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Abstract

This paper proposes a novel active contour model called weighted kernel mapping

(WKM) model along with an extended watershed transformation (EWT) method

for the level set image segmentation, which is a hybrid model based on the global

and local intensity information. The proposed EWT method simulates a general

spring on a hill with a fountain process and a rainfall process, which can be

considered as an image pre-processing step for improving the image intensity

homogeneity and providing the weighted information to the level set function.

The WKM model involves two new energy functionals which are used to segment

the image in the low dimensional observation space and the higher dimensional

feature space respectively. The energy functional in the low dimensional space

is used to demonstrate that the proposed WKM model is right in theory. The

energy functional in the higher dimensional space obtains the region parameters

through the weighted kernel function by utilising mean shift technique. Since

the region parameters can better represent the values of the evolving regions

due to the better image homogeneity, the proposed method can more accurately

segment various types of images. Meanwhile, by adding the weighted information,

the level set elements can be updated faster and the image segmentation can

be achieved with fewer iterations. Experimental results on synthetic, medical

and natural images show that the proposed method can increase the accuracy

of image segmentation and reduce the iterations of level set evolution for image

segmentation.
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inhomogeneity, Spring simulation, Energy functional

1. Introduction

Image segmentation is a fundamental concept in image processing and has

been a main subject of many theoretical and practical studies [1–3]. Generally,

the purpose of image segmentation is to split an image uniformly into intersected

and non-overlapped regions through certain properties such as textures or colours.

Therefore, image segmentation can simplify the image representation for image

understanding and analysis. Active contour model introduced by Kass et al. [4] is

one of the most successful methods for image segmentation. The basic idea is to

represent a contour as the zero level set of the level set functionals, and evolve the

curve under some constraints to extract the desired objects. Over the past few

decades, the active contour models have shown promising results through using

level set methods in image segmentation [5–12].

The active contour models by level set methods can be broadly categorised in-

to two basic types: edge-based methods [5–9] and region-based methods [10–22].

The edge-based methods utilise image gradients to drive the level set evolution.

For instance, the well-known geodesic active contour (GAC) model [5] uses an

edge stopping function to lead the active contour to the object boundaries. The

edge-based methods are suitable for the images with strong gradient or high con-

trast. However, these methods are susceptible to the environmental noises, the

location of the initial curve as well as the weak edges [20]. To prevent these

limitations, the region-based methods exploit the regional information such as in-

tensities and textures inside and outside the evolving contour to guide the contour

evolution.

The region-based active contour model assumes that the image in each region

is statistically homogeneous [10–13]. In the early years, the most prominent rep-

resentative of region-based models for image segmentation was Mumford-Shah

(MS) model [23]. However, minimising the Mumford-Shah (MS) energy func-

tional is arduous and time-consuming, and hence, some simplified versions of MS

model have been proposed [12, 13]. Among them, the Chan-Vese (CV) mod-

el is one of the most representative and popular region-based models, and has

been extended in various ways [15–18]. Nowadays, the region-based models can

be mainly classified into two groups: global region-based models [12–14, 16] and

local region-based models [15, 17, 18, 22].

Intensity inhomogeneity occurs in many real-world images. The global region-

based model may fail to handle the images with intensity inhomogeneity by only

using global statistics. To solve this problem, the local region-based model as-

sumes that an image with intensity inhomogeneity is intensity inhomogeneous in
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global region, but its each local region is approximated to be intensity homoge-

neous. In this way, the local region-based model can extract the local regional

information to incorporate into the level set energy functional. The Local Binary

Fitting (LBF) model [15] based on the kernel function utilises the averages of local

intensities to approximate the image intensities inside and outside of the curve to

guide the contour evolution. The Bias Correction based Local Binary Fitting (B-

CLBF) model [18] is an integration of the LBF model with multiplicative model

of intensity inhomogeneity, and simultaneously uses the estimated bias field to

correct the intensity inhomogeneity. The Local Images Fitting (LIF) model [17]

introduces the local fitted image energy functional to extract the local informa-

tion, then uses the Gaussian filtering to regularise the level set function. Huang

et al. [22] proposed a modified BCLBF model (MBCLBF) to improve the seg-

mentation results of the images with intensity inhomogeneity. Comparing with

the global region-based models, the local region-based models are more complex

and time-consuming [16].

