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Abstract - The Apriori algorithm is one of the most 
well-known and widely accepted method for the association 
rule mining. In Apriori, it uses a prefix tree to represent 
k-itemsets, generates k-itemset candidates based on the
frequent (k-1)-itemsets, and determines the frequent
k-itemsets by traversing the prefix tree iteratively based on the
transaction records. When k is small, the execution of Apriori
is very efficient. However, the execution of Apriori could be
very slow when k becomes large because of the deeper
recursion depth to determine the frequent k-itemsets. From the
perspective of graph computing, the transaction records can
be converted to a graph G (V, E), where V is the set of vertices
of G that represents the transaction records and E is the set of
edges of G that represents the relations among transaction
records. Each k-itemset in the transaction records will have a
corresponding connected component in G. The number of
vertices in the corresponding connected component is the
support of the k-itemset. Since the time to find the
corresponding connected component of a k-itemset in G is
constant for any k, the graph computing method will be very
efficient if the number of k-itemsets is relatively small. Based
on Apriori and graph computing techniques, a hybrid method,
called ANG (Apriori and Graph Computing), is proposed to
compute the frequent itemsets. Initially, ANG uses Apriori to
compute the frequent k-itemsets and then switches to the
graph computing method when k becomes large (where the
number of k-itemset candidates is relatively small). The
experimental results show that ANG outperforms both Apriori
and the graph computing method for all test cases.

Keywords: Apriori; Graph Computing; Frequent Itemset 
Mining; Data Mining 

1 Introduction 

Data mining is to extract the previously unknown and 
potentially useful information from a large database [15, 17, 
21, 22, 24, 32]. It is the core process of the knowledge 

discovery of database [24]. The association rule mining is one 
of the most important techniques in data mining. The 
association rule was first proposed in supermarket sales [1]. A 
supermarket collects a lot of transaction records. The owner 
wants to find useful information from transaction records to 
help decision makers draw up sale plans.  Information such 
as certain groups of items are consistently purchased together 
is interesting. The managers could use the information to 
adjust store layouts, arrange cross selling, and so on. 

A transaction record contains a set of items, where an 
item means a product.  Let I be the set of all items. An 
association rule may like X→Y, where X, Y ⊂ I and X ∩ Y = ∅. 
For example, users who buy milk and bread may also buy 
butter.  We say X = {milk, bread} → Y = {butter} is an 
association rule if the confidence of X and Y, denoted as  

confidence(X, Y) = support (X)/support(X ∪ Y), (1) 

is greater than the minimum confidence, where support(X) is 
the number of transaction records that contains X and the 
minimum confidence is a user-defined threshold. Given a set 
of transaction records, there may exist a large number of 
useless association rules in which the supports of X and Y are 
small although their confidences are large. To eliminate those 
useless association rules, the association rule mining, in 
general, is divided into 2 steps. The first step is to find all 
frequent itemsets whose supports are greater than the 
minimum support. This step is also known as frequent itemset 
mining (FIM). The second step is to produce all association 
rules based on Equation (1) for all frequent itemsets found in 
the first step. The overall performance of association rule 
mining is mainly depending on the first step since the second 
step is easy. 
    The Apriori algorithm is one of the most well-known and 
widely accepted method to compute FIM [15, 17, 21, 22, 24, 
32].  It uses a prefix tree to represent frequent itemsets [3, 4]. 
In the prefix tree, each node in the kth level represents a set of 
k-itemsets. To avoid useless association rules research, Apriori
first generates k-itemset candidates based on the frequent
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(k-1)-itemsets. Then, it traverses the prefix tree iteratively 
based on the transaction records to determine whether a 
k-itemset candidate is frequent. When k is small, the execution 
of Apriori is very efficient.  However, the execution of 
Apriori could be very slow when k becomes large due to the 
deeper recursion depth to determine the frequent k-itemsets.   

