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1. The energy cost optimization architecture is proposed for IDC operator. 

2. A heuristic algorithm is devised to select security services to guarantee the job security. 

3. The temporal diversity of electricity price is considered in minimizing the energy cost. 

4. The energy cost minimization algorithm is based on Lyapunov optimization technique. 

5. Extensive evaluation experiments demonstrate the effectiveness of our algorithms. 
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Abstract 

With the proliferation of various big data applications and resource demand from Internet data centers 

(IDCs), the energy cost has been skyrocketing, and it attracts a great deal of attention and brings many 

energy optimization management issues. However, the security problem for a wide range of 

applications, which has been overlooked, is another critical concern and even ranked as the greatest 

challenge in IDC. In this paper, we propose an energy cost minimization (ECM) algorithm with job 

security guarantee for IDC in deregulated electricity markets. Randomly arriving jobs are routed to a 

FIFO queue, and a heuristic algorithm is devised to select security levels for guaranteeing job risk 

probability constraint. Then, the energy optimization problem is formulated by taking the temporal 

diversity of electricity price into account. Finally, an online energy cost minimization algorithm is 

designed to solve the problem by Lyapunov optimization framework which offers provable energy cost 

optimization and delay guarantee. This algorithm can aggressively and adaptively seize the timing of 

low electricity price to process workloads and defer delay-tolerant workloads execution when the price 

is high. Based on the real-life electricity price, simulation results prove the feasibility and effectiveness 

of proposed algorithm. 

Keywords: Internet data center; security service; risk probability constraint; energy cost minimization; 

deregulated electricity markets 

 

1. Introduction 

Cloud computing, comprises of infrastructure platforms called Internet data center (IDC), is a 

large-scale distributed computing to meet the skyrocketing demand of big data applications and 

services. As an IDC typically consists of tens of thousands of servers, the energy consumption or 

energy cost is one of the critical problems. For example, many IDCs (e.g., Microsoft, Google, Akamai 

and INTEL) spend millions of dollars on electricity costs every year, which result in a large portion of 

operation expense [1, 2]. Hence, a considerable cost can be saved even reducing a few percent energy 

cost. 

In cloud computing environment, the jobs or application requests from the cloud users can be 

submitted to IDC, which are also considered as virtual network (VN) requests [3, 4]. These jobs or 

applications may be delay tolerant big data, such as scientific computing and data intensive 

MapReduce applications [2]. Generally, jobs or applications are arrived at IDC randomly. Therefore, 

the scheduling problem, which is also can be considered as the energy cost problem, is key issue for 

IDC to ensure the QoS of jobs and reduce the energy overhead [5, 6]. 

Recently, a great attention has been paid to IDC energy management by both academia and 

industry. Extensive research has been developed to minimize the energy cost by utilizing the electricity 

price dynamics across geographically distributed regions [7, 8], and apply VM migration to achieve the 

*Manuscript with source files (Word document)
Click here to view linked References



goals of saving energy [9, 10]. Especially, the electricity price manifests spatial and temporal diversity 

in the real life. For instance, in North America, owing to the different power generation profiles and 

electricity markets have been deregulated, the electricity prices are not constant but vary on the basis of 

an hour or 15-min [6]. To consider the temporal diversity of electricity price, the energy storage for 

energy cost saving is studied [11, 12], and both service delay and energy cost are taken into account in 

geographically distributed data center [2]. 

Security is another critical concern and even ranked as the greatest challenge in cloud computing 

environment. A survey from international data corporation shows that security is one of the greatest 

concerns in cloud computing [13]. Many works tackle the security problem on clusters [14], grid 

computing [15], heterogeneous distributed system [16, 17], cloud computing [18-21] and real-time 

embedded systems [22]. Unfortunately, because cloud computing environment is used to execute 

various applications of users, applications and users all may be the sources of malicious attack [23]. 

Furthermore, security mechanism is overlooked and has not been employed to counter any security 

threats [24, 25]. Therefore, it is necessary to deploy security services to protect various applications 

running in the IDC. However, security workload is incurred by adding security services to applications. 

Hence, it is a big challenge to tradeoff energy cost and service quality. 

In this paper, we propose an energy cost minimization (ECM) algorithm with job security 

guarantee for IDCs where the electricity price exhibits temporal diversity. These jobs may be delay 

tolerant big data applications that take from several minutes to more than many hours. Our targets can 

be described as follows: 1) guaranteeing the risk probability constraint of each arriving job; 2) 

exploiting the temporal diversity of electricity price to minimize energy cost. First, a heuristic 

algorithm is devised to select security levels for workload shaping to guarantee the job security. Then, 

the energy optimization problem is formulated by taking the temporal diversity of electricity price into 

account. An online ECM algorithm, based on the Lyapunov optimization framework, is applied to solve 

that optimization problem. Our purpose is to minimize energy cost by deciding: 1) how to select 

security services to guarantee the risk probability constraint; 2) how many workloads should be 

processed in each time slot; and 3) how many resources should be provided by the IDC. 

The main contributions of this paper can be summarized as follows: 

 We propose, design and evaluate an energy cost optimization architecture, which mainly consists 

of Cloud Users, Job FIFO Queue, IDC Operator (includes Job Analyzer, Workload Shaping with 

Security Guarantee, Energy Cost Minimization and Server Management) and Servers (see Section 

3.1). 

 We devise a heuristic algorithm for arriving jobs to select appropriate security services to 

guarantee the job security. Based on it, the security workload shaping can be finished. In our 

architecture, the total workload consists of task execution workload and security workload (see 

Sections 3.5 and 4.1). 

 We exploit the temporal diversity of electricity price to minimize the energy cost in deregulated 

electricity markets. The ECM algorithm is based on Lyapunov optimization technique which can 

facilitate energy cost versus delay trade-off for IDC operator (see Sections 3.6 and 4.2). 

 Based on real-life electricity price data sets, the simulation results show that our approach can 

achieve energy cost saving and security guaranteeing simultaneously (see Section 5). 

The rest of this paper is organized as follows. Section 2 summarizes the related work. In Section 3, 

we describe the system architecture, models and problem formulation. Section 4 introduces the 

algorithm design. The performance evaluation approaches and results, comparisons with similar work, 



research contributions and limitations are conducted in Section 5. Conclusions and envisages our future 

work are given in Section 6. 

 

2. Related Work 

Security is one of the critical problems in distributed computing environment. However, most existing 

well-known scheduling studies neglect the security problems, and only few groups of researchers 

consider the security-driven scheduling policy for applications. Azzedin and Maheswaran [26] 

presented a trust brokering system which implicated the security meaning and was applied to the public 

resource grids. Song et al. [15] proposed six risk-resilient scheduling strategies for job security-assured 

under different risky conditions in grid environment. Xie and Qin [14] built three security overhead 

models for measuring execution time incurred by the security-critical tasks in clusters. Also the 

performance evaluations of security heterogeneity scheduling algorithm were studied in distributed 

computing systems [16]. Tang et al. [17] used the differential equation to build system node trust model 

and proposed a security-driven scheduling architecture for directed acyclic graph (DAG) applications. 

As for the workflow applications in cloud, Zeng et al. [18] introduced a security-aware and 

budget-aware (SABA) scheduling strategy to minimize the makespan with budget constraint. Then, Li 

et al. [27] proposed a security and cost aware scheduling (SCAS) algorithm for workflow application to 

optimize the execution cost with deadline and risk probability guarantee in clouds. Due to financial 

sector confronts the problems of inaccurate and inadequate assessment, Chang [28] deployed complex 

models in cloud to improve accuracy on risk analysis and prediction. The balance between benefits and 

risks should be considered for the projects of organization. Hence, based on organizational 

sustainability modeling (OSM) [29], Chang et al. [30] proposed a new technique, capital asset price 

modeling (CAPM), to evaluate the risks and benefits of commercial projects. 

