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Summary 

Bryozoans (Phylum Bryozoa) are colony-forming invertebrates found in 

marine and freshwater contexts. Many are calcified, while some others have 
chitinous buds, and so have archaeological potential, yet they are seldom 

investigated, perhaps due to considerable difficulties with identification. This 
article presents an overview of bryozoans, as well as summarising 

archaeological contexts in which bryozoans might be expected to occur, and 
highlighting some previous work. It also presents methods and directions to 
maximise the potential of bryozoans in archaeological investigations. 
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1. Introduction 

Bryozoans (Phylum Bryozoa), also known as sea mats or moss animals and 

formerly as Polyzoa or Entroprocta, are colony-forming sessile invertebrates, 
comprising communities of separate individuals known as zooids. There are 

around 6000 living species known in the world (Benton and Harper 2009, 
314). Most are marine, although brackish and freshwater species exist. 

Generally, they occur on hard substrates such as rocks, shells and the fronds 
of seaweeds, although there are forms that live on mud and sand. Many are 

calcified, and others have chitinous buds, and have the potential to be 
preserved in archaeological contexts, yet they are seldom investigated, 

perhaps due to considerable difficulties with identification. Considerably more 
work has been done on geological assemblages and more still on living 

colonies; however, in general the group is not well known (Francis 2001, 
106). This article presents a condensed overview of the phylum, as well as a 
review of archaeological work to date. It also presents directions to maximise 

the interpretative potential of this under-exploited resource in 
palaeoecological research. 

2. Bryozoan Biology, Taxonomy and 
Identification 
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Figure 1: Modern specimen of Cryptosula pallasiana (Moll 1803) showing (a) orifice, (b) 

operculum, (c) calcified frontal wall, (d) peristome and (e) avicularium 

Bryozoans form colonies by budding, each colony originating with a primary 
individual known as an ancestrula (Ryland 1995, 629). Each unit of the 

colony is called a zooid, and each zooid comprises an outer protective case, 
the zooecium, and the internal living content, the polypide (Ryland 1962, 

34). The colony is more than just a collection of individuals as it has 
individuality of its own. Two colonies of the same species will not fuse when 

they meet, whereas two branches of the same colony will (Ryland 1962, 34). 
Bryozoan colony size can vary from a few millimetres to huge masses 

weighing several kilograms (Francis 2001, 105). 

Embryos develop within special brood-chambers called ovicells. The buds of 
freshwater bryozoans of the class Phylactolaemata detach from the colony 

and are encased in a capsule comprising two chitinous valves that may 
preserve very well and are often identifiable to species level, known as 

a statoblast (Francis 2001, 105). Statoblasts have a dorsal valve and ventral 
valve, and most have another chitinous layer, known as a periblast, which 
overlies the capsule and may form a gas-filled annulus that allows flotation 

(Mundy 1980, 9). Statoblasts that float are known as floatoblasts, and those 
that do not are sessoblasts. The Plumatellidae produce both floatoblasts and 

sessoblasts, while the Fredericellidae have only sessoblasts and the 
Lophopodidae and Cristatellidae have only floatoblasts (Mundy 1980, 9-10). 

 

Figure 2: Bryozoan statoblast (floatoblast of Plumatella emarginata (Allman 1844), dorsal 

valve) from Walpole, Somerset, photographed in transmitted light 
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Bryozoans are suspension feeders that use a specialised feeding and 
respiratory organ called a lophophore, much like Brachiopoda and Phoronida. 

The lophophore is a U-shaped structure covered by ciliated tentacles that can 
be withdrawn into the zooecium or extended for feeding (Francis 2001, 105). 

When extended, the tentacles form a funnel with the mouth at its vertex 
(Ryland 1970, 43). 

The oldest fossil bryozoans date from the Ordovician, although it is probable 

that soft-bodied, primitive bryozoans existed during the Cambrian (Benton 
and Harper 2009, 316). Bryozoans are the dominant contributors to 

temperate water marine carbonate deposits (Clarke 2009, 138), forming part 
of what has been termed 'bryomol' carbonate facies, alongside the shells of 

molluscs (Nelson 1988, table 1). 

