I3ATH

SPA

UNIVERSITY

Li, C., Yang, H. and Liu, H. (2017) 'An approach to modelling
and analysing reliability of Breeze/ADL-based software
architecture’, International Journal of Automation and
Computing, 14 (3), pp. 275-284.

The final publication is available at Springer via http://doi.org/10.1007/s11633-016-1044-9

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher
policies.
Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the
ResearchSPAce Metadata and Data Policies, as well as applicable law:-
https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have
permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://doi.org/10.1007/s11633-016-1044-9
http://researchspace.bathspa.ac.uk/

International Journal of Automation and Computing X(X), X X, X-X

DOI: XXX

An Approach to Modelling and Analysing Reliability of
Breeze/ADL-based Software Architecture

Chen Lit

12Centre for Creative Computing, Bath Spa University, UK

Hongji Yang? Huaxiao Liu®

3College of Computer Science and Technology, Jilin University, Jilin, PRC

Abstract: Breeze/ADL is an XML based architecture description language which is used to model software systems at the archi-
tecture level. Though Breeze/ADL provides an appropriate basis for architecture modelling, it can neither analyse nor evaluate the
architecture reliability. In this paper, we propose a Breeze/ADL based strategy which, by combining generalized stochastic Petri Net
(GSPN) and tools for reliability analysis, supports architecture system reliability modelling and evaluation. This work expands the idea
in three directions: Firstly, we give a Breeze/ADL reliability model in which we add error attributes to Breeze/ADL error model for
capturing architecture error information, and at the same time performing the system error state transition through the Breeze/ADL
production. Secondly, we present how to map a Breeze/ADL reliability model to a GSPN model, which in turn can be used for
reliability analysis. The other task is to develop a Breeze/ADL reliability analysis modelling tool - EXGSPN (Breeze/ADL reliability

analysis modelling tool), and combines PIPE2 (Platform Independent Petri Net Editor 2) to carry out a reliability assessment.

Keywords:

Software Architecture, Reliability, Breeze/ADL, GSPN, Breeze Graph Grammar.

1 Introduction

With the rapid development of Internet technology, the
size and the complexity of system components and their
interconnections continue to grow, which makes software
development, integration and evolution more complex. Be-
sides, the related technology of dependability modelling and
evaluation for software systems is still lacking, which leads
to software products containing a lot of known or unknown
defects during the system running time, makes software sys-
tems operation facing significant threats and brings new
challenges to systems reliability.

System reliability refers to a system that has an ability to
execute the required functions without failures for a given
time under the specified environment =31 1n general, there
are two methods for reliability analysis, that is, code based
method and component based method, and the software
reliability relies on three main technical approaches, faults
prevention and elimination, fault prediction ! and fault tol-
erance mechanisms [5], and system reliability mainly focuses
on the system quality (e.g., online payment requires the re-
liability of the network server reaching 99.99%). While in
the Internet environment, how to analyse and evaluate the
software system reliability and select an appropriate securi-
ty mechanism according to the user’s current environment
(e.g., time, space and network bandwidth) and conditions
(e.g., through the PC, mobile phones or notebooks) is still
a hot issue.

Due to the software system becoming complex, the code
based analysis is not only inefficient but also lacking ac-
curacy. Thus, the developer transforms their focus to the
system component and extracts the core information of the

Regular paper

Manuscript received date; revised date

This work is supported by Jilin Province Science Foundation for
Youths under Grants No.20150520060JH.

Recommended by Associate Editor xxxx

software system in the high-level, which could be used for
pre-evaluation to detect the system faults before the system
implementation.

As one of the popular model-driven architecture (MDA)
(6] development methods, Breeze/ADL [7l has been used to
design and develop the software system at high level, i.e.,
software architecture. Breeze/ADL is an architecture lan-
guage which adopts XML as the meta-language and has the
ability of describing the software architecture. Breeze/ADL
specifies the software architecture in a XML format and
captures the change during both initial development and
subsequent evolution by performing production according
to the Breeze Graph Grammars (BGG) [productions.
However, Breeze/ADL does not support software systems
reliability modelling and evaluation, and that is the moti-
vation behind this paper.

In this paper, we borrow some ideas from the Architec-
ture Analysis & Design language (AADL) 9 which has been
been widely used in real-time and embedded system devel-
opment. Combining with the error model, AADL imple-
ments the dependability modelling for the software system
9 Qur strategy partially adopts the AADL error model
principle and extends the Breeze/ADL by adding error at-
tributes, e.g., state, event and probability of the event, and
defining the error production for error transition. In this
way, the software systems’ reliability model is generated
and the system error information can be captured. Then,
we present the model transformation rules for mapping the
Breeze/ADL reliability model to the generalized stochastic
petri net (GSPN) model M which is used for modelling
the qualitative behaviour of software systems. Thus, the
Breeze/ADL reliability model is evaluated by analysing the
corresponding GSPN model.

The rest of the paper is organized as follows. Section two
introduces background concepts about Breeze/ADL, GSPN
and reliability concerns. Section three extends Breeze/ADL

and gives the Breeze/ADL reliability model. The principle
of mapping the error transition of the Breeze/ADL relia-
bility model to GSPN will be illustrated in section four.
Section five uses a case study through Breeze and PIPE2
tools to verify our strategy. Section six presents the conclu-
sions of this work.

2 Background

In this section, we give some background concepts about
our strategy which include Breeze/ADL, GSPN and relia-
bility concerns.