The graph computing is a technique to process a set of 
large-scale data that can be represented as a graph. Many 
applications, such as breadth-first search, page rank, 
connected components, shortest paths, etc., can be 
implemented by using the graph computing method. From the 
perspective of graph computing, a set of transaction records 
can be treated as a graph G = (V, E), where V is the set of 
vertices of G that represents the transaction records and E is 
the set of edges of G that represents the relations among 
transaction records. Two vertices have an edge associated 
with them if the corresponding transaction records satisfied 
the condition specified by the relation. For the association rule 
mining, the relation can be specified as two transaction 
records have the k items in common, where k = 1, …, |I| and I 
is the set of all items in transaction records.  An example of 
such perspective is shown in Figure 1.  In Figure 1(a), a set 
of transaction records is given.  Figure 1(b) shows the 
corresponding graph G1 in which two transaction records have 
1 item in common.  Figure 1(c) shows the corresponding 
graph G2 in which two transaction records have 2 items in 
common. 

 

 
(a) Transaction records   (b) Graph G1        (c) Graph G2 

Figure 1. A graph perspective of transaction records 
 
 

 
Figure 2. The set of connected components of G2 in Figure 

1(c) 

Let D be a set of transaction records and Gk be the 
corresponding graph of D with value k.  From Gk, we can 
obtain a set of connected components Ck in which any two 
transactions in a connected component have the same k items 
in common, that is, each k-itemset in D has a corresponding 
connected component in Ck.  The support of a k-itemset 
happens to be the number of vertices in the corresponding 
connected component. Therefore, to use the graph computing 
method to determine the frequent k-itemsets of D, we only 
need to compute the number of vertices in each connected 
components of Ck.  If the support is greater than a threshold 
(minimum support), then this k-itemset is frequent. The 
performance of using the graph computing method for FIM is 
determined by the number of connected components in Ck. 

Given the graph G2 shown in Figure 1(c), the set of connected 
components of G2 is shown in Figure 2. 

In Apriori, when k is small, the number of k-itemset 
candidates could be very huge. If the graph computing 
method is applied to determine the frequent k-itemsets based 
on these k-itemset candidates, its execution will be very slow. 
On the opposite, when k is large, the number of k-itemset 
candidates will be small. The calculation of frequent 
k-itemsets will be very efficient if the graph computing 
method is applied. Since Apriori is efficient when k is small 
while the graph computing method is efficient when k is large, 
in this paper, we propose a hybrid method, called ANG 
(Apriori and Graph Computing), by combining the advantages 
of these two methods for FIM.  Initially, ANG uses Apriori 
to perform FIM and then switches to the graph computation 
method when k becomes large. We have derived a formula to 
determine the switch from Apriori to the graph computing 
method (this will be described in section 3.3 in detail).  

To evaluate ANG, we compared its performance with 
that of Apriori, DHP (directed hashing and pruning) [23], and 
the graph computing method. The experimental results show 
that ANG outperforms Apriori, DHP, and the graph computing 
method for all test cases. The contributions of this paper are 
as follows: 

1. We have formulated the FIM problem as a graph 
computing problem. 

2. We have proposed a hybrid method, ANG, based on 
Apriori and the graph computing method to compute 
FIM efficiently. 

The rest of the paper is organized as follows. Section 2 
introduces some graph computing structures and some FIM 
methods. Section 3 introduces ANG in details. The 
experimental results are given in section 4. 
 
2 Related Work 
 

Many graph computing techniques have been proposed 
in the literature [5-10, 14, 16, 18-20, 25-30, 33-35]. They can 
be divided into two categories, single node graph computing 
techniques [10, 14, 16, 18, 25-27, 30, 33, 34] and distributed 
graph computing techniques [5, 7- 9, 19, 20, 31, 35].  

In GraphChi [14], the authors proposed a graph 
computing structure in a single node system. It is a disk-based 
system to compute graphs with billions of edges from disk by 
using a novel parallel sliding windows method.  GridGraph 
[34] decomposes graphs into vertex chunks and edge blocks 
using a 2-level hierarchical partition.  It uses a novel dual 
sliding windows method to process graphs. Ligra [26] is a 
lightweight in-memory graph computing system.  In Ligra, 
the memory requirement is critical since a graph must be in 
the memory before processing.  Ligra+ [27] is a successor of 
Ligra by using compression techniques to reduce the size of a 
graph. GraphBuilder [13] provides a scalable framework for 
graph loading, extraction, and transformation. 

Pregel [20] is a distributed programming framework for 
graph computing by providing a set of APIs. It uses a 
synchronous superstep model to synchronize the execution of 
nodes among a distributed computing environment.   



Distributed GraphLab [19] and PowerGraph [8] are graph 
computing frameworks for data mining and machine learning 
algorithms with large-scale data. 

