open datasets of social interactions, suitable for machine-

learning applications.

One such dataset is the Multimodal Dyadic Behavior Dataset (MMDB, [9]). It comprises of

160 sessions of 3 to 5 minute child-adult interactions. During these interactions, the experi-

menter plays with toddlers (1.5 to 2.5 years old) in a semi-structured manner. The dataset

includes video streams of the faces and the room, audio, physiological data (electrodermal

activity) as well as manual annotations of specific behaviours (like gaze to the examiner, laugh-

ter, pointing). This dataset focuses on very young children during short, adult-driven interac-

tions. As such, it does not include episodes of naturally-occurring social interactions between

peers, and the diversity of said interactions is limited. Besides, the lack of intrinsic and extrinsic

camera calibration information in the dataset prevent the automatic extraction and labeling of

key interaction features (like mutual gaze).

Another recent dataset, the Tower Game Dataset [10], focuses specifically on rich dyadic

social interactions. The dataset comprises of 39 adults recorded over a total of 112 annotated

sessions of 3 min in average. The participants are instructed to jointly construct a tower using

wooden blocks. Interestingly, the participants are not allowed to talk to maximise the amount

of non-verbal communication. The skeletons and faces of the participants are recorded, and

the dataset is manually annotated with so-called Essential Social Interaction Predicates (ESIPs):

rhythmic coupling (entrainment or attunement), mimicry (behavioral matching), movement

simultaneity, kinematic turn taking patterns, joint attention. This dataset does not appear to

be publicly available on-line.

The UE-HRI dataset [11] is another recently published (2017) dataset of social interactions,

focusing solely on human-robot interactions. 54 adult participants were recorded (duration
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M = 7.7min) during spontaneous dialogues with a Pepper robot. The interactions took place

in a public space, and include both one-to-one and multi-party interactions. The resulting

dataset includes audio and video recordings from the robot perspective, as well as manual

annotations of the levels of engagement. It is publicly available.

PInSoRo, our dataset, shares some of the aims of the Tower Game and UE-HRI datasets,

with however significant differences. Contrary to these two datasets, our target population are

children. We also put a strong focus on naturally occurring, real-world social behaviours. Fur-

thermore, as presented in the following sections, we record much longer interactions (up to 40

minutes) of free play interactions, capturing a wider range of socio-cognitive behaviours. We

did not place any constraints on the permissible communication modalities, and the record-

ings were manually annotated with a focus on social constructs.

Material and methods

The free-play sandbox task

As previously introduced, the free-play sandbox task is based on face-to-face free-play interac-

tions, mediated by a large, horizontal touchscreen. Pairs of children (or alternatively, one child

and one robot) are invited to freely draw and interact with items displayed on an interactive

table, without any explicit goals set by the experimenter (Fig 1). The task is designed so that

children can engage in open-ended and non-directive play. Yet, it is sufficiently constrained to

Fig 1. The free-play social interactions sandbox: Two children or one child and one robot (as pictured here) interacted in a free-play situation, by

drawing and manipulating items on a touchscreen. Children were facing each other and sit on cushions. Each child wore a bright sports bib, either

purple or yellow, to facilitate later identification.

https://doi.org/10.1371/journal.pone.0205999.g001
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be suitable for recording, and allows the reproduction of social behaviour by an artificial agent

in comparable conditions.

Specifically, the free-play sandbox follows the sandtray paradigm [12]: a large touchscreen

(60cm × 33cm, with multitouch support) is used as an interactive surface. The two players, fac-

ing each other, play together, moving interactive items or drawing on the surface if they wish

so (Fig 2). The background image depicts a generic empty environment, with different sym-

bolic colours (water, grass, beach, bushes. . .). By drawing on top of the background picture,

the children can change the environment to their liking. The players do not have any particular

task to complete, they are simply invited to freely play. They can play for as long as they wish.

However, for practical reasons, we had to limit the sessions to a maximum of 40 minutes.