Energy consumption or energy cost problem of cloud data center has been attracted many 

attentions [21, 31-34]. Qureshi et al. [1] proved that electricity prices exhibit both temporal and spatial 

variations in deregulated electricity markets. According to the feature of electricity price, Rao et al. [7] 

proposed an energy cost minimization algorithm with guaranteeing quality of service under multiple 

electricity markets environment. Liu et al. [35] derived three distributed algorithms to achieve optimal 

geographical load balancing and also proved that geographical load balancing can significantly reduce 

brown energy use under special conditions. Shao et al. [6] used the mixed-integer nonlinear 

programming (MINLP) technique to achieve the optimal load balancing and energy cost management 

for IDCs. Luo et al. [36] proposed an energy cost optimization-IDC (eco-IDC) algorithm to minimize 

energy cost with service delay guarantee for data center. 

In the light of risk preferences of IDC operators, Yu et al. [37] studied the problem of achieving the 

optimal tradeoff between operation risk and energy cost for IDC operators and proposed a 

risk-constrained decision framework to solve this problem. Sun et al. [38] proposed a power-efficient 

resource provisioning technique while meeting the service level agreements in cloud data center. 

New aspects of power usage in data center have been emerged for energy cost reduction. 

Urgaonkar et al. [11] utilized energy storage devices to reduce the time average electric utility bill 

based on the Lyapunov optimization technique. Yu et al. [39] minimized energy cost by taking both 

workload and battery into consideration. Guo et al. [12] developed an online algorithm to minimize 

energy cost by integrating the center-level load balancing, the server-level configuration, and the 

battery management while satisfying the time guaranteeing of services. Yu et al. [40] investigated the 

problem of minimizing the energy cost with the uncertainties in electricity price, workload, renewable 



energy generation, and power outage state. Liu et al. [41] integrated renewable supply, dynamic pricing, 

and cooling supply to reduce electricity cost, environmental impact and improve the overall 

sustainability of data center operations. 

The Lyapunov optimization technique is first proposed in [42] for network stability problems. It 

was used to solve the energy optimal cross-layer control problems in time varying wireless networks 

[43]. Recently, the Lyapunov optimization technique has been widely utilized for wireless network, 

virtualized data center, social network, Internet data center, etc [44, 45]. Urgaonkar et al. [46] 

investigated optimal resource allocation and power management and employed Lyapunov optimization 

technique for job admission control, routing, and resource allocation in the virtualized data center. Do 

et al. [47] employed Lyapunov optimization technique to determine which social content should be 

send to mobile devices without requiring mobile users to be online all the time. Yao et al. [2] studied a 

stochastic optimization problem that takes job scheduling and server management into account, and a 

two-time-scale control algorithm based on Lyapunov optimization framework was proposed to reduce 

power cost. 

The aforementioned studies focus on the security problem but ignore the energy consumption or 

energy cost, and others take the energy cost optimization problem into consideration and overlook the 

security of applications. Both energy problem and security problem are critical for IDC. Different from 

the above works, we investigate the energy cost minimization with job security guarantee for Internet 

data center in deregulated electricity markets. 

 

3. System Architecture, Models and Problem Formulation 

In this section, we model an IDC system and formulate an energy cost optimization problem. First, we 

describe system architecture, IDC resource and energy cost model, job arrival mode and security model. 

Then, we present the workload shaping with security guarantee and propose a security levels selection 

problem. Finally, a stochastic optimization problem is formulated to minimize the energy cost for the 

IDC. For ease of understanding, the major notations and their meanings used throughout of this paper 

are summarized in Table 1. 

 

Table 1. Notations. 

Symbol Definition 

M  The amount of servers in IDC 

)(tR  The computing resource provided by the IDC in time slot t ; 

)(tf  The working frequency of server; 

)(P  Power function of server; 

isl  The set of security levels of task
it ; 

)( xk

isl  The level of thx type of thk security service; 

kSL  The set of levels of thk security service; 

k  The risk coefficient of thk security service; 

)(tn  The number of jobs arrival at IDC in time slot t ; 

)( xk

iSW  Security workload of thk security service of task
it ; 

iSW  Total security workload of task
it ; 

iEW  The execution workload of task
it ; 

iW  The workload of task
it ; 

)( jW  The workload of job j ; 



)(tW  The total workload of all arriving job in time slot t ; 

),( )( xk

iirisk sltP  The risk probability of the thk security service on task
it ; 

)( irisk tP  The risk probability of task
it ; 

)( jPrisk
 The job risk probability; 

  Average job arrival rate; 

)(tC  Energy cost of IDC in time slot t ; 

)(tp  Electricity price in time slot t ; 

)(tQ  Workload queue backlog in time slot t ; 

)(tz  the amount of executed workloads in time slot t ; 

))(( tQL  Lyapunov function; 

))(( tQ  One time slot conditional Lyapunov drift; 

V  Control parameter. 

 

3.1 System Architecture 

A similar architecture is proposed in [34]. However, it is not effectively incorporate the cloud security 

problems. Tang et al. [17] propose a security-driven scheduling architecture which does not take the 

energy management issues into consideration. The aim of our architecture is to minimize the energy 

cost under the job risk probability constraint for IDC. The proposed energy cost optimization 

architecture is depicted in Fig. 1. Four basically entities involved are introduced as follows: 

1. Cloud Users: Submit applications or jobs from anywhere in the world to the IDC. 

2. Job FIFO Queue: All arriving big data jobs are queued into this queue. Note that each job may 

contain many small tasks. In order to ensure the job security, each task should be executed with 

security services. 

3. IDC Operator: Minimize the energy cost with job security guarantee in deregulated electricity 

markets: 

a) Job Analyzer: Analyze the arriving big data applications including risk probability constraint, 

the number of tasks, the output and input data size of each task and so on. 

b) Workload Shaping with Security Guarantee: Select appropriate security services to guarantee 

the job security. Then, the security workload shaping can be finished.  

c) Energy Cost Minimization: Devise an online algorithm to minimize the energy cost by 

Lyapunov optimization framework. This algorithm comprehensively considers the workloads 

and stochastic electricity price. 

d) Server Manager: Adjust working frequency of servers to minimize the power consumption 

according to the resource requirement. 

4. Servers: The physical servers provide the hardware infrastructure to meet service demands.  

The IDC Operator entry is the main component in our system architecture. It is responsible for 

analysis jobs, calculating workloads, devising algorithms, managing servers and so on. The operation 

process of IDC operator is shown in Fig. 2. In the beginning of each time slot, IDC operator receives 

jobs from cloud users and put them into the Job FIFO Queue. Immediately, the jobs analysis is 

conducted for new arriving jobs, which analyzes the security requirement, the number of tasks, 

workload of each task, etc. Then, the method of workload shaping with security guarantee is used to 

calculate the workload of each job, and the total workload of current time slot can be updated. Next, 

according to the workload, the energy cost minimization algorithm is implemented to minimize the 

energy cost based on the current electricity price. Finally, IDC Operator processes the jobs and 



manages the servers (mainly adjusts the working frequency of servers) on the light of result of ECM 

algorithm. In the following sections, we will introduce models and problems related to the energy cost 

optimization architecture. 
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Fig. 1. The energy cost optimization architecture. 
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Fig. 2. The operation process of IDC operator 

 

 



3.2 IDC Resource and Energy Cost model 

Suppose the discrete-time system evolves over a sequence of equal-length time slots, i.e., ,...2,1,0t . 

Let M is the number of homogeneous servers in IDC which provide resources measured in unit of 

basic resource unit [36]. A basic resource unit includes a series of CUP cores, a great sum of memory 

and so on. Thus, an IDC resource capacity is in unit of basic resource unit· time slot. The IDC needs to 

provide a certain amount of computing resource )(tR according to the workload requirement. Suppose 

there exists
minR and

maxR such that
maxmin )( RtRR  . 

Modern CPUs can work at different voltage or frequency at runtime by using dynamic voltage and 

frequency scaling (DVFS) technique. The IDC operator can use this technique to modulate the current 

CPU speed which affects the computing resource and CPU power consumption [2, 46]. In time slot t , 

the server m  is running in the working frequency )(tfm
, and then the computing resource of IDC can 

be written as 

 


M

m m tftR
1

)()(                                    (1) 

Note that each server can run under different frequencies in the range of ],[ maxmin ff and 0min f . Since 

existing CPUs only support discrete frequency levels, those supported frequencies in the range can be 

used. 