Apriori was proposed in [1, 2].  It has been widely 
discussed in [3, 4, 12, 15, 17, 21-24, 32].  In [3, 4], the 
authors proposed an implementation of Apriori by using the 
prefix tree. In [15, 17, 21, 22, 24], some parallel and 
distributed implementations of Apriori with MapReduce [7] 
were proposed. In [12], the authors implemented Apriori 
based on Hadoop.  In [23], the authors provide a hash-based 
algorithm, DHP, for mining association rules. The difference 
between this method and Apriori is the way to generate the 
frequent itemset candidates. In Apriori, a prefix tree is used to 
generate the frequent itemset candidates while in DHP, a hash 
table is used.  In [24], the infrequent itemsets mining based 
on MapReduce was discussed.  In [32], the authors proposed 
a hash-based method to discover the maximal frequent 
itemsets. 
 
3 The Proposed Method 
 
3.1 Apriori Algorithm 
 

The Apriori algorithm used in this paper is based on the 
work proposed in [4].  In [4], it uses the prefix tree to 
express all subsets of a set of items.  Based on the prefix tree, 
the frequent k-itemsets can be calculated iteratively.  Let I be 
a set of items, Sk be all subsets of I with k items, and |I| = n.  
An n level prefix tree T can be used to represent all subsets of 
I, where the node in the first level of T contains S1, nodes in 
the second level of T contain S2, nodes in the third level of T 
contain S3, and so on.  An example of using the prefix tree to 
represent all subsets of I with n = 5, is shown in Figure 3. 

 

 
Figure 3. A prefix tree for 5 items 

     
Let D be a set of transaction records and I be a set of 

items. To calculate all the frequent k-itemsets of D based on 
the prefix tree, the execution of Apriori is composed of two 
phases, initial and iterative. 

Phase 1. In the initial phase where k = 1, the frequent 
1-itemsets are calculated by scanning D once to obtain the 
support of each 1-itemset.  If the support of a 1-itemset is 
greater than the minimum support, the 1-itemset is a frequent 
1-itemset. Otherwise, the support of the 1itemset is set to -1 to 
indicate that the itemset is not a frequent one. 

Phase 2. In the iterative phase where k > 1, Apriori uses 
the frequent (k-1)-itemsets generated in the (k-1)th level of the 
prefix tree to generate k-itemset candidates. To determine 

whether a k-itemset candidate is frequent, Apriori traverses 
the prefix tree iteratively based on the transaction records to 
get the support of each k-itemset candidate. If the support of a 
k-itemset candidate is greater than the minimum support, then 
it is a frequent k-itemset. Otherwise, the support of the 
k-itemset is set to -1. 

The Apriori algorithm is give as follows: 
__________________________________________________ 
 
Algorithm Apriori (D, I, T) 
/* D is the set of transaction records */ 
/* I is the set of all items in D */ 
/* T is the prefix tree with level and T = ∅ initially */ 
 
/* Initial phase */ 
1. Build the 1-level prefix tree T’; 
2. T = T ∪ T’; 
3. Scan D once to obtain the support of each 1-itemset;  
4. if (the support of a 1-itemset <= minimum support) the 

support of the 1-itemset is set to -1; 
 
/* Iterative phase */ 
5. k=2; 
6. Candidates_Generation (k, T); 
7. while (Candidates_Generation (k, T) produce new nodes) 
8. { 
9. T = Apriori_c (k, D, T); 
10. k++; 
11. Candidates_Generation (k, T); 
12. } 
End of Apriori 
 
Algorithm Candidates_Generation (k, T) 
/* T is the prefix tree */ 
1. let p and q be 2 frequent (k-1)-itemsets; 
2. if (the items of p and q are the same except the last one)  
3. { 
4. Add a k-itemset candidate exc with the same (k-2) 

items and different 2 last items to the corresponding 
position in the kth level of T; 

5. if (one of the subset of exc with k-1 items is not a 
frequent (k-1)-itemset) the support of exc is set to -1; 

6. } 
End of Candidates_Generation 
 
Function Apriori_c (k, D, T) 
/* D is the set of transaction records */ 
/* T is the prefix tree with level = k-1 */ 
1. Build the k-level of prefix tree T’ based on T; 
2. For each transaction record r in D do  
3. { 
4. Use r to traverse T’ iteratively; 
5. If the traverse reached a leaf node of T’, the support of 

the corresponding k-itemset is increased by 1;  
6. } 
7. if (the support of a k-itemset <= minimum support) the 

support of the k-itemset is set to -1; 
8. return T’; 
End of Apriori_c 
__________________________________________________ 



