

Hugill, A. and Yang, H. (2016) 'PRASCAL: a pataphysical

programming language.' International Journal of Creative

Computing, 1 (2/3/4): 133-153.

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have

permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://researchspace.bathspa.ac.uk/

 Int. J. Creative Computing, Vol. X, No. Y, xxxx 1

 Copyright © 20XX Inderscience Enterprises Ltd.

PRASCAL: a pataphysical programming language

Andrew Hugill* and Hongji Yang
Creative Computing Cluster (CCC),
Bath Spa University,
Corsham Court, Corsham,
SN13 0BZ, England, UK
Email: a.hugill@bathspa.ac.uk
Email: h.yang@bathspa.ac.uk
*Corresponding author

Abstract: This paper introduces PRASCAL, a programming language that
distorts traditional PASCAL using pataphysical principles. The aim of the
language is to stimulate creativity and to embed playfulness in computer
systems. A wider aim is to reach towards a less severe, more human, form of
logic. Pataphysics was a concept elaborated by the French writer and poet
Alfred Jarry (1873–1907) in a series of plays and novels, as well as through his
own life. It is defined as the science of imaginary solutions and the science of
the laws governing exceptions and contradictions. PRASCAL applies this
concept through mechanisms such as patadata and Uboolean logic to arrive at a
language which is always exceptional and particular.

Keywords: programming language; pataphysics; many-valued logic; creativity;
play.

Reference to this paper should be made as follows: Hugill, A. and Yang, H.
(xxxx) ‘PRASCAL: a pataphysical programming language’, Int. J. Creative
Computing, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Andrew Hugill is a composer and Computer Scientist,
musicologist and literary scholar. He is the Director of the Centre for Creative
Computing at Bath Spa University. His recent books include The Digital
Musician (Routledge 2012) and 'Pataphysics: A Useless Guide (MIT Press,
2012). His recent compositions include the installation Secret Garden, an
11-iPad opera/ballet created with Martin Rieser, which was experienced
by more than 36,000 people during its recent exhibition in the Museum of
Contemporary Art, Taipei.

Hongji Yang is the Deputy Director of the Centre for Creative Computing at
Bath Spa University. He obtained his PhD degree at Durham University,
England. His research interests cover computer organisation, networking,
software engineering and recently creative computing, and he has published in
all these areas (five books and well over 300 refereed papers). He was the
Deputy Technical Director for the Software Technology Research Laboratory
at DeMontfort University. He has been an organiser for several leading
international conferences, such as the IEEE International Conference on
Software Maintenance (1999) and the IEEE Computer Software and
Application Conference (2002). He is a recipient of IEEE Computer Society
Meritorious Service Award and Outstanding Contribution Award. He became a
Golden Core Member of IEEE Computer Society since 2010.

 2 A. Hugill and H. Yang

1 Introduction

For creative computing to be truly creative, it must be surprising, playful, inventive, even
humorous. The link between play and creativity is by now so well established as to have
become an accepted fact. Huizinga (2001) argued the case persuasively in the 1940s, and
Caillois (2001) continued the theme in the 1960s. Nachmanovitch (1990, p.42) summed
up the main argument in 1990:

Improvisation, composition, writing, painting, theater, invention, all creative
acts are forms of play, the starting place of creativity in the human growth
cycle, and one of the great primal life functions. Without play, learning and
evolution are impossible. Play is the taproot from which original art springs; it
is the raw stuff that the artist channels and organizes with all his learning and
technique.

For software engineers, the notion of creative play has no less potential than for artists.
Indeed, we have argued that writing software and making art are fundamentally similar
activities (Hugill and Yang, 2013). It is perfectly possible to be highly creative in code, to
display ‘learning and technique’, to improvise, compose, and write, even to paint and
dramatise. Embedding this sense of creative play at the engineering level is therefore a
key mission of creative computing. From a more scientific point of view, increasing our
collective understanding of how creative play may be retained in the logic-driven world
of computing is a fundamental ambition.

By way of example, we present below our recent efforts towards these ends.
PRASCAL is a pataphysical programming language for creative computing. It is a partial
solution to the problem of engineering a pre-logical state that stimulates creativity. It
begins from an assumption that pataphysics offers an effective way to stimulate creativity
(Hugill et al., 2013). The evidence supporting this assumption is extensive, since many of
the most distinctively creative people have called themselves pataphysicians or explored
pataphysical ideas in their work (Hugill, 2012). For instance, some of the most
original thinkers and artists from the postwar period have been card-carrying members of
the Collège de ‘Pataphysique, from Marcel Duchamp to M.C. Escher, from
Jean Baudrillard to Umberto Eco, from Eugene Ionesco to the Marx Brothers. What these
figures have in common is a delight in playing with logic and language in ways which
challenge the limits of reason.

Pataphysics began as a schoolboy joke at the Lycée de Rennes, France, in the 1880s.
The target of the joke was the unfortunate science teacher, M. Hébert. One of the
schoolboys was the writer Alfred Jarry (1873–1907) whose short life became largely
devoted to the elaboration of a ‘science’ of pataphysics. In his hands, M. Hébert was
transformed into the monstrous marionette-like figure Ubu, the main character in
UbuRoi, a play whose première sparked riots and kick-started modernism (Shattuck,
1968). Jarry went on to develop increasingly sophisticated explanations of pataphysics,
culminating in the posthumously published 1911 novel Les Gestes et opiniens du Docteur
Faustroll, pataphysicien (Exploits and Opinions of Doctor Faustroll, pataphysician).
Therein, pataphysics was defined as ‘the science of imaginary solutions’ and “the science
of the laws governing exceptions and contradictions” [Jarry, (1996), p.21]. The word
pataphysics is sometimes preceded by an apostrophe, thus: 'pataphysics [Hugill, (2012),
pp.7–8].