There are two classes of bryozoan in British marine waters: the 
Stenolaemata, which have long slender zooids with strongly calcified walls 

and contains one order, the Cyclostomatida; and Gymnolaemata, with 
cylindrical or squat zooids. There are two orders of Gymnolaemata, the 

Cheilostomatida and the uncalcified Ctenostomatida (Gibson et al. 2001, 
321). The freshwater Phylactolaemata are also present in Britain. 

Bryozoans are chiefly identified using skeletal characteristics such as spines 

and other surface structures as well as the form of the pores and the shape 
and size of the colonies (Smith 1995, 231). Archaeological specimens may be 

damaged, making identification to species level difficult. A complex 
nomenclature has arisen to describe bryozoans (see Ryland 1995, 629). 

Normal feeding zooids are known as autozooids, while specialised forms are 
called heterozooids. Commonly, bryozoans are squat and form an encrusting 

layer. Such bryozoans have a basal surface, applied to the substratum, as 
well as a frontal surface. This distinction also exists in free-standing colonies. 

The end of the zooid nearest to the origin of the colony is proximal, the 
farthest end being distal. The opening through which the polypide emerges is 

the orifice. This is situated near the distal end of the frontal membrane, and 
may be closed by an operculum. In some species, this is surrounded by a low 

ridge or tubular collar called theperistome. Avicularia are heterozooids found 
in some bryozoans that do not feed and are usually attached to an autozooid. 

A simplified terminology is sometimes used in geology that allows non-

specialists to describe growth form (Smith 1995, 231; Hageman et al. 1997, 
fig. 1). This is based on the mode of attachment to the substrate (cemented, 

rooted, unattached); colony construction; and colonial geometry 
(Hageman et al. 1997, 406). The form of zooids may reflect environment, as 

both zooid size and colony size decrease with depth (Smith 1995, 233), while 
encrusting forms of colonies tend to dominate over erect ones in shallow 
water, perhaps owing to increased physical and biological disturbance 

(Smith 1995, 234). Reconstructing past environmental conditions from 
bryozoan colony forms is not straightforward, however. The same form may 

occur in different environments; taphonomy may distort the preservation of 
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different colony forms; and it is possible that environmental distributions of 
different colony forms have changed through time (Taylor 2005, 3). 

Bryozoan abundance and species diversity are generally lower under stressful 
environmental conditions, with distributions most greatly affected by water 

temperature and phytoplankton availability (Smith 1995, 232). Stressful 
environments may produce greater variability in zooid form within a colony 
(Smith 1995, 234). Low species diversity is usual in estuaries (Smith 1995, 

232), although some species are brackish water specialists. 

Zooid form may also reflect changes in environmental conditions. In a 15-

month survey of modern colonies of Conopeum seurati (Canu 1928) at 
Avonmouth Dock near Bristol, UK, O'Dea and Okamura (1999) found that 
zooid length, width and area were strongly related to temperature, with 

larger zooids being produced during winter months. Water salinity also 
affected zooid length and area, but not width. Bryozoan zooid size may be 

used to reconstruct past temperature regimes, though O'Dea and Okamura 
(1999, 586) note that because zooid size can also be influenced by genotypic 

factors, it is important that such studies are based on well-studied species 
and large datasets. Key advantages of performing such studies with 

bryozoans include the iteration of zooids and the fact that bryozoans are 
sessile and so reflect a single locality (O'Dea and Okamura 2000a). O'Dea 

and Okamura (2000a, 326) present an algebraic formula for assessing past 
mean annual range of temperature experienced by cheilostome bryozoan 

colonies based on the mean intra-colony coefficient of variation of zooid 
frontal area. 

Certain taxa show morphological responses to specific environmental 

conditions. Zooids of Electra pilosa (Linnaeus 1767), for example, have been 
shown to grow an extended chitinous spine in high-energy environments 

(Bayer et al. 1997), although this is likely to be poorly preserved in 
archaeological specimens. 

Colonies of Flustra foliacea (Linnaeus 1758) grow between March and 

September, and develop clearly defined growth check lines (GCLs) as a result 
of winter growth cessation. These have been used by O'Dea and Okamura 

(2000b) to investigate seasonal patterns of colony growth. They suggest that 
the GCLs can be used in association with measurement of zooid size (which 

is determined by temperature) for retrospective morphometric analyses to 
infer past environmental changes (O'Dea and Okamura 2000b, 1128). 