The time complexity of Apriori is O(k2 Í |D| Í 
𝐶( 𝐼 , 𝑖))'()

*+)  based on the method proposed in [4].  An 
example of using Algorithm Apriori(D, I, T) for FIM is shown 
in Figure 4.  In Figure 4(a), a set of transaction records D = 
{T1, T2, T3, T4} is given and I = {I1, I2, I3, I4, I5}.  In the 
initial phase, we can obtain the 1-itemset candidates, the 
frequent 1-itemsets with support > 1, and the one-level prefix 
tree as shown in Figures 4(b), 4(c), and 4(d), respectively.  
In the iterative phase, when k = 2, we can obtain the 2-itemset 
candidates, the frequent 2-itemsets with support > 1, and the 
two-level prefix tree as shown in Figures 4(e), 4(f), and 4(g), 
respectively.  When k = 3, the 3-itemset candidates, the 
frequent 3-itemsets with support > 1, and the three-level 
prefix tree are shown in Figures 4(h), 4(i), and 4(j), 
respectively. 

 

(a) Transaction records 
 

(b) 1-itemset candidates   (c) Frequent 1-itemsets    (d)1-level prefix tree 
 

(e) 2-itemset candidates    (f) Frequent 2-itemsets   (g) 2-level prefix tree 
                

  (h) 3-itemset candidates    (i) Frequent 3-items    (j) 3-level prefix tree 
Figure 4. An example of using Apriori for FIM 

 
3.2 Graph Computing Method 
     

To use the graph computing method to compute FIM, the 
process can be divided into two phases, converting phase and 
computing phase: 

Phase 1. In the converting phase, we convert the 
transaction records to graph data.  Given a set of transaction 
records D and a set of all items of D, denoted as I, we can 
covert D to a graph data G = (V, E) by using the following 
rules:  

Rule 1. For each transaction record r in D, it denotes as a 
vertex v in V.  The vertex ID of v is the record ID of r.  

Rule 2. If two transaction records have k items in 
common, there will be an edge between two vertices and the 
attributes associated with the edge is the set of IDs of k items, 
where k = 1, …, |I|. 

Phase 2. In the computing phase, we determine the 
frequent k-itemsets based on G and the prefix tree T.  From 
G, we can derive Gk that is the corresponding graph of all 
k-itemsets in D, where k = 1, …, |I|.  Since each k-itemset in 
D has a corresponding connected component in Ck.  The 
support of a k-itemset is the number of vertices in the 
corresponding connected component. Given the k-itemset 
candidates in T, to determine whether a k-itemset candidate is 
frequent, we only need to find the corresponding connected 
component of the k-itemset candidate in Ck and compute the 
number of vertices (counter) in the corresponding connected 
components.  If the counter is greater than a threshold 
(minimum support), then this k-itemset is frequent. 

The algorithm to use the graph computing method to 
calculate the frequent itemsets is given as follows. 

 
__________________________________________________ 
 
Algorithm FIM_GC (D, T, I, G) 
/* D is the set of transaction records */ 
/* T is the prefix tree with level and T = ∅ initially */ 
/* I is the set of all items in D */ 
/* G is the converted graph data of D */ 
1. Convert D to G based on rules 1 and 2; 
2. Build the 1-level prefix tree T’; 
3. T = T ∪ T’; k = 1; 
4. do  
5. { 
6. For each k-itemset candidate in T do  
7. { 
8. s = FIM_CC (G, k-itemset.attribute_set); 
9. if (s > minimum support)  
10.    the support of the k-itemset is s; 
11. else the support of the k-itemset is -1; 
12. } 
13. k++; 
14. } while (Candidates_Generation(k, T) produce new nodes) 
End of FIM_GC 

 
Algorithm FIM_CC (G, attribute_set) 
1. labels = {0, …, |V-1|} initialized such that labels[i]=i; 
2. for each edge e in G do Fe (e, attribute_set); 
3. Return the counter of vertices in the connected 

component; 
End of FIM_CC 
 
Function Fv (vertex, new_label) 
1. labels[vertex] = new_label; 
End of Fv 
 
Function Fe (edge, attribute_set) 
1. if (attribute_set is a subset of attributes of edge)  
2. { 
3. m = min(labels[edge.source], 

labels[edge.destination]); 
4. Fv (edge.source, m); 
5. Fv (edge.destination, m); 
6. } 
End of Fe 
__________________________________________________ 