The power requirement of resource capacity is denoted as ))(( tRP . Symbol )(P is the power 

function associated with resource capacity. The power function is known to IDC, and there exists a 

maximum value
maxP such that

maxPtRP ))(( for all time slot t . Such power consumption will 

introduce some cost of the form “power × price”. Moreover, the IDC may face the electricity price 

varying in deregulated electricity markets, and we denote price by )(tp at time slot t . Price )(tp is 

independent in every time slot t and takes a value in the finite state space. Then, the energy cost )(tC of 

IDC in time slot t is computed by Eq. (2). 

)())(()( tptRPtC                                (2) 

Assume that
maxp as the maximum electricity price that the IDC can experience. It is easy to see that if

maxmaxmax pPC  , then
maxCtC )( for all t . 

Now, we discuss the assumption in our model. Above, in time slot t , suppose all severs have the 

same working frequency )(tf . Let us focus on single server and consider the following formulation: 

Let the power consumption of a server n with service frequency
mf be )( mfP  [34, 48, 49]. 

  )()( mm fFfP                                 (3) 

where parameter  denotes the constant power consumption, e.g., idle power consumption, )( mfF

denotes the power consumption under operating frequency
mf , and  stands for the proportionality 

constant. Generally, function 
mm ffF )(  is a convex function of frequency

mf , and 3 generally 

[34, 48, 49]. If the M servers run at different frequency
Mfff ...,,, 21

, then the total power consumed 

can be written as Eq. (4). 

MfFfPP
M

m m

M

m mtotal   


11
)()(                       (4) 

According to the Jensen’s Inequality [44], we have 

M
M

f
FMMfFP

M

m mM

n mtotal 


 


 )()( 1

1
              (5) 

This indicates that, to reduce the power consumption, all servers should have the same operating 

frequency [2]. Suppose all servers are running in the same frequency )(tf in time slot t . Then, the Eq. 

(1) can be rewritten as 

)()( tfMtR                                     (6) 



This conclusion will be used to operate server frequency in our Server Management module. 

 

3.3 Job Arrival Model 

The arriving jobs that are big data applications from IDC users are queued into a job arrival queue. 

Generally, a job may include many small tasks as shown in Fig. 1. In fact, the tasks are processed by 

servers, not the jobs. In every time slot t , we denote the amount of newly arriving jobs as )(tn , and all 

jobs arrive at the end of each time slot. The variable )(tn is the stochastic arrival with  )}({ tn , and 

it is assumed to be non-negative. Moreover, suppose that there exists a maximum
maxN such that

maxNtn )( for all time slot t .  

    For an arriving job )(,...,2,1, tnjj  , let )( jP c

risk , )( jT and jN represents the job risk probability 

constraint, tasks set, and the number of independent tasks respectively. The contents of security and the 

risk probability will be introduced in the Section 3.4 and Section 3.5. Moreover, a task )( jTti   can 

be represented by a tuple ),,( out

i

in

iii DDEWt  . This tuple can be interpreted as follows: 
iEW is the 

execution workload; in

iD and out

iD are corresponding the size of input data set and the size of output 

data set. Suppose that tasks belonging to a job or from different jobs may have the different execution 

workloads and the size of data set. 

Generally, user requests or jobs can be generally classified as delay-sensitive, or delay-tolerant. In 

this paper, we focus on the jobs in big data delay-tolerant requests, which include compute-intensive or 

data-intensive jobs, such as scientific computing and data intensive MapReduce applications. For 

example, Google often has a large number of“long duration” jobs running on back-end servers [50]. 

These jobs take from several minutes to many hours and thus are relatively delay tolerant. As big data 

parallelizing applications keep growing in cloud computing environment, we assume that each job or 

request consists of a set of independent tasks, and a job is completed when all its tasks are finished [36, 

39]. 

 

3.4 Security Model 

Security service mechanisms have not been employed by many IDCs to counter the security threats of 

malicious users. There are three serious malicious attacks in cloud computing environments. 

Fortunately, authentication service, integrity service and confidentiality service can guard against these 

common threats respectively [14, 51]. Encryption mechanisms protect applications or data by 

enciphering methods. Meanwhile, integrity services ensure that no one can modify or tamper with data 

without being detected while they are executing. Then, authentication services pretend who intend to 

access content by malicious behaviors [14]. With these security services in place, the IDC operator can 

flexibly form an integrated security protection against a diversity of threats and attacks. Based on these 

above, a task execution process with security protection is show in Fig. 3 [27]. 

 

Authentication 

service

Data transferring

ti

Integrity service 

Task executing

Confidentiality 

service 

Output data 

generating  

Fig. 3. A task execution process with security protection. 

 

Three examples of authentication methods, hash functions for integrity and cryptographic 



algorithm for confidentiality are shown in Table 2, Table3 and Table4 [14]. As a matter of convenience, 

we use letters a, g and c to represent the authentication, integrity and confidentiality respectively. It is 

noted that each task may require these three security services with various security levels. For example, 

isl is the set of security levels of task
it provided by the IDC operator, which can be specified as a 

vector },,{ )()()( xc

i

xg

i

xa

ii slslslsl  , where )( xa

isl represents the security level of the thx type of 

authentication service, and the same explanation for )( xg

isl and )( xc

isl . 

As the performance of security services shown in Table 2, Table 3, Table 4, a security level is 

assigned to each security method in the range from 0 to 1, i.e., if no security service is used, the 

corresponding security level is 0, and when the security level 1 means that the security service is 

strongest yet slowest. According to different security services, in Table 2, we can see that the 

computation time is longer when the security level is larger, while in Table 3 and Table 4 it is shown 

that the processing rate is lower when the security level is higher. Nevertheless, these security services 

have the same principle that means the higher security level, the better security service, and the more 

execution time overhead. Note that the security level is inverse proportion to the time overhead of each 

algorithm. 

 

Table 2. Authentication methods. 

Authentication methods 
asl : security level The type of security 

service 

Computation time: 

ms 

No method used 0 0 - 

HMAC-MD5 0.55 1 90 

HMAC-SHA-1 0.91 2 148 

CBC-MAC-AES 1 3 163 

 

Table 3. Hash functions for integrity. 

Hash functions 
gsl : security level The type of security 

service 

Processing rate: 

KB/ms 

No function used 0 0 - 

MD4 0.18 1 168.75 

MD5 0.26 2 96.43 

RIPEMD 0.36 3 37.50 

RIPEMD-128 0.45 4 33.75 

SHA-1 0.63 5 29.35 

RIPEMD-160 0.77 6 21.09 

Tiger 1.00 7 15.00 

 

Table 4. Cryptographic algorithms for confidentiality. 

Cryptographic 

algorithms 

csl : security level The type of security 

service 

Processing rate: 

KB/ms 

No algorithm used 0 0 - 

SEAL 0.08 1 168.75 

RC4 0.14 2 96.43 

Blowfish 0.36 3 37.50 

Knufu/Khafre 0.40 4 33.75 

RC5 0.46 5 29.35 

Rijndael 0.64 6 21.09 

DES 0.90 7 15.00 

IDEA 1.00 8 13.50 



 

Recently, services and applications are moving their data to the cloud and centralize management 

and designed to reduce cost and increase operational efficiency. Moreover, security, trust, and privacy 

always remain challenges for organizations deployed in cloud computing. Then, Chang et al. [20] 

proposed multilayered security framework, cloud computing adoption framework (CCAF), for business 

clouds. This framework integrates three major security technologies, such as firewall, identity 

management, and encryption, and it can be adopted and successfully implemented in cloud services. 

Our security model is a representation similar to multi-layered system since three different security 

services need to be executed for a task. The difference in this paper is that it has elements of 

multi-layered security but it is a simplified version. 