 PRASCAL: a pataphysical programming language 3

2 Pataphysical creativity

Pataphysical knowledge consists of exceptions, contradictions, particularities and
imaginary solutions. Its only generalisable proposition is that it has no generalisable
propositions because, as Jarry (1996, p.22) wrote, it overturns the foundations of
empirical science:

Contemporary science is founded upon the principle of induction: most people
have seen a certain phenomenon precede or follow some other phenomenon
most often, and conclude there from that it will ever be thus. Apart from other
considerations, this is true only in the majority of cases, depends upon the point
of view, and is codified only for convenience – if that!

Since pataphysics exists beyond metaphysics1, it also represents a meta-abstraction.
Pataphysical knowledge is immediately useless, yet its continuous spiral motion provides
an energy that is useful at the spiritual level. It subverts reason without being gibberish or
merely silly. It uses the apparatus of science, art, mathematics and religion, but to ends
that are rather different from those disciplines. Its products constitute evidence of
pataphysics, rather than being pataphysics in themselves. It is entirely subjective and its
solutions are all imaginary. It is important that any representation of this knowledge
captures its playful and anarchic nature in a way that does not contradict its fundamental
seriousness.

We can formulate a key question of pataphysical creativity as follows: how may we
think illogically? Pataphysics generally agrees with Friedrich Nietzsche that ‘pure logic
is the impossibility that grounds science’. He argued that there can be no direct
correlation between the absolute knowledge of logical certainty and the ever-changing
world of real things.

One of those things that may drive a thinker into despair is the recognition of
the fact that the illogical is necessary for man, and that out of the illogical
comes much that is good. It is so firmly rooted in the passions, in language, in
art, in religion, and generally in everything that gives value to life, that it
cannot be withdrawn without thereby hopelessly injuring these beautiful things.
It is only the all too naive people who can believe that the nature of man can be
changed into a purely logical one; but if there were degrees of proximity to this
goal, how many things would not have to be lost on this course! [Nietzsche,
(2006a), p.33]

In the Nietzschean world-view, our idealised condition has lost the pervasive illogicality
that preceded logic.2 One way to liberate creativity is to try to recapture something of this
illogicality. This vision seems to coincide with theories of creativity which regard ‘tacit
knowledge’ as the originating source of the creative impulse (von Krogh et al., 2000).
Tacit knowledge is often identified as an intangible human resource (Jacobson, 1990) or,
as Polanyi (1967, p.4) famously wrote in The Tacit Dimension: “we can know more than
we can tell”. If creativity is located in the divergent thinking that taps into this
unknowable store of pre-cognitive knowledge, then illogicality may provide a means to
reach that state more readily.

The computational corollary to the question ‘how may we think illogically’ is: ‘how
may computers reason illogically’? While the aim of creative computing is not
necessarily to produce a machine intelligence that is capable of creativity, it nevertheless
does aim to enhance human creativity through the complementary development of
intelligent machines (Hugill and Yang, 2013). Computing struggles with illogicality,

 4 A. Hugill and H. Yang

because the need for structured reasoning drives the algorithmic process itself. Standard
solutions such as fuzzy logic introduce a degree of controlled variability into the
reasoning process (Tamir et al., 2015). The balanced ternary places the zero sum on a
sliding scale between 1 and –1, which is a way of introducing a certain degree of
unpredictability into processes which nevertheless still accord with the fundamental
principles of von Neumann binary architecture. Such solutions, however, are incomplete
in terms of pataphysical operations such as clinamen (inexplicable swerves), syzygy
(unexpected alignments) and antinomy (co-existent contradictions).

This article describes only a partial solution to the problem of capturing the
pre-logical state, because the computer, as presently configured, is incapable of operating
illogically. The despised ideal state of scientific reasoning and absolute logic is
incarnated in computers above all other physical products of mankind. The best we may
achieve at this time is to subvert its logical processes in order to deliver pataphysical
results. These are expressed as particularities, exceptions, contradictions and imaginary
solutions. In future, a pataphysical compiler may be created that is capable of ‘thinking’
pataphysically. Perhaps quantum computing, with its inherent unpredictability, will offer
the best platform for such an evolution. In the meantime, this paper will outline a new
programming language which produces pataphysical results when implementing
syzygistic, clinamenic and antinomial principles, representations and operations within a
conventional logical format.

3 PRASCAL

PRASCAL combines artistic and scientific creativity within the context of the traditional
programming language PASCAL, many of whose components remain unchanged. The
pataphysical interventions within the PASCAL structs represent clinamen, syzygies and
antinomies which enable results that are both humorous and creative [Hugill, (2012),
pp.9–12]. The name ‘PRASCAL’ is itself an example of this, echoing Jarry’s addition of
the letter ‘r’ to the word merde to create the celebrated opening word of the play
Ubu Roi: ‘merdre’. This clinamen ‘r’ changes the meaning of the word and gives it added
emphasis. The addition of an ‘r’ introduces a ‘rascal’ into PASCAL, which seems
appropriate given the creatively playful nature of this language.3

We have selected PASCAL because it is a traditional language. Neither
object-oriented languages nor aspect-oriented languages are suitable for this project. This
is because we are only seeking to demonstrate how the new logic is used and how
pataphysical operations are carried out. This will give us a complete language which can
be compiled and interpreted by a computer. The main body of this paper therefore
follows the standard pattern for PASCAL, except that we indicate only those new
elements introduced by PRASCAL. In some instances, we may also give the context to
aid comprehension. The primary aim of PRASCAL is to demonstrate programming for
creative computing. This may also prepare for the arrival of quantum computing by
making a language that is capable of creatively exploiting the ambiguities inherent in the
qubit.