In the graph computing method, the converting phase 
(Phase 1) will be executed only once.  Its time complexity is 
O(|D|2).  In the computing phase, the maximum number of 
frequent itemset candidates processed in the kth iteration is 
C(|I|,k). The time complexity of this phase is 
O( 𝐶 𝐼 , 𝑖'

*+) *|E|). 
 
3.3 ANG Algorithm 
 

The different between the graph computing method and 
Apriori is the way to compute the support of k-itemset.  
Apriori uses the transaction records to traverse the prefix tree 
iteratively to calculate the supports of k-itemset candidates 
while the graph computing method uses the connected 
components algorithm to compute the supports of k-itemsets. 

When k is small, Apriori can be very efficient. However, 
Apriori will be very inefficient when k becomes large because 
of the deeper recursion depth.  It indicates that the execution 
time of Apriori is mainly depending on the level of prefix tree 
traversed.  For the graph computing method, it computes a 
support of a k-itemset by executing the connected components 
algorithm once. The time of executing multi-attributes 
connected components algorithm for different k-itemsets is 
almost the same.  Therefore, the execution time of the graph 
computing method is mainly depending on the number of 
k-itemsets.   

In Apriori algorithm, the number of k-itemset candidates, 
in general, is much less than the number of k-itemsets in the 
prefix tree. We observe that the number of k-itemset 
candidates is large when k is small.  While k become large, 
the number of k-itemset candidates decreases sharply. Table 1 
shows the number of k-itemset candidates of a set of 
transaction records with different minimum supports 
percentage s.  The minimum support is defined as s times the 
number of transaction records.  The 1-itemset candidates are 
the whole items, and the k-itemsets candidates are depending 
on frequent (k-1)-itemsets. From Table 1, we can see that the 
number of k-itemset candidates decrease greatly when k > 2. 

 
Table 1. The number of k-itemset candidates 

     
Apriori is very efficient when k is small while the graph 

computing method with the prefix tree can accelerate the 
computation of the support of k-itemset candidates when k is 
large.  By using this feature, we propose the ANG algorithm 
to perform FIM.  In ANG, initially the Apriori method is 
used when k is small.  When k is large, the graph computing 
method is applied.  We need to determine the value of k such 
that the execution can be switched from the Apriori method to 
the graph computing method. 

Let Ni be the number of items in the ith transaction 
record, CAk be the number of k-itemset candidates, trk be the 
time of one transaction record traversing a prefix tree with 
depth k, tck be the time to execute the connected components 
algorithm with k items. The time to compute the support of 
k-itemset candidates in Apriori is 𝐶,-

' ∗ 𝑡0'. The time to 
compute the support of k-itemset candidates in the graph 
computation method is 𝐶𝐴' ∗ 𝑡2'. When the time of Apriori 
is greater than the time of the graph computation method, we 
switch to the graph computing method i.e. when the Equation 
(2) is satisfied. 

 
𝐶(𝑁*, 𝑘) ∗ 𝑡0' > 𝐶𝐴' ∗ 𝑡2'	               (2) 

 
The algorithm of ANG is given as follows. 
__________________________________________________ 
 
Algorithm ANG (D, T, G) 
/* D is the set of transaction records */ 
/* T is the prefix tree with level and T = ∅ initially */ 
/* G is the converted graph data of D */ 
 
1. Build the 1-level prefix tree T’; 
2. T = T ∪ T’; 
3. Scan D once to obtain the support of each 1-itemset;  
4. if (the support of a 1-itemset <= minimum support) the 

support of the 1-itemset is set to -1; 
5. k=2; 
6. Candidates_Generation (k, T); 
7. while (Equation (2) is not satisfied) 
8. { 
9. Apriori_c (k, D, T); 
10. k++; 
11. Candidates_Generation (k, T); 
12. } 
13. while (k-itemset candidates are not empty) 
14. { 
15. Build k-level prefix tree T’ based on T; 
16. for each k-itemset candidate do 
17. { 
18. s = FIM_CC (G, candidate.attribute_set); 
19. if (s < minimum support) support of the k-itemset 

is set to -1; set corresponding support of k-itemset 
= s; 