2.1 Breeze/ADL

Breeze/ADL, as one of our former work, was developed
as an architecture language which adopts XML as the meta-
language and has the ability of describing the software ar-
chitecture. Breeze/ADL specifies the software architecture
in an XML format and captures the change during both
initial development and subsequent evolution by perform-
ing production according to the Breeze Graph Grammar
productions.

In general, there are three core elements of the software
architecture, that is, meta-model layer (style), definition
layer and configuration layer. Style layer provides two types
of definition, template and style constraints. Like the Class,
Breeze/ADL provides the template for component, connec-
tor and interface according to the style requirement. Since
each architecture has its own style, the developer can de-
sign the style constraints in Breeze/ADL. Architecture style
depicts the basic information of software architecture and
guides the subsequent development. Definition layer imple-
ments the elements definition according to the correspond-
ing template. The whole configuration of software archi-
tecture is achieved by the configuration layer which defines
the instances of the architecture element, like component
instance. The above three layers specify the basic static
aspect of software architecture. In Breeze/ADL, we add
another layer, reconfiguration layer, which gives the user
the right to define the production, known as graph rewrit-
ing rules in BGG, for dynamic change. In Breeze/ADL,
a production is divided into two parts, that is, left hand
side (LHS) and right hand side (RHS). The LHS represents
the precondition and RHS means the results, i.e., if there
is a part of architecture model satisfying the LHS then this
part should be replaced by the RHS. Leveraging the pro-
duction, some operations, like addition and removal, can
be applied to the software architecture, and implement the
architecture reconfiguration.

In order to support Breeze/ADL, we also developed
Breeze, a modelling tool based on Breeze/ADL for software
architecture design. Breeze can either take an architecture
model file which is specified by Breeze/ADL as inputs or
build an architecture through a set of graphic architecture
elements. Breeze also supports user defined productions,
corresponding to the graph rewriting rules of BGG, to re-
alize the dynamic changes for the architecture reconfigura-
tion. Breeze outputs architecture model in both a graphical
and an XML based file. Breeze in addition provides archi-
tecture style definition, e.g., Client/Server style, C2 style.

International Journal of Automation and Computing X(X), X X

2.2 GSPN

GSPN is used to specify and simulate software systems
for quantitative analysis. To be specific, it has been wide-
ly used in the reliability 27! and performance analysis
(14-15] Tt not only helps to describe the dynamic structure
and behaviour of the system but also consider the time fac-
tor during the system running time 9. Besides, it also
supports graphic view to describe a system’s behaviour.

A GSPN model has several core elements, e.g., place
(drawn by black circle), arc (drawn by directed arrow),
transition (drawn by rectangle). A place may stands for
a state, position, etc. For example, a place represents a
component state in our approach. A transition may lead to
place changing. There are two types of transitions in GSP-
N, timed transition and immediate transition. The timed
transitions start after a random time. The immediate tran-
sitions are different from timed transitions, it starts right
away if the condition satisfied. In our approach, a timed
transition follows a Poisson distribution with a failure rate
X and a immediate transition follows a fix failure rate r. The
interconnection between the place and transition is through
the directed arc.

2.3 Reliability Concerns

According to the definition in GB/T 11457-95, system
reliability refers to the system component behaviour not
causing the system failure in the fixed time or the system
component can provide correct service whenever it gets in-
terference.

In order to improve the system reliability, various ap-
proaches have been proposed. Event Tree Analysis 17 yses
the boolean logic to analyse a series of sequential events
which cause the system failure, and then calculates the
probability of these events to evaluate the system reliability.
Fault tree analysis (FTA), developed in 1962 at Bell Labo-
ratories by H.A. Watson (181 helps to analyse and evaluate
system reliability. FTA, as a top down analysis method,
uses binary (i.e., boolean logic) to decompose the system
failure to a set of error events. It has been widely used in
quantitative and qualitative analysis for software systems.
Reliability Block Diagrams (RBD) (191 first proposed as a
hardware reliability analysis method, defines the system in
two types of structure, i.e., sequential and parallel, and us-
es a series block diagrams to describe the system function.
Cause and effect diagrams (2] i e., Ishikawa diagrams, were
developed by Kaoru Ishikawa in 1943. The Cause and ef-
fect diagrams focus on the causes of a specific event and
it groups the causes into categories to identify the source.
The categories mainly include people, methods, machines,
materials, measurements and environment.

Most of the above approaches either only focus on the
static structure and behaviour of the software system or not
concern the time factor. While GSPN not only specifies the
complex software system’s dynamic behaviour but also able
to describe asynchronous concurrent systems by taking the
time as a key factor. Using the GSPN model, we can analyse
the undesired system’s failure which might be caused by the
system’s behaviour during the running time. Besides, we
can evaluate the system reliability through calculating the
probability of an error event.

Chen Li et al. /An Approach to Modelling and Analysing Reliability of Breeze/ADL-based Software Architecture 3

Reliability

Recovery Reboot Modelling

GL Recoverable Failure

Fig. 1 Component state transformation

Fatal Error

3 Breeze/ADL Reliability Model

By introducing the Error Model into the architecture
specification, the extended software architecture model may
support various analysis methods, for example, building a
Fault Tree for safety analysis or creating the Markov Model
for reliability calculation.

Error model captures failure of the component and fo-
cuses the interaction among components, e.g., invocation,
data transmission. The internal failure of each componen-
t and external error propagation between components are
obtained by leveraging error model at architecture level.

To construct a Breeze/ADL reliability model, this paper
extends the meta model of Breeze/ADL and also uses a
reliability calculation model through GSPN. In this section,
we first give the definitions of error model in Breeze/ADL.
Then, we explain how to extend our Breeze/ADL model to
build a reliability model.