Even though the children do typically move a little, the task is fundamentally a face-to-face,

spatially delimited, interaction, and as such simplifies the data collection. In fact, the children’s

faces were successfully detected in 98% of the over 2 million frames recorded during the PIn-

SoRo dataset acquisition campaign.

Experimental conditions. The PInSoRo dataset aims to establish two experimental base-

lines for the free-play sandbox task: the ‘human social interactions’ baseline on one hand

(child–child condition), an ‘asocial’ baseline on the other hand (child–non-social robot condi-

tion). These two baselines aim to characterise the qualitative and quantitative bounds of the

spectrum of social interactions and dynamics that can be observed in this situation.

In the child-child condition, a diverse set of social interactions and social dynamics were

expected to be observed, ranging from little social interactions (for instance, with shy children)

to strong, positive interactions (for instance, good friends), to hostility (children who do not

get along very well).

Fig 2. Example of a possible game situation. Game items (animals, characters. . .) can be dragged over the whole play area, while the background

picture can be painted over by picking a colour. In this example, the top player is played by a robot.

https://doi.org/10.1371/journal.pone.0205999.g002
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In the asocial condition, one child was replaced by an autonomous robot. The robot was

purposefully programmed to be asocial. It autonomously played with the game items as a child

would (although it did not perform any drawing action), but avoided all social interactions: no

social gaze, no verbal interaction, no reaction to child-initiated game actions.

From the perspective of social psychology, this condition provides a baseline for the social

interactions and dynamics at play (or the lack thereof) when the social communication chan-

nel is severed between the agents, while maintaining a similar social setting (face-to-face inter-

action; free-play activity).

From the perspective of human-robot interaction and artificial intelligence in general, the

child–‘asocial robot’ condition provides a baseline to contrast with for yet-to-be-created richer

social and behavioural AI policies.

Hardware apparatus. The interactive table was based on a 27” Samsung All-In-One com-

puter (quad core i7-3770T, 8GB RAM) running Ubuntu Linux and equipped with a fast 1TB

SSD hard-drive. The computer was held horizontally in a custom aluminium frame standing

26cm above the floor. All the cameras were connected to the computer via USB-3. The com-

puter performed all the data acquisition using ROS Kinetic (http://www.ros.org/). The same

computer was also running the game interface on its touch-enabled screen (60cm × 33cm),

making the whole system standalone and easy to deploy.

The children’s faces were recorded using two short range (0.2m to 1.2m) Intel RealSense

SR300 RGB-D cameras placed at the corners of the touchscreen (Fig 1) and tilted to face the

children. The cameras were rigidly mounted on custom 3D-printed brackets. This enabled a

precise measurement of their 6D pose relative to the touchscreen (extrinsic calibration).

Audio was recorded from the same SR300 cameras (one mono audio stream was recorded

for each child, from the camera facing him or her).

Finally, a third RGB camera (the RGB stream of a Microsoft Kinect One, the environment
camera in Fig 1) recorded the whole interaction setting. This third video stream was intended

to support human coders while annotating the interaction, and was not precisely calibrated.

In the child-robot condition, a Softbank Robotics’ Nao robot was used. The robot remained

in standing position during the entire play interaction. The actual starting position of the

robot with respect to the interactive table was recalibrated before each session by flashing a 2D

fiducial marker on the touchscreen, from which the robot could compute its physical location.

Software apparatus. The software-side of the free-play sandbox is entirely open-source

(source code: https://github.com/freeplay-sandbox/). It was implemented using two main

frameworks: Qt QML (http://doc.qt.io/qt-5/qtquick-index.html) for the user interface (UI) of

the game (Fig 2), and the Robot Operating System (ROS) for the modular implementation of

the data processing and behaviour generation pipelines, as well as for the recordings of the var-

ious datastreams (Fig 4). The graphical interface interacts with the decisional pipeline over a

bidirectional QML-ROS bridge that was developed for that purpose (source code available

from the same link).

Fig 3 presents the complete software architecture of the sandbox as used in the child-robot

condition (in the child-child condition, robot-related modules were simply not started).