20. k++; 
21. Candidates_Generation (k, T’); 
22. } 
23. } 
End function 
__________________________________________________ 
 

The time complexity of ANG is O(j2 Í |D| Í 
𝐶( 𝐼 , 𝑖))7()

*+)  + O( 𝐶 𝐼 , 𝑖'
*+7 *|E|), where j and k are the 

first and the last iterations performed by Algorithm 
FIM_CC(G, candidate.attribute_set) in Algorithm ANG(D, T, 
G), respectively.  The execution flow of the ANG algorithm 
is shown in Figure 5. 
 

 s = 0.1% s = 0.2% s = 0.3% s = 0.4% 
1-itemsets 1000 1000 1000 1000 
2-itemsets 318003 274911 242556 200028 
3-itemsets 158413 30110 7881 1788 
4-itemsets 5493 2719 737 200 
5-itemsets 3140 1631 266 53 
6-itemsets 1427 826 61 11 
7-itemsets 494 303 11 1 



Figure 5. The execution flow of the ANG algorithm 
 
4 Experimental Results 
 

To evaluate the performance of ANG, we have 
implemented ANG algorithm along with Apriori, DHP, and 
the graph computing method.  We use the set of transaction 
records in [11] as the test sample.  The set contains 61100 
transaction records and 1000 items.  Items in transaction 
records are uniform distributed, that is, each item has the 
same influence to the experiment conducted. 

Table 1 shows the number of k-itemset candidates in the 
prefix tree with different minimum support percentages s for 
the test sample.  Tables 2-5 show the execution time (in 
seconds) of Apriori and the graph computing method for the 
k-itemset candidates shown in Table 1.  From Tables 2-5, we 
have the following observation: 

Observation 1: If the value of minimum support 
percentage increases, the time for the graph computing 
method to determine the frequent itemsets from the k-itemset 
candidates will be less than that of the Apriori method with 
smaller k.   

For example, if s is 0.1%, the time for the graph 
computing method to determine the frequent itemsets from 
the 7-itemset candidates is 247 seconds while that of the 
Apriori method is 711.11 second.  When s is increased to 
0.3%, the time for the graph computing method to determine 
the frequent itemsets from the 5-itemset candidates is 106.4 
seconds while that of the Apriori method is 176.29 second.   

In ANG, Equation (2) is used to determine when to 
switch from Apriori to the graph computing method. Given 
the test sample, in Equation (2), 𝐶(𝑁*, 𝑘) can be computed 
for a given Ni and k.  The value of trk is the time for each 
transaction record to traverse a prefix tree with depth k.  The 
levels traversed for trk and tr(k-1) are k and k-1, respectively.  
trk can be approximated as trk = tr(k-1) + (tr(k-1) − tr(k−2)) = 2tr(k-1) - 
tr(k-2). Values of CAk are shown in Table 1, where k= 1, …, 7. 
The value of tck can be obtained by executing the connected 
component algorithm with k items once.   

For the case where s = 0.3% and k = 5, we have 
𝐶(𝑁*, 5) = 689419357,  tr5 = 2.56μs since tr4 = 2.52μs and 

tr3 = 2.48μs, CA5 is 266, and tc5 = 0.37s.  Based on the values 
of 	 𝐶(𝑁*, 5), tr5, CA5, and tc5, the estimated time for the 
Apriori method and the graph computing method are 176.49 
and 98.42 seconds, respectively.  Given the test sample and s 
= 0.3%, ANG will use the Apriori method to calculate the 
frequent itemsets when k < 5 and switches to the graph 
computing method after k ≥ 5 since the condition given in 
Equation (2) is satisfied. 

Tables 6-9 show the estimated execution of Apriori and 
the graph computing method based on the values of 
	 𝐶(𝑁*, 𝑘), trk, CAk, and tck for the test sample with s = 0.1%, 
0.2%, 0.3%, and 0.4%, respectively.  Compare Tables 2-5 
and Tables 6-9, we can see that Equation (2) can predict the 
switching points for ANG accurately for all test cases.  Table 
10 shows the execution time of Apriori, ANG, and the graph 
computing method for the test sample.  From Table 10, we 
can see that ANG has the best performance among the three 
methods compared for all test cases. 