3.1 Error Model

Definition 3.1 Error Model:= (ErrorState, ErrorEvent,
Probability) is a Breeze/ADL error model, where

e FErrorState. It represents the state which system’s
component might be running in. This paper concerns
three states which are related to system failure, i.e.,
Active (meaning the component works normally with-
out failure), Temporary Failure (describing why the
component can not work at this moment because of
some temporary failure, e.g., network delay) and Fatal
Failure (representing the component stop working due
to some fatal error, e.g., system bugs). Fig. 1 shows
the corresponding component states transformation,
TF stands for Temporary Failure, A represents Active
and FF means Fatal Failure.

o ErrorEvent. The system component may change its
state according to the event it received. Events are di-
vided into internal events (i.e., component triggers the
event by itself) and external events (i.e., component re-
ceives an event which is triggered by other componen-
t). Internal events include Recoverable Failure Event,
Recovery Event, Fatal Event and Reboot Event. The
recoverable failure event stands for the temporary fail-
ure event. The component uses the internal recovery
method to eliminate this failure with a certain prob-
ability. For example, when the number of requests
reaches to the upper bound of a primary server, the
primary server will not respond to the further request-
s from clients and then a temporary failure event is
triggered. This temporary failure can be eliminated
by transferring the requests to other backup servers.
Recovery event is triggered by the component itself,

like the above transferring the requests, and it helps
component to back to active state from the tempo-
rary failure state. When a fatal failure happens, like
deadlock, components can not continue to work and
it comes into fatal failure state. This will trigger a
fatal event and the component is not able to leverage
the internal recovery method to eliminate this prob-
lem. Thus, a reboot or manual operation has to be
done to make the component back to active state, and
this is called reboot event. When a component comes
into temporary or fatal failure state, it may propagate
error to other components with a certain failure rate.
Since this event is triggered by other components, it is
called external error event.

e Probability. When a temporary or fatal failure hap-
pens, the component might propagate the error with
a certain probability. In general, there are two types
of the probability, i.e., Poisson and Fixed.

According to the above definition of the error model, the
error transition within or among the component(s) can be
specified due to the error events or error propagation. In
order to support the error model, we extend the meta mod-
el of Breeze/ADL. To be specific, the above elements are
introduced into Breeze/ADL to support error model con-
struction.

Based on the analysis of the error model, a new element
- ErrorModel is added to the meta model of Breeze/ADL.
Two types of error transition, i.e., internal error transi-
tion (InternalTransition) and external error transition (Ez-
ternalTransition), are defined in the ErrorModel. The fol-
lowing are corresponding meta elements which are added to
meta model of Breeze/ADL.

3.1.1 Internal Error Transition
e Fuvent. It represents internal events, i.e., Recoverable
Failure Event, Recovery Event, Fatal Failure Event
and Reboot Event.

e OrginalState. It stands for the component initial s-
tate which could be Active, Temporary Failure or Fatal
Failure.

e TargetState. After received an event, component might
change from the initial state to the target state which
could also be Active, Temporary Failure or Fatal Fail-
ure.

e Lambda. The probability of internal event follows the
Poisson distribution with failure parameter Lambda.

3.1.2 External Error Transition
e FEvent. A component may send an external event to the
other components when an error propagation happens.

o TargetComlID. 1t is the ID of target component which
received the external event.

e Fized. An external error propagation usually happens
immediately with a fixed probability.

Fig. 2, 3 and 4 describe the element tree of node with
error model, element tree of error model and extended
Breeze.xsd.

101

102
104
108
108
107
108
109
110
11

12
113
114
115
1e
17
18
19
120
121
122
123
124
125
128
127
128
129
130
131
132
133
124
135
138
137
138
139
140

BreezeVZ.0.xsd

:ID Type : string
= name Type @ atring
= type

= TR Type : string
= Avaliability

= class Type : string

International Journal of Automation and Computing X(X), X X

D-[g Reference : radlab: Desc$

Urgattribute

D‘[ERefepence : radlab:port @

I}[g Reference : radlab:ErrorModel é}

Fig. 2 Element tree of node with error model

BreezeV2.0.x=d

~|D'[E InternalTransitionList 5 Eﬁ =! @: D'[E InternalTransition

Event

&%

OrginalState

TargetState @

53| |a| |a2

Event

&%

TargetComID

T

Fig. 3 Element tree of error model

<!-- Define the Error Model -->
E<element name ="ErrorModel">
<complexType:>
<sequence>
<element name="InternalTransitionList”>
<complexType>
<segquence>
<element name="InternalTransition” minOccurs="+" maxOccurs="4">
<complexType>
<sequence>
<element name="Event* type="String"/>
<element name=-OrginalState” type-"String" >
csimpleType>
<restriction base="string">
<enumeration value="Adive />
<enumeration value='Temporary Failure”/>
<enumeration value -~Fatal Failure-, >
</restriction>
</simpleType>
</element>
<element name ' TargetState” type="String">
<simpleType>
<restriction base="string">
<enumeration value="Adtive"»
<enumeration value="Temporary Failure® >
<enumeration value -"Fatal Failure” >
</restriction>
</simpleType>
<relement>
<element name="Lambda" type="float~ />
</sequence>
<icomplexType>
</element>
</sequences
</complexType>
<element>
<element name~"ExternalTransitionList">
<complexType>
<sequence>
<element name=-ExternalTransition” minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="Event!” type="5String"/>
<element name="TargetComID~ type="String" />
<element name="Fixed" type="floal" />
<rsequence>
<icomplexType>
</element>
</sequences
</complexTypes
</element>
</sequence>
<attribute name="ID" type ="string” use="required",>
<attribute name="name" type="string" />
</complexType>
</element=

{HTHTHTHIHT

Fig. 4 Definition of error model in Breeze.xsd

3.2 Reliability Modelling

The Breeze/ADL reliability model is divided into soft-
ware architecture model and error model. Breeze/ADL ar-
chitecture model specifies the component, connector, con-
nection, etc. of a software system at architecture level, and
it provides the constraints of its topology. On the oth-
er hand, Breeze/ADL error model captures the reliability
information, i.e., error event, error state and error transi-
tion. Thus, we combine the architecture model and error
model to build an architecture reliability model to imple-
ment the reliability analysis at architecture level based on
Breeze/ADL.