Robot control. As previously described, one child was replaced by a robot in the child-

robot condition. Our software stack allowed for the robot to be used in two modes of opera-

tions: either autonomous (selecting actions based on pre-programmed play policies), or con-

trolled by a human operator (so-called Wizard-of-Oz mode of operation).

For the purpose of the PInSoRo dataset, the robot behaviour was fully autonomous, yet

coded to be purposefully asocial (no social gaze, no verbal interaction, no reaction to child-ini-

tiated game actions). The simple action policy that we implemented consisted in the robot

choosing a random game item (in its reach), and moving that item to a predefined zone on the
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map (e.g. if the robot could reach the crocodile figure, it would attempt to drag it to a blue, i.e.

water, zone). The robot did not physically drag the item on the touchscreen: it relied on a A�

motion planner to find an adequate path, sent the resulting path to the touchscreen GUI to

animate the displacement of the item, and moved its arm in a synchronized fashion using the

inverse kinematics solver provided with the robot’s software development kit (SDK).

In the Wizard-of-Oz mode of operation, the experimenter would remotely control the

robot through a tablet application developed for this purpose (Figs 3–11). The tablet exactly

mirrored the game state, and the experimenter dragged the game items on the tablet as would

the child on the touchscreen. On release, the robot would again mimic the dragging motion on

the touchscreen, moving an object to a new location. This mode of operation, while useful to

conduct controlled studies, was not used for the dataset acquisition.

Experiment manager. We developed as well a dedicated web-based interface (usually

accessed from a tablet) for the experimenter to manage the whole experiment and data acquisi-

tion procedure (Figs 3–10). This interface ensured that all the required software modules

were running; it allowed the experimenter to check the status of each of them and, if needed,

to start/stop/restart any of them. It also helped managing the data collection campaign by

Fig 3. Software architecture of the free-play sandbox (data flows from orange dots to blue dots). Left nodes interact with the interactive table hardware (game

interface (1) and camera drivers (2)). The green nodes in the centre implement the behaviour of the robot (play policy (3) and robot behaviours (4)). Several helper

nodes are available to provide for instance a segmentation of the children drawings into zones (5) or A� motion planning for the robot to move in-game items (6).

Nodes are implemented in Python (except for the game interface, developed in QML) and inter-process communication relies on ROS. 6D poses are managed and

exchanged via ROS TF.

https://doi.org/10.1371/journal.pone.0205999.g003
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Fig 4. The free-play sandbox, viewed at runtime within ROS RViz. Simple computer vision was used to segment the background drawings into zones

(visible on the right panel). The poses and bounding boxes of the interactive items were broadcast as well, and turned into an occupancy map, used to

plan the robot’s arm motion. The individual pictured in this figure has given written informed consent (as outlined in PLOS consent form) to appear.

https://doi.org/10.1371/journal.pone.0205999.g004

Fig 5. The coding scheme used for annotating social interactions occurring during free-play episodes. Three main

axis were studied: task engagement, social engagement and social attitude.

https://doi.org/10.1371/journal.pone.0205999.g005
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providing a convenient interface to record the participants’ demographics, resetting the game

interface after each session, and automatically enforcing the acquisition protocol (presented in

Table 1).

Coding of the social interactions

Our aim is to provide insights on the social dynamics, and as such we annotated the dataset

using a combination of three coding schemes for social interactions that reuse and adapt estab-

lished social scales. Our resulting coding scheme (Fig 5) looked specifically at three axis: the

level of task engagement (that distinguishes between focused, task oriented behaviours, and dis-
engaged—yet sometimes highly social – behaviours); the level of social engagement (reusing

Parten’s stages of play, but at a fine temporal granularity); the social attitude (that encoded atti-

tudes like supportive, aggressive, dominant, annoyed, etc).