 

3.5 Workload Shaping with Security Guarantee 

For each task of a job, it needs security services to ensure its successful execution. The security service 

also introduces some time overhead to the computing systems. The definitions of time overhead of thk

security service can be found in detail in [14, 52]. The security overhead of integrity and confidentiality 

services mainly depends on the security service level and the size of dataset. Different from the time 

overhead of security services, we invert the security service into the security workload which is 

denoted as follows. 

},{),,( )()( cgkDslHSW k

i

xk

i

kxk

i                              (7) 

where )(xk is the thx type of thk security service, and )( xk

isl is its security level; )( xk

iSW represents the 

security workload (in basic resource unit) of thk security service. in

i

g

i DD  and out

i

c

i DD  are the size of 

dataset to be protected by integrity service and confidentiality service respectively [27]. The function

),( kH can be induced from [14], and we can easily get the following property: 

Property 1. The function }),{)(,( cgkH k  should satisfy the following conditions: 

 If 0)( xk

isl or 0k

iD , then 0)0,(),0( )(  xk

i

kk

i

k slHDH ; 

 If )(

2

)(

1

xkxk slsl  and kk DD 21  , then ),(),( 2

)(

21

)(

1

kxkkkxkk DslHDslH  ; 

 If kk DD 21  and )(

2

)(

1

xkxk slsl  , then ),(),( 2

)(

21

)(

1

kxkkkxkk DslHDslH  ; 

The three conditions reflect the security service workload associated with security levels and the 

protected data. However, as for authentication service, the security overhead is a constant and only 

depends on the security service type. Hence, the security workload of authentication service is 

computed by Eq. (8). 

}{),( )()( akslHSW xk

i

kxk

i                                   (8) 

The same property holds that 0)0( aH and )()( )(

2

)(

1

xaaxaa slHslH  when )(

2

)(

1

xaxa slsl  . Then, the total 

security workload of task
it is represented by formula (9). 
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cgak

xk

ii SWSW                                   (9) 

The workload of task
it is denoted as follows.  

iii SWEWW                                      (10) 

where
iEW is the execution workload of task

it . So, different from the existing works, the workload of 

a task includes two components. Then, the job workload is computed by Eq. (11). 

 
 jN

i iWjW
1

)(                                      (11) 



Finally, the total arriving workloads of all job in time slot t is described as Eq. (12). 

 


)(

1
)()(

tn

j
jWtW                                    (12) 

Note that different security levels may have different impact on the task security. Based on the 

security service introduced above, we quantitatively analyze the risk probability of task
it with different 

security levels. The distribution of risk probability for fixed time interval follows a Poisson distribution. 

This is due to the fact that the coefficient of Poisson probability distribution can be seen as the arrival 

rate of malicious attacks. Thus, the risk probability of a task with single security service can be 

represented by an exponential distribution [16, 17]: 

},,{)),1(exp(1),( )()( cgakslsltP xk

i

kxk

iirisk                          (13) 

The risk coefficient k may be different among three security services. For example, 3 snooping 

attacks, 2.5 alteration attacks and 1.8 spoofing attacks may be suffered by IDC in any time interval. 

The negative exponent indicates that risk probability grows with the difference )(1 xk

isl . Hence, the 

risk probability of task
it can be computed by integrating three security services, which is the Eq. (14). 

 


},,{

)( )),(1(1)(
cgak

xk

iiriskirisk sltPtP                         (14) 

Given a task set )( jT of job j , the risk probability )( jPrisk
of job j is calculated based on Eq. (15). 

))(1(1)(
1 

 jN

i iriskrisk tPjP                            (15) 

In Section 3.3, each job has a risk probability constraint which is the server requirement of IDC 

user. As for IDC operator, the security workload should be minimized while guaranteeing the risk 

probability constraint. It is obvious that the less security workload, the lower energy consumption and 

energy cost. How to select security services for each task to ensure the job risk probability constraint is 

our first problem. 

Minimize:  
 jN

i iSWjSW
1

)(                            (16a) 

Subject to: )()( jPjP c

riskrisk                              (16b) 

},,{,)( cgakSLsl kxk

i                          (16c) 

Note that the levels of each security service are discrete. As for a task, there are 984 K types of 

security service composition in the real-world applications (see Table 2, Table 3 and Table 4). Hence, 

the time complexity of this problem is )( jN
KO which is exponential. Then, a heuristic algorithm, 

service levels selection algorithm, is devised to solve this problem. It has the polynomial time 

complexity and will be described in the Section 4.1. 

 

3.6 Energy Cost Minimization Problem 

Above, the workload shaping problem has been presented, and we can calculate all the new arriving 

jobs workload based on Eq. (12). In this section, we are interested in minimizing the long-term energy 

cost according to the current workloads in IDC, i.e., the expected energy cost averaged over the infinite 

time horizon, which is represented as follows. 
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                          (17) 



The electricity price is changing in each time slot.  

Let ,...,1,0),( ttQ  be the workload queue in IDC which represents the queue backlog of 

workloads to be processed at the beginning of every time slot t . Generally, if the IDC processes all the 

workloads in the queue )(tQ in spite of the price, it will incur high energy cost but low service delay. On 

the contrary, if the IDC executes the workloads only when the electricity price is low, the queue length

)(tQ will increase rapidly. Hence, there is a cost-delay tradeoff in conducting the workload execution. 

However, the workload queue should be stable in the time average sense, i.e., 
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where Q represents the time-average workload backlog. Eq. (18) implies that all arriving jobs in IDC 

will be processed in bounded time, and a larger value Q means a longer delay for applications [44]. 

Then, the dynamics of workload queueing in each time slot can be represented by Eq. (19). 

)(]0),()([)1( tWtztQmaxtQ                      (19) 

where )(tz represents the amount of workloads executed by IDC in time slot t  and ttzZmax  ),(

denotes the maximum workloads can be served in any time slot. Hence, in each time slot t , the IDC 

operator should make an online decision to minimize the energy cost under queue stability constraints 

for all jobs: 

Minimize: })({
1

suplim
1

0
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                            (20a) 

Subject to: Q                                          (20b) 

It is impractical to solve this stochastic optimization problem directly as it would require a-priori 

knowledge of the job arrival and electricity prices in advance. In the Section 4.2, we will present an 

online operation algorithm based on Lyapunov optimization framework to solve the energy cost 

minimization problem. 

 

4. Algorithm Design 

Minimizing the security workload under the security guarantee means that IDC only needs to provide 

less resource and can save energy cost. The time complexity of finding all the security service 

compositions is exponential. A heuristic algorithm with lower time complexity is needed. Moreover, 

the electricity price of IDC is highly stochastic and unpredictable, we can only use the current 

information (i.e. workload queue backlog, current electricity price) to make an online operation 

decision. First, a service levels selection algorithm based on heuristic approach is devised to minimize 

the security workload with job risk probability constraint. Then, we design an energy cost minimization 

algorithm along with workload queue stability based on the Lyapunov optimization framework [43, 44]. 

Moreover, a performance analysis is given for our ECM algorithm that can offer provable energy cost 

and delay guarantees.  

 

4.1 Service Levels Selection Algorithm 

Let us discuss the maximum risk probability of a job. If all tasks of a job are not serviced by any 

security services, i.e., j

xk

i Nicgaksl ,...,2,1},,,{,0)(  , the job j may suffer the maximum risk. Note 

that 0k and 10 )(  xk

isl ( jNicgak ,...,2,1},,,{  ). Hence, task’s risk probability of the thk security 

service is in the range [0, 1) based on Eq. (13). The same logic and range applies to task risk 

probability and job risk probability according to Eqs. (14) and (15) respectively. Rearranging terms of 



Eq. (15) and taking the logarithm, we have 
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Applying  


},,{

)( )),(1()(1
cgak

xk

iiriskirisk sltPtP yields: 

  
 jN

i cgak

xk

iiriskrisk sltPjP
1 },,{

)( )),(1log())(1log(                     (22) 

Similarly, taking ))1(exp(),(1 )()( xk

i

kxk

iirisk slsltP   into Eq. (22), we get 

  
 jN

i cgak

xk

i

k

risk sljP
1 },,{

)( ))1(())(1log(                        (23) 

When security level j

xk

i Nicgaksl ,...,2,1},,,{,0)(  the job j will have the maximum risk probability

)(max jPrisk . Then, 

))(exp(1)(max cga

jrisk NjP                           (24) 

We can see that the maximum risk probability of a job is only related to risk coefficients. If the IDC 

never suffer any attacks, i.e., 0 cga  , the risk probability is 0, and we need not any security 

services. However, the maximum risk probability will be higher with more malicious attacks. In this 

paper, we assume that },,{,0 cgakk   and hence the maximum risk probability of a job 1)(max jPrisk . 