There are many reliability model analysis methods pro-
posed in recent years, for example, GSPN, Fault Tree,
Markov Chain. Due to the GSPN not only describing the
dynamic structure and system behaviour but also concerns
the time factor during the system running time. In gener-
al, GSPN is used to specify and simulate the software sys-
tem and provide the graphical form to illustrate the system
behaviour. GSPN has been widely used in reliability and
performance evaluation. Thus, we choose GSPN to model
and analyse the reliability, and present rules for mapping
the Breeze/ADL reliability model to GSPN model to im-
plement the architecture reliability analysis.

4 Model Mapping

In this section, we use the GSPN as reliability calculation
model and build mapping rules between the Breeze/ADL
reliability model and GSPN model. Fig. 5 shows the cor-
responding reliability analysis process.

In Fig. 5, a Breeze/ADL reliability model is constructed

Chen Li et al. /An Approach to Modelling and Analysing Reliability of Breeze/ADL-based Software Architecture 5

Customer System
| Abstract |

v

Function & Reliability
Requirements
*Design

Breeze/ADL
Error Model

Breeze/ADL Reliability Model

Model Transformation

Breeze/ADL
Architecture Model

GSPN Model

Reliability Analysis
(PIPE2)
Analysis Results

!

Fig. 5 Reliability analysis with Breeze/ADL

based on functional and nonfunctional (reliability) require-
ments of customers and system. By using mapping rules,
a Breeze/ADL reliability model is transformed to a GSPN
model. PIPE2 2! is leveraged to analyse and evaluate the
reliability model and return the results to the customers
and system.

Before we present mapping rules, it is necessary to give
the definition of GSPN. GSPN is developed based on the
SPN and it is widely used in the systems performance and
reliability analysis. The following is the corresponding def-
inition.

Definition 3.2 GSPN Model:= (S, T, F, W, M, }) is a
six tuple, where

e S represents the set of the position;

e T means the set of transition, i.e., a transition from
one position to another. It is divided into immediate
transition and timed transition;

F stands for directed arc which connects position and
transition;

e IV represents the weight on the transition;
e)M means the initial state;

A stands for the timed transition follows the Poisson
distribution with a failure rate .

By using the above GSPN model, a Breeze/ADL relia-
bility model can be analysed and evaluated. The model
transformation processing can be divided into two part-
s. The first are rules for mapping the error attributes of
Breeze/ADL to the corresponding elements of GSPN. Sec-
ondly, we give the rules for mapping error production in
Breeze/ADL to position transition in GSPN.

Pl
D‘[Emgiualsta ace
D'[E'[‘arqetstate & \ Timed
Transition

— P\ Poisson
e |

—
TargetConlD Transition

= D'[SExtema].Tra.ns ition g

iﬁ

I}[EEH —p r Fixed
Error Elements of Elements of
Breeze/ADL GSPN Model

Fig. 6 Element Mapping from Breeze/ADL error model to GSPN

4.1 Breeze/ADL error
GSPN elements

4.1.1 Error state - Position

An error state (ErrorState) of Breeze/ADL is trans-
formed to a position in GSPN.
4.1.2 Error event - Transition

An error event of Breeze/ADL is transformed to a tran-
sition in GSPN. Error events include internal events (i.e.,
Recoverable Failure Event, Recovery event, Fatal Event and
Reboot Event) and external event (i.e, External Error Even-
t).
4.1.3 Probability - Weight and A

In Breeze/ADL reliability model, an internal error prop-
agation follows the Poisson distribution with a failure rate
A. In theory, a component state transition is triggered im-
mediately when it receives an external error propagation.
However, the external error propagation needs through con-
nectors or a transmission medium which might lead to devi-
ation. Thus, we assume that the external error propagation
follows a fix rate.

Fig. 6 shows the corresponding relationship between the
Breeze/ADL error attributes and GSPN elements. The
left side of Fig. 6 is error attributes of error model in
Breeze/ADL and the right side is core elements of the GSP-
N.

attributes and

4.2 Breeze/ADL error production and
GSPN transition

When a failure happens, a component will change its cur-
rent state to error state. If the component can not fix this
failure, it will propagate the error to the other components.
In order to implement the transformation between the er-
ror propagation of Breeze/ADL reliability model to position
transition in GSPN model, we leverage the Production el-
ement of Breeze/ADL. To be specific, pre-condition of a
error production describes the initial state, error event and
probability of transition and the result of the transition can
be captured by the post-condition of the error production.
Connector is used as a transition channel to keep the inter-
mediate state.

Immediate

A.lnt B.Int
ATran B.Tran

> Cst <——>I
.