Task engagement. The first axis of our coding scheme aimed at making a broad distinc-

tion between ‘on-task’ behaviours (even though the free-play sandbox did not explicitly require

the children to perform a specific task, they were still engaged in an underlying task: to play

with the game) and ‘off-task’ behaviours. We called ‘on-task’ behaviours goal oriented: they

encompassed considered, planned actions (that might be social or not). Aimless behaviours

(with respect to the task) encompassed opposite behaviours: being silly, chatting about unre-

lated matters, having a good laugh, etc. These Aimless behaviours were in fact often highly

social, and played an important role in establishing trust and cooperation between the peers.

In that sense, we considered them as as important as on-task behaviours.

Social engagement: Parten’s stages of play at micro-level. In our scheme, we character-

ised Social engagement by building upon Parten’s stages of play [3]. These five stages of play

Fig 6. 2D skeletons, including facial landmarks and hand details are automatically extracted using the OpenPose

library [18].

https://doi.org/10.1371/journal.pone.0205999.g006
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are normally used to characterise rather long sequences (at least several minutes) of social

interactions. In our coding scheme, we applied them at the level of each of the micro-

sequences of the interactions: one child is drawing and the other is observing was labelled as

solitary play for the former child, on-looker behaviour for the later; the two children discuss

what to do next: this sequence was annotated as a cooperative behaviour; etc.

We chose this fine-grained coding of social engagement to enable proper analyses of the

internal dynamics of a long sequence of social interaction.

Social attitude. The constructs related to the social attitude of the children derived from

the Social Communication Coding System (SCCS) proposed by Olswang et al. [13]. The SCCS

consists in 6 mutually exclusive constructs characterising social communication (hostile; pro-
social; assertive; passive; adult seeking; irrelevant) and were specifically created to characterise

children’s communication in a classroom setting.

We transposed these constructs from the communication domain to the general beha-

vioural domain, keeping the pro-social, hostile (whose scope we broadened in adversarial),
assertive (i.e. dominant), and passive constructs. In our scheme, the adult seeking and irrelevant
constructs belong to Task Engagement axis.

Finally, we added the construct Frustrated to describe children who are reluctant or refuse

to engage in a specific phase of interaction because of a perceived lack of fairness or attention

from their peer, or because they fail at achieving a particular task (like a drawing).

Fig 7. Screenshot of the dedicated tool developed for rapid annotation of the social interactions. The annotators used a secondary screen (tablet)

with buttons (layout similar to Fig 5) to record the social constructs. Figure edited for legibility (timeline enlarged) and to mask out one of the children’

face. The right individual pictured in this figure has given written informed consent (as outlined in PLOS consent form) to appear.

https://doi.org/10.1371/journal.pone.0205999.g007
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Protocol

We adhered to the acquisition protocol described in Table 1 with all participants. To ease later

identification, each child was also given a different and brightly coloured sports bib to wear.

Importantly, during the Greetings stage, we showed the robot both moving and speaking

(for instance, “Hello, I’m Nao. Today I’ll be playing with you. Exciting!” while waving at the

children). This was of particular importance in the child-robot condition, as it set the chil-

dren’s expectations in term of the capabilities of the robot: the robot could in principle speak,

move, and even behave in a social way.

Also, the game interface of the free-play sandbox offered a tutorial mode, used to ensure the

children know how to manipulate items on a touchscreen and draw. In our experience, this

never was an issue for children.

Data collection

Table 2 lists the raw datastreams that were collected during the game. By relying on ROS for

the data acquisition (and in particular the rosbag tool), we ensured all the datastreams were

synchronised, timestamped, and, where appropriate, came with calibration information (for

the cameras mainly). For the PInSoRo dataset, cameras were configured to stream in qHD res-

olution (960×540 pixels) in an attempt to balance high enough resolution with tractable file

size. It resulted in bag files weighting�1GB per minute.

Besides audio and video streams, user interactions with the game were monitored and

recorded as well. The background drawings produced by the children were recorded. They

Fig 8. Density distribution of the durations of the interactions for the two conditions. Interactions in the child-robot condition were generally shorter than the

child-child interactions. Interactions in the child-child condition followed a bi-modal distribution, with one mode centered around minute 15 (similar to the child-

robot one) and one, much longer mode, at minute 37.

https://doi.org/10.1371/journal.pone.0205999.g008
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were also segmented according to their colours, and the contours of resulting regions were

extracted and recorded. The positions of all manipulable game items were recorded (as ROS

TF frames), as well as every touch on the touchscreen.