 PRASCAL: a pataphysical programming language 5

4 PASCAL/PRASCAL

We indicate below only those extensions to the standard PASCAL set (PASCAL
Standard, 1991). A PRASCAL program has the same structure as its equivalent in
PASCAL, that is to say:

• program name

• uses command

• type declarations

• constant declarations

• variables declarations

• functions declarations

• procedures declarations

• main program block

• statements and expressions within each block

• comments.

PRASCAL handles statements, loops, functions, strings, arrays, records and sets in
exactly the same way as PASCAL. In other words, decision-making in PRASCAL is
identical to PASCAL. File handling is also the same. The principal differences are
therefore the extensions or distortions of the traditional language detailed below.

5 Crossing levels of abstraction

Crossing levels of abstraction has been identified as key element of creative computing
[Hugill and Yang, (2013), p.14]. Colburn and Shute (2007) propose that the distinction
between abstraction in mathematics and abstraction in computing lies in the fact that in
mathematics abstraction is information neglect, whereas in computing it is information
hiding. When we consider artistic creation, however, the word ‘abstraction’ has a
somewhat different meaning. Pataphysical principles can help to resolve such disparities
by offering a series of operators that will allow effortless movement between levels of
abstraction in all domains.

PRASCAL introduces some new operators that allow traversal of levels of
abstraction. These are the standard mathematical operators +, -, * /, preceded by an
apostrophe. The apostrophe in pataphysics is a much-debated and elusive sign that seems
to embody the idea of pataphysics itself. By placing it before the word ‘pataphysics
(something he did on only a single occasion) Jarry (1996, p.21) avoided ‘a simple pun’.
Since he never explained what the pun might be, speculation has raged ever since about
the precise meaning of the apostrophe. But it has the merit of wrong-footing the reader in
a playful and mysterious way, as well as symbolising the desire for the exceptional by
trying to self-exclude the word from the dictionary. In PRASCAL, the apostrophe is
generally used to denote the pataphysical element that may be used to influence an
operation, function, variable, and so on.

 6 A. Hugill and H. Yang

Since pataphysics extends as far beyond metaphysics as metaphysics extends beyond
physics we may express the implied crossing of levels grammatically as follows:

Physics ’ Physics :: Metaphysics< > + < > = (F1)

Metaphysics ’ Metaphysics :: Pataphysics< > + < > = (F2)

Pataphysics ’– Metaphysics :: Metaphysics< > < > = (F3)

Metaphysics ’– Physics :: Physics< > < > = (F4)

Physics ’* Metaphysics :: Pataphysics< > < > = (F5)

Pataphysics ’/ Metaphysics :: Physics< > < > = (F6)

6 Key words

PRASCAL statements contain some additional reserved words to the standard PASCAL
set, for example:

• absolu (string) → string (the absolu value will always result in a cliché)4

• antinomy (string) → string (the antinomy function is self-contradictory)

• clinamen (string) → string (the clinamen function is a small swerve or deviation)

• debraining (string) → string (a debraining severs the head from the body or, in the
case of a string, separates some of the initial letters from the rest)

• epiphenomenon (cstring) → string (an epiphenomenon is a by-product)

• exception (string) → string (the exception function is something outside the given
category)

• haha (int) → int (haha is any number, the more absurd or unlikely the better)

• particular (string) → string (a particular is a unique precision)

• pschitt (string) → ubool (see below for an explanation of ubool)

• spiral (string) → string (the spiral variable is somewhat wild)

• syzygy (string) → string (the syzygy function is an unexpected collision)

The PRASCAL character set extends the standard PASCAL set as follows: '+, '–, '*, '/,
, ◄, ≡, :–).
PRASCAL also adds two new data types to the classic Booelan, character, real and

integer, namely: patadata and Uboolean.

 PRASCAL: a pataphysical programming language 7

7 Patadata

The concept of patadata has already been elaborated by Hendler and Hugill (2013, p.27):
In thus envisaging a layer of meta-metadata, we will benefit from the
ambiguities thrown up by the process of metadata creation, precisely those
‘shortcomings’ identified by Doctorow (2001) in his ‘Metacrap’ thesis: lying,
laziness, error, subjectivity, plurality, and so on. But we will also be able to
insert our pataphysical declensions into the metadata harvest in a way that will
enrich the creative interaction, rather than just deliver a series of obvious
mistakes.

The purpose of a data type is for the compiler to be able to reserve enough space in
memory for that piece of data. PRASCAL extends the usual character (Char) to include
Meta-Char and Pata-Char, where Meta-Char is a concept which is normally represented
by two words, and Pata-Char is a super concept that is represented by up to four words.
Therefore, two bytes are reserved for a Char type; four bytes for a Meta-Char; and eight
bytes for a Pata-Char.