A
A.Tar B.Tar

Component A Connector C Component B

Fig. 7 Transition in GSPN

on ID="001" name="Active to TemFailure">
>Errnr Transiition< desc>

&
w
{1}
A

285 A ID="Lefte1" naume="beforeTransition" type="ArchGenerual">
286 [< ="No1" name="A" Avaliability="A.Ini">

37 [e

3es [

208 [

aro

271

arz

e

araq

avs

are [

277 g

ars

3rs

3so

281

agz

233

3gq <

385 < D="No2" name="C"></node>

386 ID="No:z" name="B" Avaliability="B.Int">< node>
287

ass [ID="Righte1" name="afterTransition" type="ArchGeneral">
388 : ID="No4" name="A" Avaliability="A.Tar">< node>
2390 D="Nos" nume="C" Avaliability="CS1"><r

391 ID="No¢" naume="B" Avaliability="B.Tar"></nc
agz

233 </Production:

Fig. 8 Error propagation in Breeze/ADL

In Fig. 7, after an error event happens, the state of
component A transforms from A.Int to A.Tar following the
timed transition with a failure rate A\. Connector propa-
gates the error (C.St) to the component B. After receiv-
ing the error, the state of component B transforms from
B.Int to B.Tar following the immediate transition with a
failure rate r (Bi-direction arc between C.St and B.Tran
represents the propagation out and in relationship). Fig. 8
shows the corresponding error propagation in Production of
Breeze/ADL.

In the above Breeze/ADL definition, the internal error
and external error propagation of component A are spec-
ified by InternalTransition and ExternalTransition respec-
tively. Since the component A is the source component, the
internal error transition and external error propagation are
both initialed by component A. Thus, we define both tran-
sitions inside component A. The connector state is changed
after the error transition and the corresponding state C.st
can be defined in the post-condition of a production. The
initial state and the target state of component B is defined
in pre-condition and post-condition of the production.

International Journal of Automation and Computing X(X), X X

5 Case Study

In this section, we use a Medical Analysis Systems (MAS)
as a running example to demonstrate how to build the re-
liability model in Breeze/ADL and map it to GSPN for
reliability analysis. In MAS, there are five Medical Query
Terminals (MQT) for five different hospitals, one Govern-
ment query terminal (Gov) and one Medical Data Center
(MDC), that is, one server (MDC) and six clients (MQTs
and Gov).

The server may propagate the errors to the clients when
the failures happen which could lead to clients failure too.
Thus, we need to aware of the error propagation at server
side. Due to the function of six medical query terminals
being similar, we use MDC and query terminal of hospital
A as an example to demonstration the reliability modelling,
model transformation and reliability calculation.

5.1 Error elements of MDC and MQT_A

The basic error elements of the MDC is specified as fol-
lowing:

e TemFailure. Due to the Internet delay, the MDC
might enter into temporary failure. We assume the
temporary failure event follows Poisson distribution
with a failure rate 0.006.

e Recovery. When a temporary failure happens to the
MDC, the MDC will invoke the recovery method to
continue the communication with clients. We assume
the event happens following Poisson distribution with
a failure rate 0.0005.

e FatalFailure. The disk damage will lead to the fatal
failure to the MDC. We assume that this failure hap-
pens following Poisson distribution with a failure rate
0.002.

e Restart. By using the backup disk, the fatal failure can
be fixed. We assume that this event happens following
Poisson distribution with a failure rate 0.0006.

e ExTemFailure. When temporary failures happens to
MDC, the MDC will propagate the temporary failures
to clients (MQTs). We assume that this external error
propagation happens following a fixed rate 0.8.

e ExFatalFailure. When fatal failures happens to MD-
C, the MDC will propagate the fatal failures to the
clients (MQTs). We assume that this external error
propagation happens also following a fixed rate 0.8.

The basic error elements of the MQT_A is specified as
following;:

e TemFailure. Due to the Internet error or received an
error propagation from MDC, the MQT_A might enter
into temporary failure state. We assume the tempo-
rary failure event follows Poisson distribution with a
failure rate 0.0002.

e Recovery. If the temporary failure is caused by MDC,
the MQT_A will send request to the MDC periodically

Chen Li et al. /An Approach to Modelling and Analysing Reliability of Breeze/ADL-based Software Architecture 7

72 <t-- MDC -->

74 <node ID="N7o1” name="MDC" type= TR="C ility="Adive">
75 < >

76 <Inter nsitionList>

77 <Internc nsifion>

78 <Event>TemFailure< Event>

79 <OrginalState>Adive< Org e

s0 < >T=mpnruryFn|Iur=< argetState>
=1 < >0.006< Lamb

52 <

a3 <

a4 < »->Ra<nvery< v

85 <OrginalSte >T=mpnrury Fullur=< ginalState>
so <Targ =>Ative<

a7 <Lambda>0.000s</Lambdax

a8 </Internall >

89 <! alTransition:

%0 <Eveni>FatalFailure< nit>

51 < State>Adives Org ate>

82 il e>Fatal Failure < TargetSrares
o2 <Lambda> o0 < Lambdax>

94 </ on>

95 <Inte >

96 <Eve >Res|url< :