Data post-processing

Table 3 summarises the post-processed datastreams that are made available alongside the raw

datastreams.

Audio processing. Audio features were automatically extracted using the OpenSMILE

toolkit [14]. We used a 33ms-wide time windows in order to match the cameras FPS. We

extracted the INTERSPEECH 2009 Emotion Challenge standardised features [15]. These are a

range of prosodic, spectral and voice quality features that are arguably the most common fea-

tures we might want to use for emotion recognition [16]. For a full list, please see [15]. As no

reliable speech recognition engine for children voice could be found [17], audio recordings

were not automatically transcribed.

Facial landmarks, action-units, skeletons, gaze. Offline post-processing was performed

on the images obtained from the cameras. We relied on the CMU OpenPose library [18] to

extract for each child the upper-body skeleton (18 points), 70 facial landmarks including the

pupil position, as well as the hands’ skeleton (Fig 6).

This skeletal information was extracted from the RGB streams of each of the three cameras,

for every frame. It is stored alongside the main data in an easy-to-parse JSON file.

For each frame, 17 action units, with accompanying confidence levels, were also extracted

using the OpenFace library [19]. The action-units recognised by OpenFace and provided

Fig 9. Repartition of annotations over the dataset (in total duration of recordings annotated with a given construct). The three classes of constructs (task

engagement, social engagement, social attitude) and the two conditions (child-child and child-robot) are plotted separately.

https://doi.org/10.1371/journal.pone.0205999.g009
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Fig 10. Mean time (and standard deviation) that each construct has been annotated in each recording. The large standard deviations reflect the broad range of

group dynamics captured in the dataset.

https://doi.org/10.1371/journal.pone.0205999.g010

Fig 11. Percentage of observations for each constructs with respect the children’s age.

https://doi.org/10.1371/journal.pone.0205999.g011
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alongside the data are AU01, AU02, AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14,

AU15, AU17, AU20, AU23, AU25, AU26, AU28 and AU45 (classification following https://

www.cs.cmu.edu/~face/facs.htm).

Gaze was also estimated, using two techniques. First, head pose estimation was performed

following [20], and used to estimate gaze pose. While this technique is effective to segment

pose at a coarse level (i.e. gaze on interactive table vs. gaze on other child/robot vs. gaze on

experimenter), it offers limited accuracy when tracking the precise gaze location on the surface

of the interactive table (due to not tracking the eye pupils).

We complemented head pose estimation with a neural network (a simple 7-layers, fully

connected, multi-layer perceptron with ReLU activations and 64 units per layer), implemented

Table 1. Data acquisition protocol.

Greetings (about 5 min)
• explain the purpose of the study: showing robots how children play

• briefly present a Nao robot: the robot stands up, gives a short message (Today I’ll be watching you playing in the

child-child condition;Today I’ll be playing with you in the child-robot condition), and sits down.

• place children on cushions

• complete demographics on the tablet

• remind the children that they can withdraw at anytime

Gaze tracking task (40 sec)
children are instructed to closely watch a small picture of a rocket that moves randomly on the screen. Recorded

data is used to train a eye-tracker post-hoc.

Tutorial (1-2 min)
explain how to interact with the game, ensure the children are confident with the manipulation/drawing.

Free-play task (up to 40 min)

• initial prompt: “Just to remind you, you can use the animals or draw. Whatever you like. If you run out of ideas,
there’s also an ideas box. For example, the first one is a zoo. You could draw a zoo or tell a story. When you get
bored or don’t want to play anymore, just let me know.”