 
Table 2. The execution time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.1%  
 Apriori Graph Computing 

2-itemsets 8.54 130381.24 
3-itemsets 37.16 64949.35 
4-itemsets 102.12 2252.12 
5-itemsets 232.54 1287.43 
6-itemsets 438.68 713.6 
7-itemsets 711.11 247 

 
Table 3. The execution time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.2% 
 Apriori Graph Computing 

2-itemsets 7.58 112713.51 
3-itemsets 31.59 12345.15 
4-itemsets 88.04 1114.79 
5-itemsets 198.78 668.71 
6-itemsets 374.29 330.4 
7-itemsets 608.63 151.5 

 
Table 4. The execution time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.3% 
 Apriori Graph Computing 

2-itemsets 7.37 99447.96 
3-itemsets 28.65 3231.21 
4-itemsets 78.71 302.17 
5-itemsets 176.29 106.4 
6-itemsets 333.26 30.5 
7-itemsets 541.42 7.7 

 
Table 5. The execution time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.4% 
 Apriori Graph Computing 

2-itemsets 6.41 82011.49 
3-itemsets 24.91 733.07 
4-itemsets 68.76 82.71 
5-itemsets 155.02 21.74 
6-itemsets 291.69 6.6 
7-itemsets 474.55 1.2 

 
Table 6. The estimated time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.1% 
 Apriori Graph Computing 

2-itemsets 8.66 108121.02 
3-itemsets 37.13 53860.42 
4-itemsets 119.11 1977.48 
5-itemsets 233.02 1161.8 
6-itemsets 439.58 585.07 
7-itemsets 691.27 207.48 

	



Table 7. The estimated time (s) of Apriori and the graph 
computing method for k-itemset candidates with s = 0.2% 

 Apriori Graph Computing 
2-itemsets 7.91 93469.74 
3-itemsets 32.19 10538.5 
4-itemsets 95.35 978.84 
5-itemsets 199.24 603.47 
6-itemsets 376.78 338.66 
7-itemsets 596.57 127.26 

 
Table 8. The estimated time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.3% 
 Apriori Graph Computing 

2-itemsets 7.42 82469.04 
3-itemsets 28.62 2758.35 
4-itemsets 84.09 265.32 
5-itemsets 176.49 98.42 
6-itemsets 330.64 25.01 
7-itemsets 520.82 4.62 

 
Table 9. The estimated time (s) of Apriori and the graph 

computing method for k-itemset candidates with s = 0.4% 
 Apriori Graph Computing 

2-itemsets 6.29 68009.52 
3-itemsets 24.83 625.8 
4-itemsets 74.09 73.44 
5-itemsets 154.43 19.61 
6-itemsets 294.76 4.51 
7-itemsets 464.01 0.42 

 
Table 10. The execution time (s) of Apriori, ANG and the 

graph computing method 
s Apriori ANG Graph Computing 

0.1% 1546.15 1032.64 200067.72 
0.2% 1324.12 905.69 127710.91 
0.3% 1179.69 297.72 103529.93 
0.4% 1036.31 145.55 83258.75 

 
 

In addition to the performance comparison of Apriori, 
ANG, and the graph computing method, we also compare the 
performance of ANG with DHP, another method for FIM.  
Figure 6 shows the execution time of ANG and DHP for the 
test cases with minimum support from 0.1 to 0.4.  From 
Figure 6, we can see that ANG outperforms DHP for all test 
cases. 

 

Figure 6. The execution time (s) of ANG and DHP for test 
cases with different minimum support 

 
 

5 Conclusions 
 

In this paper, we have shown that how to use the graph 
computing method to perform frequent itemset mining.  We 
also discussed the advantages and disadvantages of Apriori 
and the graph computing method when applied them to 
frequent itemset mining.  Based on the discussions, we have 
proposed a hybrid method, ANG, by taking the advantages of 
Apriori and the graph computing method for frequent itemset 
mining.  In ANG, initially, Apriori is used to compute the 
support of k-itemset candidates when k is small. When k 
becomes large, the graph computation method is used to 
compute the support of k-itemset candidates.  We have 
derived a formula to determine when to switch from the 
Apriori method to the graph computing method.  The 
experimental results show that the formula can predict the 
switching point accurately and ANG outperforms Apriori, 
DHP, and the graph computing method for all test cases. 
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