Unlike other marine invertebrates, perhaps most notably Mollusca, no non-

native species of bryozoan have been confirmed as present in British waters, 
although this is likely to result from an absence of evidence, as several 

species occur only in harbours and may be historical introductions. Bugula 
stolonifera (Ryland 1960) in particular is identified as likely to be a recent 

arrival (Enoet al. 1997, 8). Certain subspecies of Bowerbankia gracilis (Leidy 
1855) might also be recent arrivals (Eno et al. 1997, 12). The non-
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native Bugula neritina (Linnaeus 1758) has been recorded in Britain, but was 
listed by Eno et al. (1997, table 2) as no longer established in the wild. 

3. Bryozoa and Marine Molluscs 

 

Figure 3: Colony of Conopeum seurati (Canu 1928) encrusting an Ecrobia ventrosa (Montagu 

1803) shell 

Bryozoa often occur as epibiont organisms on the shells of marine molluscs, 
and are often recorded in assemblages derived from food waste. In these 
cases, the ecological tolerances and geographical range of the bryozoa might 

give some additional information about the origin of the shells. Published 
records of bryozoa on marine shells include Buckquoy, Orkney (Evans and 

Spencer 1977, 217); Ardnave, Islay (Evans 1983, 356); Chanctonbury Ring, 
Sussex (Somerville 2001, 109); Shapwick, Somerset (Light 2007, 928); 

Whitefriars Street, Norwich (Ayers and Murphy 1983, 36); and Gilberd 
School, Colchester (Murphy1992). In most of these cases the bryozoa were 

not identified beyond phylum level, however. The mere presence of bryozoa 
may give useful information: in a survey of modern shells from Poole in 

Dorset, Winder (1997, 198) found that encrusting colonies of bryozoa were 
more frequent on oysters dredged from the harbour than those from the bay. 

Winder does not offer an explanation for this; however, it may be that there 
was a wider availability of suitable surfaces for the colonies to encrust in the 

harbour than on the soft substrate of the bay. 

The colonies may reveal information about a shell's likely condition at the 
time of collection, as the presence of bryozoa on the inside of a bivalve shell 

shows that it could not have been collected as an intact animal and so is 
unlikely to be food waste (Thomas 1978, 155; Thomas 1981, 50; 

Murphy 1992). This was also the case with the 82,000 year-old 
perforated Nassarius gibbosulus (Linnaeus 1758) (a gastropod) shells from 
Grotte des Pigeons, Taforalt, Morocco (Bouzouggar et al. 2007, 9967). 

Claassen (1998, 149) has suggested that bryozoans on shells may be 
indicators of seasonality, stating that large quantities ofConopeum sp. on 

bivalve shells are a winter phenomenon. This seems too general a statement, 
however, as once a bryozoan colony forms on a shell, it is a permanent 

fixture. 
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Bryozoans that are often found on shells from European waters are Bugula 
flabellata (Thompson, in Gray 1848), Bugula plumosa (Pallas 

1766), Celleporina hassalli (Johnston 1847), Conopeum reticulum Gray 
1848, Conopeum seurati, Crisiidae,Electra spp., Flustrellidra 

hispida (Fabricius 1780), Membranipora membranacea (Linnaeus 1767), 
and Walkeria (=Valkeria) uva(Linnaeus 1758) (Ryland 1962, table 1). 

Bryozoan colonies may affect the settlement, growth and mortality of 
shellfish such as oysters (Valero 2006, 4). In addition to encrusting forms, a 

number of bryozoans leave borings in shells (Boekschoten 1966, 359-67). In 
the lower Pleistocene crag at Levington (Suffolk), shells of Neptunia 

contraria (Röding 1798), Glycymeris glycimeris(Linnaeus 1758) 
and Astarte spp. showed the characteristic borings 

of Immergentia (=Terebripora) orbignyana (Fischer 1866) 
(Boekschoten 1966, 360). These are more-or-less cylindrical holes in the 

shell up to 0.1mm in diameter (called shell pores by Boekschoten) with a slit-
like caudal extension, through which the zooid makes contact with the 

environment. These are connected by stolons within the shell 0.45–0.9mm 
apart (Boekschoten 1966, 359). As with encrusting forms, the ecological 
tolerances of boring bryozoans may reveal clues about the source of the 

shell, and its condition at time of collection. 