• let children play

• once they wish to stop, stop recording

Debriefing (about 2 min)
• answer possible questions from the children

• give small reward (e.g. stickers) as a thank you

https://doi.org/10.1371/journal.pone.0205999.t001

Table 2. List of raw datastreams available in the PInSoRo dataset. Each datastream is timestamped with a synchro-

nised clock to facilitate later analysis.

Domain Type Details

child 1 audio 16kHz, mono, semi-directional

face (RGB) qHD (960×540), 30Hz

face (depth) VGA (640×480), 30Hz

child 2 audio 16kHz, mono, semi-directional

face (RGB) qHD (960×540), 30Hz

face (depth) VGA (640×480), 30Hz

environment RGB qHD (960×540), 29.7Hz

game interactions background drawing (RGB) 4Hz

finger touches 6 points multi-touch, 10Hz

game items pose TF frames, 10Hz

other static transforms between touchscreen and facial cameras

cameras calibration informations

https://doi.org/10.1371/journal.pone.0205999.t002
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with the Caffe framework (source available here: https://github.com/severin-lemaignan/

visual_tracking_caffe).

The network trained from a ground truth mapping between the children’ faces and 2D gaze

coordinates. Training data is obtained by asking the children to follow a target on the screen

for a short period of time before starting the main free play activity (see protocol, Table 1). The

position of the target provides the ground truth (x, y) coordinates of the gaze on the screen.

For each frame, the network is then fed a feature vector comprising 32 facial and skeletal (x, y)

points of interest relevant to gaze estimation (namely, the 2D location of the pupils, eye con-

tours, eyebrows, nose, neck, shoulders and ears). The training dataset comprises 80% of the

fully randomized dataset (123711 frames) and the testing dataset the remaining 20% (30927

frames). Using this technique, we measured a gaze location error of 12.8% on our test data

between the ground truth location of the target on the screen and the estimated gaze location

(i.e. ±9cm over the 70cm-wide touchscreen). The same pre-trained network is then used to

provide gaze estimation during the remainder of the free play activity.

Video coding. The coding was performed post-hoc with the help of a dedicated annota-

tion tool (Fig 7) which is part of the free-play sandbox toolbox. This tool can replay and ran-

domly seek in the three video streams, synchronised with the recorded state of the game

(including the drawings as they were created). An interactive timeline displaying the annota-

tions is also displayed.

The annotation tool offers a remote interface for the annotator (made of large buttons, and

visually similar to Fig 5) that is typically displayed on a tablet and allow the simultaneous cod-

ing of the behaviours of the two children. Usual video coding practices (double-coding of a

portion of the dataset and calculation of an inter-judge agreement score) were followed.

Results—The PInSoRo dataset

Using the free-play sandbox methodology, we have acquired a large dataset of social interac-

tions between either pairs of children or one child and one robot. The data collection took

place over a period of 3 months during Spring 2017.

In total, 120 children were recorded for a total duration of 45 hours and 48 minutes of data

collection. These 120 children (see demographics in Table 4; sample drawn from local schools)

were randomly assigned to one of two conditions: the child-child condition (90 children, 45

pairs) and a child-robot condition (30 children). The sample sizes were balanced in favour of

the child-child condition as the social dynamics that we ultimately want to capture are much

richer in this condition.

Table 3. List of post-processed datastreams available in the PInSoRo dataset. With the exception of social annota-

tions, all the data was automatically computed from the raw datastreams at 30Hz.

Domain Type Details

children face 70 facial landmarks (2D)

17 facial action-units

head pose estimation (TF frame)

gaze estimation (TF frame)

skeleton 18 points body pose (2D)

20 points hand tracking (2D, only when visible)

audio INTERSPEECH’s 16 low-level descriptors

annotations timestamped annotations of social behaviours and remarkable events

https://doi.org/10.1371/journal.pone.0205999.t003
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In both conditions, and after a short tutorial, the children were simply invited to freely play

with the sandbox, for as long as they wished (with a cap at 40 min; cf. protocol in Table 1).

In the child-child condition, 45 free-play interactions (i.e. 90 children) were recorded with

a mean duration M = 24.15 min (standard deviation SD = 11.25 min). In the child-robot con-

dition, 30 children were recorded, M = 19.18 min (SD = 10 min).