8 Uboolean data

An Uboolean type will take the same amount of memory space as a Boolean type.
Uboolean is in effect a new kind of logic for computing that uses the antinomy of
pataphysics. We call this Uboolean logic after King Ubu, whose vastly inflated belly is
capable of accommodating – nay, comfortable with assimilating – the simultaneous
existence of mutually exclusive opposites. In César-Antichrist (1895) Ubu’s
‘physick-stick’ revolves across the stage, creating a minus and a plus sign as it does so.
This double existence becomes one of the foundational principles of pataphysics itself.
Whereas physical science relies on the repeated experiment, pataphysical science
acknowledges the uniqueness of each and every individual moment or event. As
Georges Perec observed:

If physics proposes: ‘you have a brother and he likes cheese’, then metaphysics
replies: ‘If you have a brother, he likes cheese’. But ‘Pataphysics says: You
don’t have a brother and he likes cheese.

9 Uboolean logic

In traditional Boolean logic, there are two possible states: true (T) and false (F).
Uboolean logic allows a third state, the FalsTrue (FT), in which something is
simultaneously false and true.5 This rather dialetheistic form of logic not only produces
pataphysical outcomes from traditional operators, but also new pataphysical operators
that enable us to move between levels of abstraction. The following truth tables present
the consequences of Uboolean logic. Consider the outcome z when the basic Boolean
operations conjunction (and), disjunction (or) and negation (not) are applied to x and y:

 8 A. Hugill and H. Yang

Table 1 Truth table for And (∧)

X Y Z = X (AND ∧)Y
F F F
F T F
F FT F
T F F
T T T
T FT FT
FT F F
FT T FT
FT FT FT

Table 2 Truth table for OR (∨)

X Y Z = X (OR ∨) Y
F F F
F T T
F FT FT
T F T
T T T
T FT T
FT F FT
FT T T
FT FT FT

Table 3 Truth table for NOT (¬)

X Z = (NOT ¬) X
F T
T F
FT FT

Consider also the exclusive disjunction XOR ⊕.

Table 4 Truth table for XOR (⊕)

X Y Z = X XOR ⊕ Y
F F F
F T T
F FT FT
T F T
T T F
T FT FT
FT F FT
FT T FT
FT FT T

 PRASCAL: a pataphysical programming language 9

Uboolean bears a superficial resemblance to existing systems of many-valued logics. On
closer inspection, however, there are some important differences. All previous
many-valued logics concern an indeterminate value that is sometimes called the ‘included
middle’. Thus, Jan Lukasiewicz’s classic paper of 1930 introducing his three-valued logic
system, describes an intermediate truth-value I.

“I can assume without contradiction that my presence in Warsaw at a certain
moment of time next year, e.g., at noon on 21st December, is not settled at the
present moment either positively or negatively. It is therefore possible but not
necessary that I shall be present in Warsaw at the stated time. On this
presupposition the statement “I shall be present in Warsaw at noon on 21st
December next year” is neither true nor false at the present moment”
[Kneale and Kneale, (1962), p.570].

D.A. Bochvar’s ontological system, developed in 1939, similarly treats I as ‘undecided’
[Rescher, (2007), p.66], whereas Kleene’s (1952, p.332) later epistemological system
refers to I as ‘unknown’. There have been variants on this principle. The Chinese logician
Moh Shaw-kwei, for example, “proposed that the intermediate truth-value I be construed
as ‘paradoxical’ and be assigned to propositions like ‘This statement is false’ which will
be false if classed as true and true if classed as false” [Rescher, (2007), p.70]. More
recently, Bergstra and Ponse (1998, p.95) have proposed that the value D should be
substituted for I to express divergence. This takes us somewhat closer to pataphysical
ideas, but a close perusal of their system shows that D and I are nevertheless fairly
interchangeable and remain indeterminate. Finally, the m-valued systems of Emil Post
dispense with the true/false distinction altogether, but only to effect “a cyclic shift in the
truth-values” [Rescher, (2007), p.76].

Uboolean logic, by contrast, describes the simultaneous existence of mutually
exclusive opposites. The FalsTrue is not some indeterminate, undecided, divided, or even
paradoxical, instance of an included middle. Rather it is an explosive combination of
irreconcilable states of affairs whose only possible outcome is an imaginary solution.
This cannot be instantiated, because there is no generalisable example of a standard
imaginary solution arising from a FalsTrue condition. Any such example is by definition
exceptional. Herein lies the crucial distinction: uboolean logic aims to stimulate creativity
through pataphysical knowledge. In other words, it is inherently illogical, subjective and
ungeneralisable, in short: human. As Robin Ahlgren recently commented: “We really
need a step sideways in logic so that we can think more humanly and in less black and
white terms. Jarry’s ‘correspondence’ with the scientists of his day seems to reach out for
a more natural, less severe form of science.” (Ahlgren, private message to author, 9.3.16).

Many-valued logics have already been applied in computing as nonbinary-valued
systems. The comprehensive survey by Miller and Thornton (2007) shows their
implementation in hardware and software applications, and includes their use in quantum
computing. Porat (1969, p.947) argues that “a system which is based on a radix higher
than 2 and built from multivalued elements offers the advantages of: (a) higher speed of
serial and some serial-parallel arithmetical operations […]; and (b) better utilisation of
transmission channels […]; and (c) more efficient error detection and correction codes;
and (d) potentially higher density of information storage”. The implementation of
Uboolean logic, on the other hand, makes no such claims to increased usefulness. Rather,
its main purpose is to represent the apostrophe before the word ’pataphysics by
wrong-footing conventional logics. Its humour is embedded in its construction, such that

 10 A. Hugill and H. Yang

the playful nature of the resulting outputs is matched only by the absurdity of the
underlying propositions.

Type Declarations follow the PASCAL convention: type-identifier-1,
type-identfier-2 = type-specifier; for example:

days, age = integer;
yes, true = boolean;
name, city = string;

fees, expenses = real;

However, PRASCAL adds the following:

falstrue = uboolean.