4. Bryozoa within Sediments 

Bryozoa may also be found within archaeological sediment samples. They 

may be imported to a site attached to seaweed, which has been used widely 
in the past as fodder, fertiliser and soil stabiliser (Bell 1981). This was the 

case at Ardnave on Islay where unidentified bryozoans were found among 
calcareous debris in a sample (Evans 1983, 357) and at Bishopstone in 

Sussex, where four examples of Turbicellepora avicularis (Hincks 1860) were 
recovered: two from an Iron Age enclosure ditch, one from the bottom of a 
pit and one unstratified (Bell 1977, 287). Bell (1981, 121) studied modern 

seaweed from Saltdean, Sussex, and found colonies of Membranipora 
membranacea on the stipes of Laminaria sp. Unidentified marine bryozoans 

were also found during micromorphological analysis of sediments from the 
Epipalaeolithic to Neolithic site of Ifri Oudadane, Morocco, where they were 

interpreted as having been introduced by humans (Linstädter and Kehl 2012, 
3319). 

Where previously intertidal or brackish water deposits are being 

excavated, in situ colonies may be preserved on the surface of rocks, as at 
Walpole in Somerset. Ongoing archaeological investigations at the Walpole 

landfill site have revealed a now-buried lias outcrop that would have been an 
island until late prehistory (Hollinrake and Hollinrake 2002). Samples from 

this site are the subject of ongoing study by the present author. Recently, a 
combination of colonies of Conopeum seurati and the molluscsEcrobia 

ventrosa (Montagu 1803) and Macoma balthica (Linnaeus 1758) has been 
found in samples from the south-western edge of this island, suggesting a 

deposit bearing lithic implements of Mesolithic to Bronze Age date was a 
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lagoon margin. Statoblasts of Plumatella emarginata (Allman 1844) are 
present in a peat deposit from the same site, suggesting freshwater inputs at 

the time of peat formation. 

Smith and Howard (2004, 118) examined the usefulness of Coleoptera to 

distinguish low-energy and high-energy fluvial depositional environments. To 
enhance their method, they suggest studies in parallel with other biological 
remains, including bryozoa. This does not appear to have been done, 

although statoblasts are reasonably frequent finds from freshwater 
sediments. Statoblasts of the freshwater bryozoan Cristatella mucedo (Cuvier 

1798) have been reported from North Bridge, Doncaster, where they were 
interpreted as being derived from flood deposits (Carrott et al. 1997, 68). 

Statoblasts of Cristatella mucedo and Plumatella spp. were also reported 
from medieval estuarine sediments associated with the River Fleet at 3 Tudor 

Street, London (Boyd 1981, table 22.1), and statoblasts of Cristatella 
mucedo were recorded from sediments dating to the Hoxnian interglacial 

(marine isotope stage 11) at Nechells, Birmingham (Shotton and 
Osborne 1965). The majority of the statoblasts were incomplete, and were 

identified as dorsal or ventral discs based on comparison of measurements to 
modern data (Shotton and Osborne 1965, 366). Plumatella spp. statoblasts 

were also recorded in pollen samples from Caldicot, Gwent (Caseldine and 
Barrow 1997, table 6), and Lophopus crystallanus (Pallas 1768) statoblasts 

in samples from Enkhuizen, The Netherlands (van Geel et al. 1983). At 
Flixton School House Farm, near Flixton in Yorkshire, a decline in the number 
ofCristatella statoblasts before c. 8600 cal BC was attributed to a transition 

in the depositional environment from permanently to periodically submerged 
(Taylor 2011, 72). Kenward (2009, 73) lists several examples from north-

east England where statoblasts have been recovered in archaeological 
samples from terrestrial sequences and so are likely to have been introduced 

by human agency or by flooding. 

5. Bryozoa, Ships and Structures 

The encrustations may also have considerable economic impact as a fouling 

organism on the hulls of ships and within sewage outlets and seawater intake 
pipes. Ryland (1970, 12) reports that at the start of the 20th century some 
700 tons of bryozoa were removed from the sewers in Manchester. Wood-

boring bryozoans are also known, such as Bulbella abscondita Braem 1951, 
whose borings may be preserved in ship timber or submerged wooden 

structures (Boekschoten 1966, 359). 