Fig 8 presents the density distributions of the durations of the interactions for the two base-

lines. The distributions show that (1) the vast majority of children engaged easily and for non-

trivial amounts of time with the task; (2) the task led to a wide range of levels of commitment,

which is desirable: it supports the claim that the free-play sandbox is an effective paradigm to

observe a range of different social behaviours; (3) many long interactions (>30 min) were

observed, which is especially desirable to study social dynamics.

The distribution of the child-robot interaction durations shows that these interactions are

generally shorter. This was expected as the robot’s asocial behaviour was designed to be less

engaging. Often, the child and the robot were found to be playing side-by-side—in some case

for rather long periods of time—without interacting at all (solitary play).

Over the whole dataset, the children faces were detected on 98% of the images, which vali-

dates the positioning of the camera with respect to the children to record facial features.

Annotations

Five expert annotators performed the dataset annotation. Each annotator received one hour of

training by the experimenters, and were compensated for their work.

In total, 13289 annotations of social dynamics were produced, resulting in an average of

149 annotations per record (SD = 136), which equates to an average of 4.2 annotations/min

(SD = 2.1), and an average duration of annotated episodes of 48.8 sec (SD = 33.3). Fig 9 shows

the repartition of the annotation corpus over the different constructs presented in Fig 5. Fig 10

shows the mean annotation time and standard deviation per recording for each construct.

Overall, 23% of the dataset was double-coded. Inter-coder agreement was found to be

51.8% (SD = 16.8) for task engagement annotations; 46.1% (SD = 24.2) for social engagement;

56.6% (SD = 22.9) for social attitude.

These values are relatively low (only partial agreement amongst coders). This was expected,

as annotating social interactions beyond surface behaviours is indeed generally difficult. The

observable, objective behaviours are typically the result of a superposition of the complex and

non-observable underlying cognitive and emotional states. As such, these deeper socio-cogni-

tive states can only be indirectly observed, and their labelling is typically error prone.

However, this is not anticipated to be a major issue for data-driven analyses, as machine

learning algorithms are typically trained to estimate probability distributions. As such, diver-

gences in human interpretations of a given social episode will simply be reflected in the proba-

bility distribution of the learnt model.

When looking at social behaviours with respect to age groups, expected behavioural trends

are observed (Fig 11): adult seeking goes down when children get older; more cooperative play

Table 4. Descriptive statistics for the children.

Condition Age Mean Age SD # girls # boys

Whole group 6.4 1.3 55 65

Child-child 6.3 1.4 42 48

Child-robot 6.9 0.9 12 18

https://doi.org/10.1371/journal.pone.0205999.t004

The PInSoRo dataset of child-child and child-robot social dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0205999 October 19, 2018 16 / 19

https://doi.org/10.1371/journal.pone.0205999.t004
https://doi.org/10.1371/journal.pone.0205999


is observed with older children, while more parallel play takes place with younger ones. In con-

strast, the social attitudes appear evenly distributed amongst age groups.

Dataset availability and data protection

All data has been collected by researchers at the University of Plymouth, under a protocol

approved by the university ethics committee. The parents of the participants explicitly con-

sented in writing to sharing of their child’s video and audio with the research community. The

data does not contain any identifying information, except the participant’s images. The child’s

age and gender are also available. The parents of the children in this manuscript have given

written informed consent (as outlined in PLOS consent form) to publish these case details.

The dataset is freely available to any interested researcher. Due to ethical and data protec-

tion regulations, the dataset is however made available in two forms: a public, Creative Com-

mons licensed, version that does not include any video material of the children (no video nor

audio streams), and hosted on the Zenodo open-data platform: https://zenodo.org/record/

1043508. The complete version that includes all video streams is freely available as well, but

interested researchers must first fill a data protection form. The detail of the procedure are

available online: https://freeplay-sandbox.github.io/application.