10 Constants

A constant is an entity that remains unchanged during program execution. PRASCAL
allows ordinal, set, char and string constants, but is primarily concerned with the string
type.

const
Identifier = contant_value;

The following are some examples of constant declarations, in addition to existing
PASCAL constants:

PI = 3.141592;
NAME = ‘Alfred Jarry’;

CHOICE = yes;
OPERATOR = ‘+’;

INFINITY = ∞
ABSOLUTE ZERO = ‘K’

11 Enumerated types

type
enum-identifier = (item1, item2, item3, ...)

 PATAPHYSICIANS = (Faustroll, Ubu, Sandomir, Sainmont, Mollet, Opach,

Lutembi)
 SPIRALS = (Gidouille, Archimedean, Euler, Fermat, Hyperbolic, Lituus,

Logarithmic, Fibonacci)
 CONVEYANCE = (Bicycle, Time Machine, Carapace, Skiff)

 PRASCAL: a pataphysical programming language 11

12 Subrange types

var
age: '63 … 63; Here, ‘63 represents the imaginary birth age of Dr. Faustroll, where the
apostrophe elides his years 1 - 62, which never existed.
type
subrange-identifier = lower-limit ... upper-limit;

const
P = '63;
Q = 63;

type
Number = '63 ... 63;

Value = P ... Q;
type
Constraints

Anoulipism
Snowball

Heterogram
Homomorphism

S+7
ElementaryMorality

Oulipism
Combinatorics

Quenine
Synthoulipism

13 Variable types

To the standard variable types (character, integer, Boolean, enumerated, subrange and
string), we add Uboolean.

Variable declarations:
var
variable_list : type;
var
age, weekdays : integer;
taxrate, net_income: real;
choice, isready: boolean;
initials, grade: char;

 12 A. Hugill and H. Yang

name, surname : string;
imagine, solves: Uboolean
Enumerated Variables:
var
var1, var2, ... : enum-identifier;
type
months = (Absolu, Haha, As, Sable, Décervelage, Gueules, Pédale, Clinamen, Palotin,
Merdre, Gidouille, Tatane, Phalle);
Var
m: months;
...
M := Absolu;
Subrange Variables:
var
subrange-name : lowerlim ... uperlim;
var
clinamen: K … ∞;
age: ‘63 ... 63;

14 Operators

In PRASCAL, operators mainly operate on variable strings. PRASCAL introduces
several new special operators to complement the standard PASCAL sets. Boolean and bit
operators remain the same (although PRASCAL does not use bit operators).

In the following tables: A and B are physical entities; ∞ is metaphysical infinity; im is
imaginary; and ∞ – a – 0 + a + 0 is the formula by which Dr. Faustroll demonstrates that
God is a point.
Table 5 Arithmetical special operators

Operator Description Example
A '+ B will give ∞ '+ Pataphysically adds two operands

∞ '+ ∞ will give ∞ – a – 0 + a + 0
∞ – a – 0 + a + 0 '– ∞ will give A '– Pataphysically subtracts two operands

∞ '– A will give B
'* Pataphysically multiplies two operands A '* ∞ will give ∞ – a – 0 + a + 0
'/ Pataphysically divides two operands '∞ – a – 0 + a + 0 ’/ ∞ will give A

 PRASCAL: a pataphysical programming language 13

Table 6 Relational special operators

Operator Description Example

� Checks if the values of two operands are mutually
exclusive. If yes, then condition becomes true.

(A = Ā) is true.

◄ Checks if the value of right operand may be imagined from
value of left operand. If yes, condition becomes true.

(A = im)

≡ Checks if the value of left operand is equivalent, but not
equal, to right operand. If yes, then condition becomes true.

(A ≡ A’) is true.

:-) Checks if the value of left operand stands in a funny
relationship to value of right operand. If yes, then condition

becomes true.

(A :-) A’) is true.

The new pataphysical operators take precedence over all other operators.
Table 7 Prascal operator precedences

Operator Precedence
'*, '/, '+, '– Highest
~, not,
*, /, div, mod, and, &
|, !, +, -, or,
=, <>, <, <=, >, >=, in
or else, and then Lowest

The following are pataphysical operations:

• ⊤ ::= EXCEPT (an exception).

• ¬ ::= CONTRA (a logical incompatibility between two or more propositions or
statements that are simultaneously affirmed (i.e., both are true). CONTRA always
negates the part of a string that PRECEDES the operator. e.g., I have a brother
CONTRA he likes cheese, = I do not have a brother and he likes cheese.

• im ::= IMAGINE – designed to encourage hypothetical speculations or imaginary
solutions.

• :-) = HAHA – humour or irony.

• ≡ ::= EQUIV – the pataphysical law of equivalence can take the form <variable>
EQUIV <variable> where anything at all may be a variable. Example from Lewis
Carroll: cabbages EQUIV kings.

• σ ::= EPI – superinduced upon, as in Jarry – ‘An epiphenomenon is superinduced
upon a phenomenon’.6

15 Grammar

The grammar of PRASCAL may be illustrated by the following syntactical examples,
notated in Backus-Naur form (BNF), which we may rename Bosse-de-Nage Form, after

 14 A. Hugill and H. Yang

the dog-faced baboon who accompanies Dr. Faustroll and only ever says ‘ha ha’. Some of
the illustrative operations are taken from the work of the Oulipo, a workshop for potential
literature whose members included several mathematicians and computer scientists
(Motte, 2015; Mathews and Brotchie, 2005). These include the ‘snowball’, a poetic
technique in which a letter is added or subtracted line by line, and S+7, a word
substitution technique in which substantives are replaced by the seventh following
substantive in a chosen dictionary. For example:

<clinamen>
 <clinamen> ::= <wordplay> | <semantic>
 <wordplay> ::= <snowball> | <playfair> | <S+7>
 <snowball> ::= <addletter> | {<addletter>} | <subtractletter> |

{<subtractletter>} //<addletter> adds a letter to a word (at the end, the
beginning or in the middle) to create a new word.