6. Isotopic Analysis 

It has been shown that most bryozoans precipitate carbonate in isotopic 

equilibrium with sea water (Smith et al. 2004, 809), although bryozoans with 
internal symbiotic hydroids may not (Smith et al. 2004, 813). Bryozoan 

mineralogy is a complex mix of calcite and aragonite, each of which has 
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naturally different ratios of oxygen and carbon isotopes, meaning that simple 
isotopic corrections are difficult (Smith et al. 2004, 819). Smith et al. (2004, 

819) found, however, that in modern New Zealand bryozoans, there is a 
strong trend towards higher isotopic ratios (δ13C and δ18O) in deeper water 

and at higher latitudes, both related to temperature. Smith et al. (2004, 819) 
further found within a single branch of a colony of Cinctipora elegans Hutton 

1873, that endozone and exozone carbonate can have different carbon stable 
isotope ratios, perhaps due to different rates of calcification. 

In a three-year study of colonies of Cellaria sinuosa (Hassall 1840) off the 

coast of Roscoff, France, Bader and Schäfer (2005) found that δ18O is 
incorporated into the skeleton at close to isotopic equilibrium with sea water 

and documents seasonal changes in temperature, although δ13C is 
characterised by lower relative values than the predicted equilibrium and 

does not show a seasonal cycle. 

7. Recommended Methods 

Calcified bryozoan colonies may be preserved in similar situations to 

molluscs, ostracods and calcareous foraminifera. Chitinous statoblasts may 
be preserved in similar situations to insects. The most likely scenario in 
which bryozoans may be encountered archaeologically is as epibiont 

organisms on marine shells. Encrustations may also occur on artefacts that 
have been submerged, for example at Walpole in Somerset, where bryozoans 

were recorded on pieces of fired clay (Figure 4). Shells and artefacts bearing 
bryozoan encrustations should not be subjected to normal finds washing 

procedure as this is likely to cause damage to, or even completely deface, 
diagnostic features. Should any cleaning be required, gentle brushing with a 

fine sable paintbrush and a pipette of deionised water should be used. 

 

Figure 4: Colony of Conopeum seurati (Canu 1928) on archaeological fired clay, Walpole, 

Somerset, UK 

Loose strands of zooids may also be recovered within sediment samples. This 

was the case at Weston College, Weston-super-Mare, where strands 
of Flustra foliacea (Linnaeus 1758) were washed into a tidal creek or ditch 

and recovered by the author in samples for molluscan analysis (Figure 5). 
Techniques for the extraction of bryozoans are essentially the same as for 
non-marine Mollusca (Evans 1972; Davies 2008). A standard weight of air-

dried sediment should be selected (1.5kg was used at Weston College and at 
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Walpole where samples were also processed for Mollusca; much less will 
suffice for recovery of statoblasts from freshwater deposits). Some 

sediments may require disaggregation in dilute sodium pyrophosphate. 
Residues should be washed through a 250 µm mesh sieve and oven dried. 

Statoblasts of the freshwater Phylactolaemata may be found in freshwater-
lain sediments. Use of a 125 µm mesh sieve is recommended where their 

recovery is sought. Extraction should take place using a fine sable paintbrush 
or fine forceps under a low-power stereo microscope. Identification of 

bryozoan colonies relies on the characteristics of the frontal surface, so the 
basal surface may be mounted with a water-soluble glue or gum tragacanth 

on black card. Statoblasts should be mounted onto glass slides. 

 

Figure 5: Strands of Flustra foliacea (Linnaeus 1758) recovered from samples of a tidal creek 

or ditch, Weston-super-Mare, UK 

Identification should be carried out using a low-powered microscope at 50x 
magnification with reference to modern specimens (Figures 6 and 7). Francis 

(2001, 109) notes that some statoblasts of Plumatella spp. can only be 
differentiated using scanning electron microscopy. Zooid and statoblast size 
may be measured using a micrometer eyepiece (O'Dea and Okamura 2000a, 

323). 