Discussion of the free-play sandbox

The free-play sandbox elicits a loosely structured form of play: the actual play situations are

not known beforehand and might change several times during the interaction; the game

actions, even though based on one primary interaction modality (touches on the interactive

table), are varied and unlimited (especially when considering the drawings); the social interac-

tions between participants are multi-modal (speech, body postures, gestures, facial expres-

sions, etc.) and unconstrained. This loose structure creates a fecund environment for children

to express a range of complex, dynamics, natural social behaviours that are not tied to an

overly constructed social situation. The diversity of the social behaviours that we have been

able to capture can indeed been seen in Figs 9 and 11.

Yet, the interaction is nonetheless structured. First, the physical bounds of the interactive

table limit the play area to a well defined and relatively small area. As a consequence, children

are mostly static (they are sitting in front of the table) and their primary form of physical inter-

action is based on 2D manipulations on a screen.

Second, the game items themselves (visible in Fig 2) structure the game scenarios. They are

iconic characters (animals or children) with strong semantics associated to them (such as

‘crocodiles like water and eat children’). The game background, with its recognizable zones,

also elicit a particular type of games (like building a zoo or pretending to explore the

savannah).

These elements of structure (along with other, like the children demographics) arguably

limit how general the PInSoRo dataset is. However, it also enable the free-play

sandbox paradigm to retain key properties that makes it a practical and effective scientific tool:

because the game builds on simple and universal play mechanics (drawings, pretend play with

characters), the paradigm is essentially cross-cultural; because the sandbox is physically

bounded and relatively small, it can be easily transported and practically deployed in a range

of environments (schools, exhibitions, etc.); because the whole apparatus is well defined and

relatively easy to duplicate (it essentially consists in one single touchscreen computer), the

free-play sandbox facilitates the replication of studies while preserving ecological validity.

Compared to existing datasets of social interactions (the Multimodal Dyadic Behavior Data-
set, the Tower Game dataset and the UE-HRI dataset), PInSoRo is much larger, with more than

The PInSoRo dataset of child-child and child-robot social dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0205999 October 19, 2018 17 / 19

https://zenodo.org/record/1043508
https://zenodo.org/record/1043508
https://freeplay-sandbox.github.io/application
https://doi.org/10.1371/journal.pone.0205999


45 hours of data, compared to 10.6, 5.6 and 6.9 hours respectively. PInSoRo is fully multi-

modal whereas the Tower Game dataset does not include verbal interactions, and the UE-HRI
dataset focuses instead of spoken interactions. Compared to the Multimodal Dyadic Behavior
Dataset, PInSoRo captures a broader range of social situations, with fully calibrated data-

streams, enabling a broad range of automated data processing and machine learning applica-

tions. Finally, PInSoRo is also unique for being the first (open) dataset capturing long
sequences (up to 40 minutes) of ecologically valid social interactions amongst children or

between children and robots.

Conclusion—Towards the machine learning of

social interactions?

We presented in this article the PInSoRo dataset, a large and open dataset of loosely con-

strained social interactions between children and robots. By relying on prolonged free-play

episodes, we captured a rich set of naturally-occurring social interactions taking place between

pairs of children or pairs of children and robots. We recorded an extensive set of calibrated

and synchronised multimodal datastreams which can be used to mine and analyse the social

behaviours of children. As such, this data provides a novel playground for the data-driven

investigation and modelling of the social and developmental psychology of children.

The PInSoRo dataset also holds considerable promise for the automatic training of models

of social behaviours, including implicit social dynamics (like rhythmic coupling, turn-taking),

social attitudes, or engagement interpretation. As such, we foresee that the dataset might play

an instrumental role in enabling artificial systems (and in particular, social robots) to recog-

nise, interpret, and possibly, generate, socially congruent signals and behaviours whenever

interacting with children. Whether such models can help uncover some of the implicit precur-

sors of social behaviours, and is so, whether the same models, learnt from children data, can as

well be used to interpret adult social behaviours, are open—and stimulating—questions that

this dataset might contribute to answer.
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