 <playfair> ::= <letterpair>* //<playfair> is a cipher method by which a word
is broken up into pairs of letters.

 <S+7> ::= <substantive> <substantive+1> <substantive+2> <substantive+3>
<substantive+4> <substantive+5> <substantive+6> substantive+7 <EOL>
//A substantive may be a noun, verb, adjective or adverb.

 <semantic> ::= <synonym> | <association> | <dissociation> //Synonym is a
10% deviation. Association is a 50% deviation, using a word association lookup
such as http://wordassociations.net/ Dissociation is a 100% deviation, which
works by finding a word that, when additively combined with the entered word,
delivers 0 hits from a web search. Example: ragwort+stuplime.

<syzygy>
 <syzygy> ::= {<concept> | <thing> | <pun>}*2
 <concept> ::= <abstraction> | <plan> | <intention>
 <thing> ::= <object> | <entity> | <fact> | <creature>
 <pun> ::= (<word> <word>) <wordplay>
<antinomy>
 <antinomy> ::= <statement1> ¬ <statement2> // ¬ “contradicts” or “negates”.

16 Libraries

The libraries for PRASCAL are drawn from appropriately pataphysical sources. They
include distorted collections of typical literary and mathematical formulae,
such as clichés or number substitutions for values such as π. We also use
Dr. Faustroll’s ‘Library of 27 Equivalent Books’. We may call a function such as:
ReturnOneOfTheChosenFew(Random); this would return a value from the chosen few
instances from the equivalent books, as follows:

1 From Baudelaire, E. A Poe’s Silence.

2 The precious tree into which the nightingale-king and his subjects were
metamorphosed, in the land of the sun.

 PRASCAL: a pataphysical programming language 15

3 The Calumniator who carried Christ on to a high place.

4 The black pigs of Death, retinue of the Betrothed.

5 The ancient mariner’s crossbow and the ship’s floating skeleton, which, when placed
in the skiff, was sieve upon sieve.

6 The diamond crowns of the Saint-Gothard rock-drillers.

7 The duck placed by the woodcutter at the children’s feet, and the 53 trees with
scored barks.

8 The hares, running over the sheets, which became cupped hands and carried the
spherical universe like a fruit.

9 Scapin’s lottery ticket.

10 The eye of the third Kalender, who was the son of a king: the eye poked out by the
tail of the flying horse.

11 The 13 journeymen tailors massacred at dawn by Baron Mordax on the order of the
knight of the papal order of Civil Merit, and the table napkin which he tied round his
neck beforehand.

12 One of the golden peals from the celestial gold-smiths’ shops.

13 The scarab, beautiful as the trembling of hands in alcoholism, which vanished over
the horizon.

14 The lights heard by the first blind sister.

15 The virgin, the bright, and the beautiful today.

16 The north wind which blew upon the green sea and blended with its salt the sweat of
the galley slave who rowed until he was a 120 years old.

17 The joyful walk of the irreproachable son of Peleus in the meadow of asphodels.

18 The reflection, in the mirror of the shield silvered with ancestral ashes, of the
sacrilegious massacre of the seven planets.

19 The little bells to which the devils danced during the tempest.

20 Cleopatra.

21 The sorrel plain where the modern centaur snorted.

22 The icicles hurled by the wind of God into the waters.

23 The scaly animals imitated by the whiteness of the leper’s hands.

24 r (the fifth letter of the first word of the first act of Ubu Roi).

25 The cross made by the spade in the horizon’s four brows.

26 Voices asymptotic toward death.

27 The two and a half leagues of the Earth’s crust.

 16 A. Hugill and H. Yang

We also use a library of pataphysical statements, so that a call such as
ReturnAPataphysicalStatement(Random) might give one of the following:

1 Pataphysics is the end of ends (Sandomir).

2. Pataphysics is to metaphysics as metaphysics is to physics (Jarry).

3 Pataphysics is the science of imaginary solutions (Jarry).

4 Pataphysics is the science of the particular and the laws governing exceptions (Jarry).

5 Pataphysics describes a universe supplementary to this one (Jarry).

6 Whether it suits us or not, everything we do is ‘Pataphysics (Vian).

7 Beyond ‘Pataphysics lies nothing; ‘Pataphysics is the ultimate defense (Shattuck).

8 For pataphysics there’s no longer any singularity (Baudrillard).

9 I would never belong to any club that would have me as a member (Groucho Marx).

10 You do not have a brother and he likes cheese (Georges Perec).

These may be seen in operation in some of the examples below.

17 Examples

To clarify the above still further, consider the following examples. The first exemplifies
the application of Uboolean logic in PRASCAL. The second exemplifies the ability of
PRASCAL to cross levels of abstraction. The third exemplifies pataphysical functions.

Example 1: Wave-particle duality.

Given that Einstein, writing in 1905, concluded that light is both a wave and a particle
(thereby contradicting both the Newtonian particle theory and the Maxwellian
electromagnetic wave theory), we may test his conclusion using Uboolean logic.