Moreover, the risk probability constraint self-defined by user should be equal or less than the 

maximum risk probability, that is jrisk

c

risk NjjPjP ,...,2,1),()( max  . So, it is necessary to apply security 

services to protect jobs execution. 

Next, we introduce a heuristic algorithm, the security levels selection algorithm, for each job to 

minimize the security workload while satisfying the job risk probability constraint. The pseudo code of 

the algorithm is outlined in Fig. 4. It is difficult to solve the security levels selection problem directly 

based on the Eqs. (16a)-(16c). According to Eq. (23), we transform constraint Eq. (16b) as below. 
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Then, the Eqs. (16a)-(16c) can be rewritten as follows. 

Minimize:  
 jN

i

xc

i

xg

i

xa

i SWSWSWjSW
1

)()()( )()(                  (26a) 

Subject to: (25), (16c)                                       (26b) 

We can see that one term )1( )( xk

i

k sl correspond to a security workload )( xk

iSW . Then, the ratio of 

security workload and security level that means the growth with security workload )( xk

iSW and the term

)1( )( xk

i

k sl  is defined as follows.  
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                           (27) 

where is small positive constant and the reason of adding  in denominator is to prevent the case of 

zero divided. It can be deduced from Eq. (27) that the lower ratio, the less security workload under this 

security level. 

Assume that all tasks in job j are firstly mapped to the lowest security levels, i.e., 

j

xk

ii Nicgaksltmap ,...,2,1},,,{,0: )(  . Then, we have the minimum value of Eq. (11), i.e.,

0)( jSW . Let sum as the value of right-hand-side (R.H.S) of Eq. (25) which is denoted by Eq. (28): 
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When all tasks are mapped to the lowest security levels, we have maximum value maxsum and 

maximum job risk probability )(max jPrisk . Hence, the constraint of Eq. (25) is not satisfied because of the 

fact )()( max jPjP risk

c

risk  . There are 3 types of authentication services, 7 types of integrity services and 8 

types of confidentiality services except security services of lowest levels. So, all the ratios of each 

security service on task
it can be listed as below.  
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We denote all the ratios of task
it as )},(),,(),,({)( ctUgtUatUtU iiii  . Then, the ratios of job j can be 

represented as set )}(),...,(),({)( 21 jNtUtUtUjU  , and the number of terms in this set is jNK  , where

873 K . Next, the implementation steps of security levels selection algorithm are presented as 

below. 

Step a: We first map all tasks to the lowest security levels, i.e.

j

xk

ii Nicgaksltmap ,...,2,1},,,{,0: )(  . Hence, maxsumsum   and the constraint Eq. (25) is not 

satisfied in terms of above analysis (line 1). 

Step b: Then, compute all ratios of job j according to Eqs. (27) and (29), and Sort the all terms in 

set )( jU by their value in ascending order. The lower ratio of a term, the less security workload will be 

incurred (line 2-3). 

Step c: Take the first term ))(,(1 xktu i in the set which has the minimum ratio, and recalculate the 

value of sum when task
it mapping to th)(xk security service (line 5).  

Step c-1: If )))(1/(1log( jPsum c

risk , that means inequality (25) is satisfied. Moreover, the security 

workload of job j is minimum (line 6-7). 

Step c-2: Otherwise, the Eq. (25) is not satisfied. We need record the current mapping scheme and 

update the job security workload. By removing the first term ))(,(1 xktu i from the set )( jU , the 

sub-minimum ratio becomes the minimum ratio in the set )( jU  (line 8-11).  

Step d: Repeating the above Steps c, c-1 and c-2 until the set )( jU is empty (line 4-13) or 

inequality (25) is satisfied (line 6-7). 

 

Algorithm 1: Security levels selection algorithm 

BEGIN 

01. Initialize the mapping scheme, i.e., j

xk

ii Nicgaksltmap ,...,2,1},,,{,0: )(  , 

and set maxsumsum  , 0)( jW ; 

02. Calculate all the ratios of job j based on Eqs. (27) and (29), and put them into 

the job security level utility set )( jU ; 

03. Sort the all terms of set )( jU by their value in ascending order; 

04. while set )( jU is not empty 

05.   Take the first term ))(,(1 xktu i in the set which has the minimum ratio, and 

recalculate the value of sum when task
it mapping to th)(xk security service. 

06.   if )))(1/(1log( jPsum c

risk  

07.      Exit the while loop; 

08.   else )))(1/(1log( jPsum c

risk  

09.      Record the current mapping scheme, i.e., )(: xk

ii sltmap  ; 

10.      Update the job security workload )( jSW ; 

11.      Remove the first term ))(,(1 xktu i from the set )( jU ; 



12.   end if 

13. end while 

END 

Fig. 4. The pseudo code of security levels selection algorithm. 

 

There is all always a solution in our security levels selection algorithm because of

)()(0 max jPjP risk

c

risk  . A extreme mapping scheme is that all tasks select the maximum levels of security 

service, i.e. 0sum in this case. The time complexity of calculating the all terms in set )( jU is

)( jNKO  . The worst time complexity of sorting the all terms in set )( jU  and while loop is

))log(( jj NKNKO  and )( jNKO  , respectively. As a result, the time complexity of security levels 

selection algorithm is polynomial ))log(( jj NKNKO  . By using security levels selection algorithm for 

each job, the total workload of new arriving jobs can be computed by Eq. (12). 

An example of the security workload shaping process with security levels selection is illustrated in 

Fig. 5. First, the security levels selection algorithm is applied for each arriving job. It can map a 

security service composition to every task. Then, the security workload of a task can be calculated 

according to the security levels mapping scheme.  
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Fig. 5. Security workload shaping process.  

 

4.2 Energy Cost Minimization Algorithm 

The total workload of all arriving big data jobs can be obtained by workload shaping with security 

levels selection algorithm. In this section, we introduce an online energy cost minimization algorithm 

based on Lyapunov optimization framework [43, 44]. It is an online decision algorithm and can offer 



provable energy cost and delay guarantees. Moreover, this algorithm does not require any a-priori 

knowledge, and it only takes the workload queue in IDC and the temporal diversity of electricity price 

into account. 

To solve the problem (20a)-(20b), we define the Lyapunov function, ))(( tQL , which represents a 

scalar metric of workload queue backlog for reflecting delays of jobs, as follows: 

2)(
2

1
))(( tQtQL                                (30) 

where )(tQ is the workload queue which can evolve over slot ,...}2,1,0{t , and ttQL  ,0))(( . The value 

of ))(( tQL reflects the backlog of workload queue, such as a larger value of ))(( tQL means that the 

queue is congested; on the contrary, the queue is idle. The Lyapunov drift ))(( tQ is used to keep the 

system stable by pushing the Lyapunov function towards a lower congestion state, which is represented 

as follows: 

)}(|))(())1(({))(( tQtQLtQLtQ                       (31) 

Following the Lyapunov optimization approach [44], we put the energy cost of one time slot to 

both sides of Eq. (31), which leads to the drift-plus-penalty term: )}(|)({))(( tQtCVtQ  , where 

control parameter 0V that represents an important weight on how much the IDC operator emphasizes 

energy cost. Such a control decision can be motivated as follows: we want to make ))(( tQ small to 

push queue backlog towards a lower congestion state, but we also want to make )}(|)({ tQtC small so 

that we do not incur large energy cost expenditure. Then, the following lemma defines an upper bound. 
Lemma 1. For any possible actions under constraint (20b) that can be implemented at slot t , we have 

)}(|)()({)(

)}(|)({)}(|)({))((

tQtztWtQ

tQtCVBtQtCVtQ




                    (32) 

where 2/)( 22

maxmax ZWB  , and ttWW  ),(max
 represents the maximum amount of workload can 

arrive per time slot and ttzZ  ),(max
represents the maximum amount of workload that can be 

executed in a time slot. 