97 <€ te>Fatal Fullur=< OrginalState>
s < State>Adives Targ >

59 <Lambda>0.0006< Lambdax

100 </ny nsitions

101 < st>

102 < 4>

102 < ansition>

104 <Eveni>ExTemFailure< Eveni>

105 <Te miD>N1o1</TargetComiDs

1068 <Fixed>0s</Fixed>

107 </Exter ansition>

108 <Ext on>

109 <Eveni>ExTemFailure< Eveni>

110 <TargetComiD>Nioi< omID>

11 < >0.8</Fixed>

12 </Externa ans N>

113 </Exterr >

114 <. M >

118 <1 Interface.->

110 sport ID="Proi” MethodReturn="String- TR=" ArehTiEy
17 < meter>String< Me

118 </port>

19 < >

Fig. 9 Reliability modelling of MDC in Breeze/ADL

£ <node ID="N1o1" name="MGQT_A" fype= TR="C
a9 <Er el>

a0 < TS

a1 Ti n>

az v >TemFu|Iure< rent>

a3 =>Adive< O States

aa «t>Temporary Failure< TargeiSiate>
as a>0.0002< Lambdax

a6 < >

a7 <

a8 >Remvery< v

a9 >T=mp¢rury Fullur=< OrginalState>
s0 o>Adives TargetSiates

51 a

52 <

52 <

sa

55 e>

58 ates

a o
@
AN

os </Erro Jel>
o7 <t-- Interface -

a8 <port ID= Pm Methudketum— Slrlng TR-" pnrlw >
[< & >String< Metho

70 </port>

71 </node>

Fig. 10 Reliability modelling of MQT_A in Breeze/ADL

to see if the MDC back to active state. If the tempo-
rary failure is triggered by internal error, the MQT_A
will invoke the recovery method to fix the problem.
We assume the the event happens following Poisson
distribution with a failure rate 0.0006.

e FatalFailure. Fatal failure may happen to the MQT_A
due to the internal error, and MQT_A could not con-
tinue to work. We assume that this failure happens fol-
lowing Poisson distribution with a failure rate 0.0004.

o Restart. Restarting the MQT_A manually may fix the
fatal failure. We assume that this event happens fol-
lowing Poisson distribution with a failure rate 0.0007.

Fig. 9 and 10 show the corresponding error elements
definition of MDC and MQT_A in Breeze/ADL.

5.2 Error transition of MDC and MQT_A

Fig. 11 shows the error production which defines the
internal and external error transition of MDC.

ility=-Adive"s

398 <Production ID="MDC_o01" name-"Active to TemFailure">

390 <elesc>Error Transiition< desc>

397 <A “MDCo1" name="k ition" type="Arch

398 " name="MGQTI_A" TR="C I ility="Adive">< node>
399 < " name="MtM_A" TR="ConnectorTemplateo:">< node

400 < Nz name-"MDC" TR="Cs ility-"Active>

A fability—-
Ni~ name="MtM A Avaliability="Temperary Failure">< node>
—"Ns" name="MDC" Avaliability—Temperary Failure">< node>

azs </Productions

Fig. 11 Modelling the internal and external error propagation
with Production in Breeze/ADL

az7 < on ID="MQT_es name="Fatal Failure to Active >

428 Restart Transiifion< cosc>

429 < M type="Arch I

430 < ility="Fertell Failure"s< nodes
31

432

433

P

435 e

a3

aar

438

239

440

441 <

442 2

443 4 MGTos" name="aft fon" type="Archi

a4 D=Ne" name -"MQI_A" TR=C & ility="Adive"s<node>
aas < >

ado % >

Fig. 12 Modelling the internal error propagation with Production
in Breeze/ADL

In Fig. 11, the pre-condition defines the state of MDC
changes from the Active to Temporary Failure. The tran-
sition follows Poisson distribution with a failure rate 0.006,
and MDC propagates the error to MQT_A with a fix fail-
ure rate 0.8. Thus, the state of MQT_A changes from the
Active to the Temporary Failure. At the same time, the
connector - MtM_A will propagate this error and change its
state to Temporary Failure too.

We assume that the state of MQT_A changes from Fatal
Failure to Active, and Fig. 12 shows the corresponding
transition definition in Breeze/ADL.

Due to the client’s failure will not influence the server,
thus, MQT_A will not propagate the error to the MDC
and we only need to define the internal error transition for
MQT_A. Similar to MDC, the pre-condition specifies the
MQT_A need to change its state from Fatal Failure to Ac-
tive following Poisson distribution with a failure rate 0.0007.
The post-condition defines the state of MQT_A changes to
Active.

In order to transform the Breeze/ADL reliability model
to GSPN model automatically, we developed a plug-in -
EXGSPN to map the error production of Breeze/ADL to
GSPN transition processing. Fig. 13 and 14 show the error
production for MQT_A in Breeze and the corresponding
source code of the GSPN respectively.

In Fig. 14, Breeze transforms the Breeze/ADL reliability
model to a file - 1_GSPN_.gspn_model. The right side of the
Fig. 14 shows the source code of the Restart transition of
MQT_A. Value represents the transition name, rate means
transition rate and timed stands for timed transition.

By importing the file - 1_-GSPN_.gspn_model into PIPE2,

porary Failure"> < node

International Journal of Automation and Computing X(X), X X

Breeze Explorer 5

v By FSE-Demo

4 Py GSPN-Example
(= correctness

|| 1.G5PN_production.