Is light: having nothing to do with particle (NotP), particle plus something else
(PPlus), or only particle (OnlyP)?

Is light: having nothing to do with wave (NotW), wave plus something else (WPlus),
or only wave (OnlyW)?
Table 8 Wave-particle duality truth table

X (light with particle) Y (light with wave) Z = X ∧ Y (light is)
F (NotP) F (NotW) F
F (NotP) T (WPlus) F
F (NotP) FT (OnlyW) F
T (PPlus) F (NotW) F
T (PPlus) T (WPlus) T
T (PPLus) FT (OnlyW) FT
FT (OnlyP) F (NotW) F
FT (OnlyP) T (WPlus) FT
FT (OnlyP) FT (OnlyW) FT

 PRASCAL: a pataphysical programming language 17

In PRASCAL, this would possibly be expressed as follows:

writeln(‘Is light: having nothing to do with particle (NotP), particle plus something
else (PPlus), or only particle (OnlyP)?’);
Readln(AnswerP);
writeln(‘Is light: having nothing to do with wave (NotW), wave plus something else
(WPlus), or only wave (OnlyW)?’);
Readln(AnswerW);

If (AnswerP = ‘NotP’) then LightP := F
If (AnswerP = ‘PPlus’) then LightP := T
If (AnswerP = ‘OnlyP’) then LightP := FT
If (AnswerW = ‘NotW’) then LightW := F
If (AnswerW = ‘WPlus’) then LightW := T
If (AnswerP = ‘OnlyW’) then LightW := FT
Light := LightP and LightW
If (Light = T) then writeln (‘Pschitt’);
If (Light = F) then writeln (‘Fruck’);
If (Light = FT) then writeln (‘Ha ha’);

Example 2: Crossing levels of abstraction

By applying formulae, F1 to F6 in a previous section, crossing levels of abstraction can
be achieved as follows.

If we take a frog as an instance of physics and Heqet (the Ancient Egyptian frog
goddess) as an instance of metaphysics, then a hoquet (hiccup, or antiphonal musical
technique) is, by a clinamen (deviation), an instance of pataphysics. This gives us the
following examples:

“frog” '+ “frog” = “heqet”
“heqet” '+ “heqet” = “hoquet”

“hoquet” '– “heqet” = “heqet”

“heqet” '– “frog” = “frog”

“frog” '* “heqet” = “hoquet”
“hoquet” '/ “heqet” = “frog”

More directly, we may line up the following representations: Human (physics), God
(metaphysics), Dr. Faustroll (pataphysics), which gives the following:

“Human” '+ “Human” = “God”
“God” '+ “God” = “Faustroll”

 18 A. Hugill and H. Yang

“Faustroll” '– “God” = “God”
“God” '– “Human” = “Human”

“Human” '* “God” = “Faustroll”
“Faustroll” '/ “God” = “Human”

In natural language, this may be written, pataphysically, as:

A human added to a human produces God.
God added to God produces Faustroll.

God removed from Faustroll leaves God.
A human removed from God leaves a human.
A human multiplied by God gives Faustroll.
Faustroll divided by God results in a human.

Example 3: Pataphysical functions

• absolu (char_string) → string (the absolu value will always result in a cliché)

Example: absolu(frog) = a frog in the hand is worth two in the refrigerator.

(Note that this example draws upon a library of clichés, and that the ‘refrigerator’
substitution for the more predictable ‘pond’ is itself something of a clinamen
swerve).

• antinomy (char_string) → string (the antinomy function is self-contradictory)

Example: antinomy (brother) + antinomy (cheese) = You do nit have a brother and
he likes cheese (cf. Perec).

• clinamen (char_string) → string (the clinamen function is a small swerve or
deviation)

Example: clinamen (rock) + clinamen (piano) + clinamen (Sisyphus) = billiards,
limestone, roll.

This example uses the 50% deviation syntax.

• debraining (char_string) → string (a debraining severs the head from the body or, in
the case of a string, separates some of the initial letters from the rest)

Example:

debraining(chair) = hair

debraining(hair) = air

• epiphenomenon (char_string) → string (an epiphenomenon is a by-product)

Example: epiphenomenon (spaghetti) = steam

• exception (char_string) → string (the exception function is something outside the
given category)

 PRASCAL: a pataphysical programming language 19

Example: exception (boats) = colander

• haha (int) → int (haha is any number, the more absurd or unlikely the better)

Example: haha(0) = 37

• particular (char_string) → string (a particular is a unique precision)

Example: particular (baboon) = Bosse-de-nage

• pschitt (char_string) → ubool (see below for an explanation of ubool)

Example: pschitt (absolute) = there are no absolutes

• spiral (string) → string (the spiral variable is somewhat wild)

Example: spiral (mermaid) = obeliscolychny

• syzygy (char_string) → string (the syzygy function is an unexpected collision)

Example: syzygy (sister) + syzygy (tears) = having a cry, sis?

We can see from these examples that there are many potential applications of the
PRASCAL language for stimulating creativity. In the ‘clinamen’ instance given above,
the phrase ‘billiards, limestone, roll’ may well act as an inspiration to a new train of
thought that could arise in a creative context. Nor need the examples be restricted to
words alone: any of these could become inputs to a visual or multimedia search. The
point is that the unexpected nature of the outcomes are not simply random but evocative
and even poetic, offering somewhat divergent lines of thought by stimulating the
imagination. Sometimes the results are exact, but more often they are ambiguous, or
imprecise, reflecting the ‘hit-and-miss’ approach of creative thinking.