The best general text on bryozoans is still that of Ryland (1970). A key to 

British and European freshwater taxa, including statoblasts, has been 
published by Mundy (1980), and a thorough review of methods by Francis 
(2001). Statoblasts ofCristatella spp. decay in a distinctive fashion, and 

Hall et al. (2003, fig. 3) present a decay sequence allowing identification of 
even poorly preserved specimens. A good starting point for marine taxa is 

Ryland (1995), although a number of more detailed texts exist in the 
Synopses of the British Fauna series (Ryland and Hayward 1977; Hayward 

and Ryland 1979; Hayward 1985; Hayward and Ryland 1985; 1996; 1999), 
as well as two keys in the journal Field Studies (Ryland 1962; Ryland 1974). 
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Figure 6: Colony of Conopeum reticulum (Linnaeus 1767) on a modern mussel (Mytilus 
edulis Linnaeus 1758) shell. 

 

Figure 7: Colonies of Escharella variolosa (Johnston 1838) on a modern common whelk 

(Buccinum undatum (Linnaeus 1758)) shell. 

8. Problems in Bryozoan Analysis 

Smith (1995, 238) identified a lack of data about the ecological requirements 
of modern bryozoans as a potential problem in palaeoenvironmental analysis. 

As most bryozoans are sessile, microenvironments are essential, meaning 
that modern surveys must have thorough enough sampling strategies to 

recognise changes in microenvironment (Smith 1995, 238). Taphonomy also 
presents problems, as key identification features may be destroyed. In 
archaeological situations, encrusting bryozoa may not survive the finds 

washing or sample sieving process if due care is not exercised. The turbulent 
nature of marine processes may mean that bryozoan colonies have been 

transported and are not autochthonous, although bryozoans that are in life 
position offer potential for palaeoenvironmental reconstruction (Smith 1995, 

239). Floatoblasts are, by their nature, unlikely to be found in life position. 

Quantification of bryozoa presents a challenge. While two small discrete 
colonies on an oyster valve may legitimately be recorded as two colonies, 

clusters of (say) Membranipora membranacea found within the residue of a 
bulk sediment sample may, in life, have been part of a much larger colony. 

In these cases it is perhaps preferable to simply record presence. 

9. Conclusions 

Although bryozoa are reasonably common in archaeological sites, especially 

as epibiont organisms on marine shells, they are seldom identified to species 

http://intarch.ac.uk/journal/issue35/3/biblio.html#smith1995
http://intarch.ac.uk/journal/issue35/3/biblio.html#smith1995
http://intarch.ac.uk/journal/issue35/3/biblio.html#smith1995
http://intarch.ac.uk/journal/issue35/3/images/figure6.html
http://intarch.ac.uk/journal/issue35/3/images/figure7.html


Reprinted from Internet Archaeology, 35 (2013) 

 

or even family level. This is unfortunate, as different species can have quite 
specific preferences with regard to water salinity and tidal level, as well as 

distinct geographic distributions. The presence or absence of bryozoans, and 
their colony form, may provide evidence of past habitats and the locations 

from which marine shells have been sourced, as well as the condition of the 
shell (occupied or empty) at the time of collection. The size of zooids may 

reflect palaeotemperature, they may exhibit morphology that allows 
reconstruction of seasonality, and zooids may be sampled for stable isotope 

analysis for palaeoclimatic studies. Colonies found in life position have the 
potential to reveal high-resolution palaeoenvironmental information. Unlike 

ostracods, foraminifera or molluscs, all of which may be recovered from 
similar contexts, bryozoans are generally sessile. As with many biological 

proxies, more study of living colonies and their responses to environmental 
factors is needed to maximise the palaeoecological utility of bryozoan 

analysis (bryozooarchaeology?). 

Although calcified bryozoa may be well preserved in similar depositional 
environments to molluscs, ostracods or foraminifera, the colonies are fragile, 

and may easily be damaged during sample processing or cleaning of shells 
and other artefacts. This is likely to be a contributory factor to the under-

recording of bryozoa in archaeological samples. Statoblasts similarly may be 
damaged or degraded. As Hall et al. (2003, 142) have previously suggested, 

online sharing of photographs of different grades of preservation may 
overcome some identification difficulties. 
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