(= performance
& (& production
4 (= reliability
(& Extended DTMC
4 (3 GSPN
1_GSPN_productionbreeze
|| 1.GSPN_production breeze_d
(= Original DTMC
(= RBD
(& safety

52| & 1_GSPN.gspn_model]

| <5 Palette b

E Properties &
4+ G

FECEEE

@

(= Architectur... <

Core Attribute Value New

Attributes state. Fatal Failure Rermowve

! +
! +C

Appearance | | event Restart

4 Link
4 Port

4 Connector

(= Production

4 Architecture.
Production

5 4 Production

@

lambda 0.0007

“# lbreeze

Fig. 13 Defining the

error propagation in

Breeze Tool

Breeze Explorer i |

__| 1.GSPN_production.breeze_diagram

i Py FSE-Demo
4 by GSPN-Example
(& correctness.
& performance
I+ & production
4 (= reliability
(& Extended DTMC
4 & GSPN
| £ 1.GSPN_production.breeze|

(& Original DTMC
& RBD
& safety

% lbreeze

.| Lbreeze_diagram
b By Test

780<transition id=
31 <graphics>
<position x="1
783 ¢/graphics>
<name>

| £ 1.65PN.gspn_model 52 =

>

<value>NQT_A_Restart</val

ue> |

<graphics>
/>

790 <orientation>

791 <value>@</value>
<forientation>

rate
<value>d.8007</value>
</rate>

REimed>
kvaluestrus</valued|
K/timed>

<infiniteServer>
<value>false</value>
<finfiniteServers
<priority>
<value>1</value>
</priority>
</transition>

70

<1

Fig. 14 Source code of GSPN generated by Breeze Tool

FilegEditaViswsDrawmArimstegelp

Ieda® &

GoOEBXaR s - 2@ e@ONINAS| % R -

| Mnalysis Module Manager N

1_GSEN. gspn_modl |

|| Available Modules
® Classification

Tnvariant Analysis
TIncidence & Marking

Mininal Siphons And Mininsl Traps
Passage Tine Analysis

Passage Tine Analysis For Tagged Mt
Perfornance Query Editor
Reachability/Covershility Graph
Response Tine Analysis

Simulation

State Space Analysis

Steady State Analysis

Tagged Net Converter

ind THodule

.
.
.
.
e
e
e
e
e
e
e
.

.

=

MDC_FatalFailure

FatalFailure

MtM_A_FatalFailure

ExFatalFailure MQT_A_FatalFailure

Belzct Mode: Click/drag to selact sbjects: drag te move them
e —_——

Fig. 15 Importing the transformed GSPN model into PIPE2 Tool

o GSPN Anolysis _-—--‘._.-—_

o GSPNAnalyss

==y

Source et

Filenane

Results

Source met
e
Results

net F

Average Number of Tokens on a Place

|Place | Number of Tokens|
MDC_TemFailure 068297
|MDC_Active

MDC_FatalFailure 023288

MtM_A_FatalFailure 0.15652
|MaT_a_Active
MQT A_TemFailure 0.41813

MaT A pataaiure IR SSSEENNNN

i

11lenmme. Browse

[

Token Probability Density

il MDC_TemFailure
|mpc_active
MDC_FatalFailure 0.767120.23288
I | mtra_n_temFailure

f MM_a_FatalFailure 0843480 15652
|MaT_a_active

MQT_A_TemFailure 0581870 41813
_FatalFailure

[w0 | =1 |
0.317030.68297 i

|_cony Save I

Fig. 16 Reliability analysis by PIPE2 Tool

Chen Li et al. /An Approach to Modelling and Analysing Reliability of Breeze/ADL-based Software Architecture 9

a GSPN model is obtained. Fig. 15 shows the correspond-
ing GSPN diagram.

Thus, a Breeze/ADL reliability model can be trans-
formed to a GSPN model and a reliability analysis can be
implemented by using the PIPE2. Fig. 16 shows the corre-
sponding reliability analysis results by using PIPE2.

According to the above analysis results, the component
failure rate, failure distribution, etc. can be obtained. For
example, the left side of Fig. 16 shows that failure rate
of MDC and MQT_A are 0.916 and 0.755 respectively. In
this way, we can evaluate the reliability of the Breeze/ADL
reliability model indirectly and adjust the software system,
e.g., replacing the low reliability component, or reconfigur-
ing the system.

6 Conclusion

Software architecture reflects the early decision for sys-
tem development. If the quality issues (e.g. system reli-
ability) can be found at this stage, it will reduce the cost
following bugs fixing and software maintaining. However,
most of architecture description languages are not able to
support the quality modelling and analysis. Thus, we pro-
posed a strategy for modelling and evaluating the reliability
for Breeze/ADL based software architecture, which extends
the basic Breeze/ADL model by adding the error attribute
(i.e., state, error event and probability of event) and giv-
ing the error productions for error transition, that is, in-
ternal transition and external transition, and present the
Breeze/ADL reliability model. Then, we gave the rules for
mapping the Breeze/ADL reliability model to the GSPN
model which can be analysed by the PIPE2 tool.

According to the analysis result of the GSPN model, the
system architecture and its component reliability can be
obtained, and we may adjust the architecture structure or
behaviour to meet the reliability requirements which im-
proves the software architecture reliability.

References

[1] ISO9126:Information technology - Software product evalu-
ation - Quality characteristics and guidelines for their use.
International Organization for Standardization, 1992.

[2] ISO8402:Quality management and quality assurance - Vo-
cabulary. Australian/New Zealand Standards, 1994.

[3] BS4778:Quality vocabulary. Quality concepts and related
definitions. British Standards Institution, 1991.

[4] J.Moubray. RCM II: reliability-centered maintenance. In-
dustrial Press Inc., 2001.

[5] A.Avizienis, J.C.Laprie, B.Randell, C.Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 11-33, 2004.

[6] Model Driven Architeture (MDA). OMG, 2010.

[7] C. Li, L. P. Huang, L. X. Chen, C. Y. Yu. Breeze/ADL:
Graph Grammar Support for an XML-Based Software Ar-
chitecture Description Language. In Proceedings of the 37th
IEEE Computer Software and Applications Conference,
IEEE, Kyoto, Japan, pp.800-805, 2013.