18 Concluding remarks

PRASCAL enables various pataphysical concepts to be expressed and manipulated. It has
demonstrated how both humorous and scientific principles can co-exist in a programming
language. Initial experiments with the language have shown clearly that a stimulus for
creative thinking can be produced by the use of the language. The language may also be a
starting point for exploring a new way of computer reasoning, computing creativity and
even quantum computing.

References
Bergstra, J.A. and Ponse, A. (1998) ‘Kleene’s three-valued logic and process algebra’, Information

Processing Letters, Vol. 67, pp.95–103.
Caillois, R. (2001) Man, Play and Games, University of Illinois Press, Chicago.
Colburn, T. and Shute, G. (2007) ‘Abstraction in computer science’, Minds and Machines, Vol. 17,

No. 2, pp.169–184.
Doctorow, C. (2001) Metacrap: Putting the Torch to Seven Straw Men of the Meta-utopia [online]

http://www.well.com/~doctorow/metacrap.htm (accessed 25 March 2015).
Hendler, J. and Hugill, A. (2013) ‘The syzygy surfer: (ab)using the semantic web to inspire

creativity’, Int. J. Creative Computing, Vol. 1, No. 1, pp.20–34.

 20 A. Hugill and H. Yang

Hugill, A. (2012) Pataphysics: A Useless Guide, MIT Press, Cambridge, MA.
Hugill, A. and Yang, H. (2013) ‘The creative turn: new challenges for computing’, International

Journal of Creative Computing, Vol. 1, No. 1, pp.4–19.
Hugill, A., Yang, H., Raczinski, F. and Sawle, J. (2013) ‘The pataphysics of creativity: developing

a tool for creative search’, Digital Creativity, Vol. 24, No. 3, pp.237–251.
Huizinga, J. (2001) Homo ludens, Routledge, London.
Jacobson, R. (1990) ‘Unobservable effects and business performance’, Marketing Science, Vol. 9,

No. 1, pp.74–85.
Jarry, A. (1996) Translated S. Watson Taylor, Exploits and Opinions of Doctor Faustroll,

Pataphysician, Exact Change, Boston.
Kleene S.C. (1952) Introduction to Metamathematics, Princeton, Amsterdam, pp.332–340.
Kneale, W. and Kneale, M. (1962) The Development of Logic, Clarendon Press, Oxford,

pp.569–70).
Mathews, H. and Brotchie, A. (2005) Oulipo Compendium, Atlas Press, London.
Miller D.M. and Thornton, M.A. (2008) ‘Multiple valued logic: concepts and representations’,

Synthesis Lectures on Digital Circuits and Systems, Vol. 12, pp.41–42.
Motte, W.F. (2015) Oulipo – A Primer of Potential Literature, Dalkey Archive Press, London.
Nachmanovitch, S. (1990) Free Play: Improvisation in Life and Art, Tarcher/Penguin, New York.
Nietzsche, F. (2006a) Human, All Too Human, Dover, New York.
Nietzsche, F. (2006b) The Gay Science, Dover, New York.
PASCAL Standard (1991) ISO/IEC 10206: Information Technology, Programming Languages,

Extended Pascal.
Polanyi, M. (1967) The Tacit Dimension, Anchor Books, New York.
Porat, D.I. (1969) ‘Three-valued digital systems’, Proceedings of the Institution of Electrical

Engineers, Vo. 116, No. 6, pp.947–954.
Rescher, N. (2007) ‘Many-valued logic’, Topics in Philosophical Logic, Vol. 17, pp.54–125.
Shattuck, R. (1968) The Banquet Years: The Origins of the Avant-Garde in France 1885 – World

War I, Random House, New York.
Tamir, D.E., Rishe, N.D., Naphtali, D. and Kandel, A. (Eds.) (2015) Fifty Years of Fuzzy Logic and

its Applications, Springer, London.
von Krogh, G., Ichijo, K. and Nonaka, I. (2000) Enabling Knowledge Creation: How to Unlock the

Mystery of Tacit Knowledge and Release the Power of Innovation, Oxford University Press,
Oxford.

Zenkin, A.A. (1997) ‘Superinduction: a new method for proving general mathematical statements
with a computer’, Doklady Mathematics, Vol. 55, No. 3, pp.410–413.

Notes
1 “Pataphysics [extends] as far beyond metaphysics as the latter extends beyond physics” [Jarry,

(1996), p.11].
2 “Where has logic originated in men’s heads? Undoubtedly out of the illogical, the domain of

which must originally have been immense” [Nietzsche, (2006b), p.84].
3 ‘Ill-posed software’ posted a web page briefly outlining some ideas for pataphysical

programming in 2006 which show a similarly playful aspiration. Regrettably, the project
seems never to have been implemented
http://www.illposed.com/philosophy/pataprogramming.html (accessed 2.08.15).

4 “Clichés are the armature of the absolute” (Jarry)

 PRASCAL: a pataphysical programming language 21

5 Note the phonetic (and nearly anagrammatic) echo in ‘FalsTrue’ of the French pronunciation
of ‘Faustroll’.

6 “Classical induction (according to J.S. Mill) is the process of making a plausible inference of a
general statement from a particular statement. Therefore, it is quite reasonable to call the
process of making a certain inference of a general statement from a singular statement the
method of superinduction” [Zenkin, (1997), p.411]. A singular statement is any simple
statement with a singular term as the subject, and which ascribes some property to the referent
of the singular term, e.g., Ubu is King of Poland. The method of superinduction therefore give
us the certain general statement: Poland is nowhere.

	Article coversheet - Clues
	00 HUGILL