Proof. According to Eq. (30), we have 

])()1([
2

1
))(())1(( 22 tQtQtQLtQL                          (33) 

Then, using the fact that for any real number x , 22])0,[( xxmax  , we have 

)]()([)(2)()()()1( 2222 tztWtQtztWtQtQ                   (34) 

Then, 
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              (35) 

As
maxWtW )( and

maxZtz )( , we have 

)(
2

1
)}(|])()({[

2

1 2222

maxmax ZWtQtztW                           (36) 

Then, we get 

)}(|)()({)())(( tQtztWtQBtQ                             (37) 

Now adding to both sides the energy cost over the frame, i.e., the term )}(|)({ tQtCV  prove the 

lemma 1. 

□ 



Following the design principle of Lyapunov framework, the underlying objective is to minimize 

the upper bound of the drift-plus-penalty term. Rather than directly minimize drift-plus-penalty term 

every slot t , our strategy actually seeks to minimize the bound given in the right-hand-side (R.H.S) of 

Eq. (32). This is done via the framework of opportunistically minimizing a conditional expectation. 

Then, our algorithm finally minimizes the R.H.S of Eq. (32) by minimizing the following simplified 

term: 

Minimize      )()()())(()()()( tztQtptRPVtztQtCV                    (38) 

Note that the amount of resource provided by IDC is equal to the amount of workload processed in 

time slot t , that is )()( tztR  . Furthermore, based on the conclusion discussed in Section 3.2, all 

servers are running in the same frequency )(tf in time slot t . Then, we have )()()( tfMtztR   and  

MtfFMPtRP total   ))(())((                        (39) 

where )())(( tftfF  and 3  is a constant. Then, the problem of minimizing Eq. (38) can be 

rewritten as follows. 

Minimize: )()()())(( tftQMtptfMV                (40a) 

Subject to: ],[)( maxmin fftf                              (40b) 

We define )()()())(())(( tftQMtptfMVtfy    . As )(tQ and )(tp can be observed at the 

beginning of time slot t , there are only one variable )(tf in function ))(( tfy . Servers in IDC only 

support discrete frequency levels, and only those supported frequencies in the range can be used. 

However, we consider ))(( tfy is the continuous function that will not affect the optimal solution. The 

first derivative of function ))(( tfy is  

)()()())(( 1 tQMtptfMVtfy                     (41) 

and the second derivative is 

)()()1())(( 2 tptfMVtfy                       (42) 

Because 3 and ],[)( maxmin fftf  , the second derivative is nonnegative, i.e. 0))((  tfy . So, the 

minimum point can be computed by taking the first derivative equals zero, which is 

)1(
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)(
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It is note that this minimum point is the unique extreme point in the domain      . Moreover, 0)0( y

and 0))((  tfy where  is a positive. So, the function ))(( tfy is monotone increasing in the domain

))(,0( tf and is monotone decreasing in the range )(( tf ,  ), which are shown in Fig. 6. Then, we 

discuss the optimal solution as follows: 

 If
max)( ftf   (see Fig. 6(a)), which means the workload queue backlog may be too larger or the 

electricity price may be is too lower in time slot t . Hence, the IDC operator intends to execute as 

many workloads as possible to reduce the workload queue backlog and minimize the cost. Finally, 

the optimal frequency of all servers is max)( ftf opt  . 

 If
maxmin )( ftff  (see Fig. 6(b)), the IDC operator will process the proper amount of workload 

according to the current workload queue backlog and electricity price. Note that servers can only 

operate under discrete frequency levels in the range of ],[ maxmin ff by DVFS technique. Suppose 

there exits two frequency
1f and

2f  (
21 ff  ), and

21 )( ftff  . Hence, 1)( ftf opt  if

)()( 21 fyfy  ; otherwise, 2)( ftf opt  . 

 If
min)( ftf  (see Fig. 6(c)), which means the workload queue backlog may be too less and the 

electricity price may be too higher. The IDC operator will process as few workloads as possible to 

save the energy cost. So, the optimal working frequency is min)( ftf opt  . 
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maxmin )( ftff            (c)
min)( ftf   

Fig. 6. The monotonicity of function ))(( tfy . 

 

Based on the above analysis, we summarize that our ECM algorithm intend to process workloads 

in the following conditions: 1) when the electricity price )(tp is low enough, the IDC operator will 

catch the chance to execute more workloads; 2) when the queue )(tQ is congested, workloads must be 

finished to guarantee the queue stability. The pseudo code of ECM algorithm is outlined in Fig. 7. First, 

the IDC operator observes the workload queue backlog and the real-time electricity price at the 

beginning of each time slot t  (line 1). Then, the optimal working frequency of all servers can be got 

(line 2-9). Finally, IDC operator calculates the optimal amount of workloads will be processed in time 

slot t  (line 10), and update workload queue (line 11). The time complexity of ECM algorithm is 

constant that is suitable for IDC operator to make online decision to minimize the energy cost. 

 

Algorithm 2: ECM algorithm 

BEGIN 

01. At the beginning of each time slot t , monitor the workload queue backlog

)(tQ of IDC and the real-time electricity price )(tp ; 

02. Get the first derivative of function ))(( tfy  according to Eq. (41), and 

compute the minimum point based on Eq. (43); 

03. if
max)( ftf   

04.   Set max)( ftf opt  ; 

05. else if
maxmin )( ftff   

06.   Set 1)( ftf opt  if )()( 21 fyfy  ; otherwise, set 2)( ftf opt  ; 

07. else if
min)( ftf   

08.   Set min)( ftf opt  ; 

09. end if 

10. Calculate )()( tfMtz opt  which is the optimal amount of workloads that 

will be processed in time slot t ; 

11. Update workload queue )1( tQ  when the current time slot t ends according 

to the dynamics Eq. (19). 

END 

Fig. 7. The pseudo code of ECM algorithm. 

 

The performance bounds of ECM algorithm are stated in the following theorem. 

Theorem 1. Assume that the job arrival rate  is strictly within the network capacity region Λ, and the 

ECM algorithm is applied at each time slot t . For any control parameter 0V , it generates the 



time-average energy cost C and queue backlog Q satisfying that: 
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where B and  are positive constants, and *C is the theoretical optimal time-average energy cost. Proof 

(pp. 47, [44]) 

Theorem 1 can be understood as follows: for any parameter 0V , if we can use the ECM 

algorithm to ensure the drift condition is satisfied on every time slot, then the time average expected 

penalty satisfied Eq. (44) and hence is either less than the target value *C , or differs from *C by no 

more than the value VD / , which can be made arbitrarily small as V is increased. However, the time 

average queue backlog bound increases linearly in the V parameter, as shown by Eq. (45). This 

presents a cost-backlog tradeoff of )](),/1([ VOVO . Such a cost-delay tradeoff allows ECM algorithm to 

make flexible design choices according to different application types and user contexts. 

 

5. Performance Evaluation 

In this section, we evaluate the performance of the proposed algorithm based on real-world electricity 

prices. First, we describe the experimental setup for performance evaluation. Next, we assess the total 

energy cost and delay of four reference algorithms and our ECM algorithm. Then we show the 

performance impact of parameter V on five algorithms. After that, we appraise the proposed ECM 

algorithm on the basis of risk probability constraint varying and evaluate the performance impact of 

three security services. Finally, comparisons with similar work and a brief introduction of research 

contributions and limitations are given. 

 

5.1 Experimental Setup 

The goal of this experimental study is to evaluate the performance of the proposed ECM algorithm. We 

describe the main components of our simulations: system parameters, job arrival and security 

parameters, electricity price and four algorithms in comparison. 