[8] C. Li, L. P. Huang, L. X. Chen, C. Y. Yu. BGG: A graph
grammar approach for software architecture verification
and reconfiguration. In Proceedings of the 7th Internation-
al Conference on Innovative Mobile and Internet Services

in Ubiquitous Computing, Taichung, Taiwan, pp.291-298,
2013.

[9] P.H.Feiler, D.P.Gluch, J.J.Hudak. The architecture analy-
sis & design language (AADL): An introduction, Technical
Report, DTIC Document, 2006.

[10] P.H.Feiler, A.Rugina. Dependability Modeling with the Ar-
chitecture Analysis & Design Language (AADL), Technical
Report, DTIC Document, 2007.

[11] G.Chiola, M.A.Marsan, G.Balbo, G.Conte. Generalized s-
tochastic Petri nets: A definition at the net level and its
implications. IEEE Transactions on Software Engineering,
vol. 19, no. 2, pp.89-107, 1993.

[12] Y.W.Dong, G.R.Wang, F.Zhang, L.Gao. Reliability Analy-
sis and Assessment Tool for AADL Model. Journal of Soft-
ware, vol. 6, pp. 0-14, 2011.

[13] A.E.Rugina, K.Kanoun, M.Kaéniche. A system dependabil-
ity modeling framework using AADL and GSPNs. Archi-
tecting Dependable Systems IV, pp. 14-38, 2007.

[14] J.Y.choi, S.A.Reveliotis. A generalized stochastic Petri net
model for performance analysis and control of capacitated
reentrant lines. IEEE Transactions on Robotics and Au-
tomation, vol. 19, no. 3, pp. 474-480, 2003.

[15] M.Ajmone Marsan, G.Conte, G.Balbo. A class of general-
ized stochastic Petri nets for the performance evaluation of
multiprocessor systems. ACM Transactions on Computer
Systems (TOCS), vol. 2, no. 2, pp.93-122, 1984.

[16] H.H.Ammar, S.M.R.Islam. Time scale decomposition of
a class of generalized stochastic Petri net models. IEEE
Transactions on Software Engineering, vol.15, no.6, p-
p- 809-820, 1989.

[17] C.A.Ericson. Event Tree Analysis. Hazard Analysis Tech-
niques for System Safety, pp.223-234, 2013.

[18] W.S.Lee, D.Grosh, F.A.Tillman, C.H.Lie. Fault Tree Anal-
ysis, Methods, and Applications - A Review. IEEE Trans-
actions on Reliability, vol. 34, no. 3, pp. 194-203, 1985.

[19] R.Kolar, E.Koh. Reliability Block Diagrams. 2006.

[20] K.Ishikawa. Guide to quality control. Asian Productivity
Organization Tokyo, vol. 2, 1982.

[21] N.J.Dingle, W.J.Knottenbelt, T.Suto. PIPE2: a tool for the
performance evaluation of generalised stochastic Petri Net-
s. ACM SIGMETRICS Performance Evaluation Review,
vol. 36, no. 4, pp. 34-39, 2009.

Chen Li received his B.Sc. degree in
Computer Science and Technology from U-
niversity of Science and Technology of Chi-
na, China, in 2003, the M. Sc. degree in
Computer Applications Technology from
the University of Shanghai for Science and
Technology, China, in 2010, and the Ph. D.
degree in Computer Science and Technology
from Shanghai Jiao Tong University, China
in 2015. Currently, he is a postdoctoral re-
search assistant in School Of Humanities And Cultural Industries
at Bath Spa University, UK.

He has published about 28 refereed journal and conference pa-
pers. His research interest covers software architecture, software
reliability and formal methods.

Dr Li is a member of CCF and IEEE.

E-mail: c.li2@bathspa.ac.uk

ORCID iD:0000-0001-6249-8957

10

Hongji Yang received his B.Sc. and
M. Sc. degrees in computer from the Jilin U-
niversity, China, in 1982 and 1985, respec-
tively, and the Ph.D. degree in computing
from Durham University, UK in 1994. In
1985, he was a faculty member at Jilin U-
niversity, China, in 1989 at Durham Univer-
sity, UK, in 1993 at De Montfort University,
UK and in 2013 at Bath Spa University, UK.
Currently, he is a professor in School Of Hu-

International Journal of Automation and Computing X(X), X X

Huaxiao Liu received his B. Sc. and Ph. D.
degrees in Computer Science from Jilin Uni-
versity, China, in 2009 and 2013. Currently,
he is a lecturer in College of Computer Sci-
ence and Technology Jilin University, China.

He has published about 12 refereed jour-
nal and conference papers. The central theme
of his research is improving software quality,
and his recent research concerns the software
requirements engineering, software cybernet-

manities And Cultural Industries at Bath Spa University, UK. ics and formal methods of software development. More specifical-
He has published about 400 refereed journal and conference ly, he develops techniques to verify Aspect-oriented requirements
papers. His research interest covers Software Engineering, Cre- model based on ontology.
ative Computing, Web and Distributed Computing. Dr Liu is a member of CCF and IEEE.
Prof. Yang has become IEEE Computer Society Golden Core E-mail:liuhuaxiao@jlu.edu.cn

Member since 2010, also, he is a member of EPSRC Peer Review
College since 2003. He is the Editor in Chief of International
Journal of Creative Computing, InderScience.

E-mail: h.yang@bathspa.ac.uk

	Article coversheet Springer
	9451a
	Article coversheet Springer
	An approach to modelling