 

5.1.1 System parameters 

We consider an IDC having 10000M servers and we model power function as 

))(())(( 3   tfMtfP                         (46) 

where  and  are constants determined by the IDC. Specifically,  is the average idle power 

consumption of a server, and   )(3 tf gives the power consumption of a server running at 

computing frequency )(tf . Assume that the computing frequency is in the range [1.2, 3.2] [49]. Then, 

the minimum and maximum resource capacity of the IDC are 12000min R and 32000max R (in basic 

resource unit) respectively. Moreover, set 1.6 and W100idleP such that the peak power consumed 

by a server is 250W. The model Eq. (46) is based on the measurements reported in [2, 48, 49, 53]. 

 

5.1.2 Job arrival and security parameters 

Suppose the number of arriving jobs that are big data applications in each slot )(tn follows a Poisson 

distribution with parameter 5, and the number of tasks per job follows the uniform distribution in the 

range [10, 100]. Furthermore, the execution workload per task is uniformly distributed in the range [10, 

100] (in basic resource unit). 



In order to ensure the security of each task, the IDC should process the security workload. The 

risk coefficients in our experiments are set 0.3a , 5.2g and 8.1c , respectively. Then, based on 

the three risk coefficients and the number of task distribution, the maximum risk probability is 

approximately equal to 1. So, suppose the constraint of risk probability for each job follows the 

uniform distribution in the range [0, 1]. 

For the integrity service and confidentiality service, the security workload function (in basic 

resource unit) is devised as follows. 

},{,),( )()( cgkDslDslH kxkkkxkk                        (47) 

We can see that Eq. (47) satisfies the property 1. As for authentication service, the workload function is 

calculated by Eq. (48). 

}{,)( )()( akslslH xkkxkk                             (48) 

For each task, the protected data kD is in the range [0.1, 1] GB, and 1600a , 2400g and

800c [[14], Fig. 3]. 

 

5.1.3 Electricity price 

We downloaded the hourly electricity prices of Palo Alto, which is the Google’s data centers host, in 

real-time electricity market [54], and the time horizon used in this paper is from June 1 to June 30, 

2015. To fully exploit the temporal electricity price, we would like to be aware of prices at a time 

granularity that is set to 5 minutes in this paper [1]. Because the electricity price is varying on hourly, 

the interpolation method is used to generate prices at 5-minute intervals [2]. Thus, the time horizon in 

this simulation experiments s is 8640 slots. 

 

5.1.4 Algorithms in comparison 

The following four algorithms are compared in terms of energy cost and queuing delay in the 

experiments: 

Algo-1: This algorithm does not employ the proposed Lyapunov optimization technique. Thus, arriving 

jobs are not queued, and it starts to execute arriving jobs once they are received, that is )()( tztW  . 

Moreover, these jobs are executed without security services, i.e., 0)()()(  xc

i

xg

i

xa

i slslsl for each task.  

Algo-2: This algorithm starts to execute all arriving jobs once they are received. Thus, the IDC is 

without job queue that is )()( tztW   in every time slot t . However, each job requires security services 

to ensure its risk probability constraint, and security levels selection algorithm which is based on 

heuristic method is used in this algorithm. 

Algo-3: It uses our proposed ECM algorithm without security services, i.e., 0)()()(  xc

i

xg

i

xa

i slslsl for 

each task. Different from Algo-1 and Algo-2, the arriving tasks are queued in the IDC, which will be 

processed when the electricity price is low or the queue is congested. 

Algo-4: This algorithm applies the Lyapunov optimization framework to minimize the energy cost. 

Moreover, it ensures the risk probability constraint for jobs by using enumeration method to select 

security levels for tasks. We have discussed in Section 3.5 that the enumeration method can get the 

optimal security levels mapping scheme. However, it has the exponential time complexity )( jN
KO that 

cannot be used for online decision.  

Above four algorithms are simulated to compare our ECM algorithm in energy cost (in dollars) 

and queuing delay (in number of time slot). The characteristics of them and our ECM algorithm are 



summarized in Table 5. 

 

Table 5. Algorithms summary. 

 Algo-1 Algo-2 Algo-3 Algo-4 ECM 

Job queue No No Yes Yes Yes 

Security service No Yes No  Yes Yes 

Security levels selection No Heuristic No Enumeration Heuristic 

Lyapunov technique No No Yes Yes Yes 

 

5.2 Performance Comparison of Five Algorithms 

We fix the parameter 10V and conduct the five algorithms in energy cost and average delay. As 

shown in Fig. 8 (a), we can make the following observations about energy cost: 1) Compare with 

Algo-1 and Algo-2 respectively, Algo-3 and ECM have the Lower energy cost. This is because Algo-3 

and ECM use the Lyapunov optimization technique to minimize the energy cost. The arriving jobs are 

queued in the IDC, which can be processed when the electricity price is low, i.e., the IDC operator can 

fully exploit the temporal diversities of electricity price; 2) Algo-2 exhibits more energy cost than 

Algo-1. This is reflected by the fact that each task in Algo-2 requires security services to ensure its 

security execution, which will incur a great amount of security workload and power demand for IDC 

(see Section 3.3). There is the same relationship between Algo-3 and ECM; 3) Algo-4 has the less 

energy cost than ECM algorithm. This is because Algo-4 uses enumeration method to select security 

levels that will result in optimal and minimum security workloads. However, the time complexity of 

Algo-4 is exponential. It is not applicable for online scheduling. 

As for average delay shown in Fig. 8 (b), Algo-1 and Algo-2 have the same and lowest delay, this 

results from the fact that arriving jobs are not queued, and IDC operator executes these jobs once they 

are received. The ECM tends to have the longer average delay due to two reasons that: 1) arriving 

workloads in the queue are waiting for low electricity price; 2) security services result in more 

workload that IDC only processes fewer workloads in one time slot, which increases the length of 

workload queue. The Algo-3 has no security services but with job queue, the delay of which is medium. 

Because of less security workloads, the workload queue in Algo-4 will less than ECM’s. So, Algo-4 

outperforms ECM in average delay. 

 

 

 (a) Energy cost                       (b) Delay 

Fig. 8. Energy cost and delay of five algorithms. 

 

5.3 Performance Vary under Different Parameter V  

Fig. 9 illustrates the performance of five algorithms under varying control parameter V . As Aglo-1 and 

Aglo-2 are independent of parameter V , we plot them as baselines in contrast with Algo-3, Algo-4 and 
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ECM. The parameter V controls the energy-delay tradeoff of Algo-3, Algo-4 and ECM. As shown in 

Fig. 9, the energy cost drops and the time-average delay grows as V goes from 0 to 20. The energy cost 

of Algo-1 and Algo-2 are always larger than the energy cost of Algo-3 and ECM, respectively, while 

they are equal when 0V . This is due to the fact that security services incur lots of energy cost, and 

we only care about the queue delay when parameter V is set to 0. Note that energy cost falls quickly at 

the beginning and then tends to descend slowly while the time-averaged queue backlog grows linearly 

with V . This finding confirms the )](),/1([ VOVO energy-delay tradeoff as captured in Eqs. (44) and 

(45). The energy cost and average delay of Algo-4 are always lower than the energy cost and average 

delay of ECM respectively. As the same reason explained above, Algo-4 has the less security 

workloads than ECM. In general, increasing V leads to larger delay as well as larger power cost 

reductions. Hence, parameter V in ECM controls the trade-off between delay and power cost. As 

without security workloads, Algo-1 and Algo-3 have the least energy cost and delay. However, IDC 

may suffer from the security threats, and the jobs may be failure without security services. In order to 

ensure the job risk probability constraint, security services should be used in spite of increasing the 

security workloads. 

 

(a) Energy cost                       (b) Delay 

Fig. 9. Energy cost and delay under different parameter V . 

 

5.4 Impact of Risk Probability Constraint 

For purpose of revealing the impact of risk probability constraint of our ECM algorithm, we fix 10V

and assume that all jobs have the same risk probability constraint. This is not restrictive and only for 

experiment purpose in this section. The performance effects of varying risk probability constraint are 

reported in Fig. 10. It can be seen that the energy cost and delay become lower as risk probability 

increases. This phenomenon can be explained as follows: given a large risk probability constraint, the 

workload of security service is small according to Eqs. (7) and (8). Then, we need less electrical energy 

to execute the arriving tasks. What is more, The IDC operator can process more tasks in one time slot 

under the same computing resource that leads to lower average delay. Overall, though larger risk 

probability constraint will reduce the energy cost and delay, the jobs may experience more threats and 

attacks when executing in the IDC.  

Generally, Algo-4 can map all tasks to the optimal security levels, and hence it has less security 

workloads than ECM. So, the energy cost and delay of Algo-4 are lower than ECM’s. However, we can 

see from the Fig. 10(a) that the energy cost of Algo-4 is equal to the energy cost of ECM when the risk 

probability constraint is 0 and 1. This is due to the fact that the security levels mapping scheme is 

determined for Algo-4 and ECM algorithm in this case, i.e., 1)()()(  xc

i

xg

i

xa

i slslsl for all tasks when 

0)( jPc

risk  and 0)()()(  xc

i

xg

i

xa

i slslsl when 1)( jP c

risk . Hence, Algo-4 and ECM algorithm have the 

same security workloads when 0)( jP c

risk or 1)( jP c

risk . Similarly, in Fig. 10(b), the delay of Algo-4 is 

equal to the delay of ECM when 0)( jP c

risk or 1)( jP c

risk . We can also conclude that the performance of 
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ECM algorithm is close to the Algo-4. However, the time complexity of ECM algorithm is polynomial, 

which is lower than the time complexity of Algo-4. In the cloud computing environment, IDC operator 

should make the online decisions to execute jobs or applications according to the real-time electricity 

price. So, only the algorithm with low time complexity can be used in this case. 

 

(a) Energy cost                       (b) Delay 

Fig. 10. Energy cost and delay under different risk rate constraint. 

 

5.5 Impact of Three Risk Coefficients 

We have discussed the relationship between risk probability and risk coefficient in Section 5. For 

instance, the risk probability is zero when risk coefficient 0k . In this case, the IDC will not suffer 

this kind of malicious attack, and the corresponding security service does not need any more. In this 

section, we study how the risk coefficients have influence on our proposed algorithm. We fix V to be 

10 and use abbreviations Authe_only, Integ_only and Confi_only to represent authentication service 

only, integrity service only and confidentiality service only respectively.  

The simulation results are given in Fig. 11 for three risk coefficients. Overall, the Confi_only 

achieves the lowest energy cost and delay, Authe_only has the medium performances and Integ_only 

performs the worst. This can be explained by the fact that we set gac   in Section 5.1. A larger 

parameter  will lead to more security workload. We can also see from Fig. 11 that the three curves are 

higher slope when parameter },,{,5.1 cgakk  , beyond which curves become flat. This can be 

explained by the fact that the risk probability changes evidently when the risk coefficient in the small 

range based on Eq. (13). At the same time, the energy cost and delay change with the same pace. 

Generally speaking, risk coefficients have significantly impacts on our ECM algorithm. 

 

 

(a) Energy cost                       (b) Delay 

Fig. 11. Impact of three risk coefficients. 

 

5.6 Comparisons with Similar Work 

This section is focused on comparisons with five similar algorithms. The purposes of all these 

algorithms listed in Table 6 are to minimize the energy cost of IDC in the deregulated electricity 

markets. eco-IDC [36] studies on electricity price prediction using statistical models or machine 
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learning techniques. However, both power prices and workload are stochastic in nature and can be hard 

to predict accurately. Algorithms eco-IDC [36], WBS (workload and battery scheduling) [39] and our 

proposed ECM consider the single queue for the job arriving and processing. Based on the model of 

geographically distributed data centers [2], our single queue model can be expanded to multi-queue 

model. The Lyapunov optimization technique is first proposed for network stability problems [42], and 

it can offer explicit performance guarantees in these stochastic settings. Because the change of 

electricity price is stochastic, the Lyapunov optimization technique can be very suitable for optimizing 

the energy cost for IDC. The service requirements of deadline guarantee or delay tolerant are all useful 

for some applications in the cloud computing environment. The problem service delay guarantee has 

been presented in next Section 5.7, and it will be seen as one of our future work. In a word, none of 

these algorithms takes the security guarantee into consideration except our proposed ECM algorithm. It 

is well known that security is a critical concern and even ranked as the greatest challenge in cloud 

computing environment. One of contributions of this paper is that a heuristic algorithm is devised for 

jobs to select appropriate security services to guarantee the job security.  

 

Table 6. Comparisons with similar work. 

Algorithms Queue type Method 
Prediction 

or online 

Deadline 

guarantee 

or delay tolerant 

Security 

Guarantee 

eco-IDC [36] Single queue 

Statistical  

Or machine 

learning 

Prediction 
Deadline 

guarantee 
No 

SAVE [2] Multi-queue 

Lyapunov 

optimization 

technique 

Online Delay tolerant No 

WBS [39] Single queue 

Lyapunov 

optimization 

technique 

Online 
Deadline 

guarantee 
No 

HBBF [6] Multi-queue 

mixed-integer 

nonlinear 

programming 

Online Delay tolerant No 

ECM Single queue 

Lyapunov 

optimization 

technique 

Online Delay tolerant Yes 

 

5.7 Research Contributions and Limitations 

Initially, the energy cost optimization architecture is developed for the IDC operator. Next, the IDC 

resource and energy cost model, job arrival mode and security model are introduced. Then, the 

workload shaping with security guarantee is proposed, and a heuristic algorithm is also devised to solve 

security levels selection problem. Finally, we formulate the energy stochastic optimization problem and 

use our proposed ECM algorithm to schedule workloads. The prices used in our performance 

evaluation are the real-life electricity price. Our ECM algorithm is suited for delay tolerant big data 

applications, and hence it allows IDC operator to reduce energy cost at the expense of increased service 

delay. We have demonstrated that the cost-delay tradeoff is )](),/1([ VOVO . Such tradeoff allows IDC 



operators to make flexible design choices according to different application types and user contexts.  

As noted above, our work has several contributions. However, it still has several limitations, 

including: 1) we assume that each job consists of a set of independent tasks that can be executed in 

parallel. Note that the components of a job can be correlated, for example, a job may be a scientific 

workflow that is typical big data application; 2) service delay guarantee is not considered, i.e., 

providing strict service delay bound has not been incorporated into the energy cost minimization 

problem, which is one of the major challenges in cloud computing environment. Part of our future 

efforts is to explore these issues. 

 

6. Conclusions and Future Work 

In this paper, we devise the energy cost optimization architecture for IDC operator to minimize the 

energy cost under the job risk probability constraint. The jobs may be delay tolerant big data 

applications or data intensive MapReduce applications that demands large-scale infrastructures such as 

Internet data center to provide computing resources. Due to high time complexity of optimal security 

levels mapping scheme, a heuristic algorithm with polynomial time complexity is developed to select 

security levels for tasks. Then, we formulate the energy stochastic optimization problem and propose 

our ECM algorithm to schedule workloads taking the temporal diversity of electricity price into 

account. The ECM algorithm, which is based on Lyapunov optimization framework, offers provable 

energy cost and delay guarantees. It aggressively and adaptively seizes the timing of low electricity 

price to process tasks, and defers delay-tolerant tasks execution when the price is high.  

Four reference algorithms are conducted in our experiments in comparison with our ECM 

algorithm in terms of energy cost and queuing delay. The experiments confirm the )](),/1([ VOVO

energy-delay tradeoff of ECM algorithm. However, the performance of ECM algorithm is close to the 

enumeration algorithm, but with lower time complexity. In a word, Extensive evaluation experiments 

based on the real-life electricity price demonstrate the effectiveness of our ECM algorithm. 

As a future work, we plan to incorporate the big data scientific workflow scheduling method and 

delay guarantee into our energy cost optimization problem. Moreover, we are going to consider some 

new aspects in better usage of power in IDC, such as renewable energy, energy storage, battery and so 

on. 
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