In order to make use of the advantages of both global and local models but

overcome the disadvantages of them, some hybrid models have been proposed

[24, 25] by combining the global and local region-based information. Zhou et

al. [24] adopted a weighting function to combine a global energy term and a

local energy term so that the produced hybrid model could improve the efficiency

and accuracy of medical image segmentation. This hybrid model could not handle

various types of images. Wang et al. [25] utilised the global region-based model to

preliminarily segment the image and get a coarse segmentation, and then used the

local region-based model to further segment the image. This hybrid method could

improve the accuracy of the segmentation, but could not improve the efficiency.

Moreover, it could only be used for the two-phase segmentation.

The level set image segmentation by the kernel mapping (KM) model [16] is a

global region-based model, which can segment various types of images, including

images with slight intensity inhomogeneity. However, the KM model is not suit-

able for segmenting images with severe intensity inhomogeneity, such as computed

tomography (CT) and magnetic resonance (MR) images. In other words, the KM

model produces more inaccurate segmentation results than the local region-based

models for images with severe intensity inhomogeneity.

Motivated by the problems mentioned above and inspired by hybrid models

as well as kernel mapping method, a weighted kernel mapping (WKM) model

along with a novel extended watershed transformation (EWT) method based on

the spring simulation for the level set image segmentation is proposed in this

research. Unlike the existing methods in the literature that the corrected image

[18, 22] can be obtained in the level set evolving process, the proposed approach

utilises the EWT method to process the image with intensity inhomogeneity or
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noise before the level set evolution. The weighted information for performing the

level set image segmentation will be prepared via the EWT process as well. The

WKM model involves two new energy functionals in the low dimensional obser-

vation space and the higher dimensional feature space respectively. The energy

functional in the low dimensional observation space is a new global region-based

model, which can be used to demonstrate the correctness of the proposed WK-

M model in theory. The weighted information from the EWT process is used

to construct a weighted kernel mapping function. The energy functional in the

higher dimensional feature space is a new local region-based model by applying

the weighted kernel mapping function onto the global region-based model, which

can obtain the region parameters through the weighted kernel function and then

guide the motion of the zero level set towards the object boundaries. Several

popular kernel functions are capable of clustering the data of complex struc-

ture properly [26, 27]. Namely, the image segmentation is spatially constrained

clustering of image data. The weighted kernel mapping function can transform

nonlinear separable data into linear separable data [28]. In this way, the image

that cannot be accurately segmented in the low dimensional space can be accu-

rately segmented in the higher dimensional space by applying the weighted kernel

mapping function. Being a hybrid model, the proposed approach can effectively

deal with various types of images. In this paper, some kinds of images including

the natural images from Berkeley database, the brain images from Normal Brains

Database, as well as some artificial images are tested and evaluated. In summary,

the main contributions of this work are listed as follows:

a. An extended watershed transformation(EWT) based on spring simulation is

proposed and its algorithm is presented. The extended watershed transformation

manages to improve the image homogeneity and provide the weighted information

for the level set function of the WKM model.

b. Two new energy functionals in the low dimensional observation space and

the higher dimensional feature space are designed respectively. The theoretical

proof based on the energy functional in the low dimensional space is given.

c. By combining the EWT method, a weighted kernel mapping (WKM) model

for level set image segmentation is proposed, which leads to better segmentation

accuracy and iterative efficiency. The main experiments for multi-phase image

segmentation further demonstrate the desirable performance of the WKM model.

The remainder parts of this paper are organised as follows: Section 2 reviews

the related work on level set image segmentation. Section 3 introduces tradi-

tional watershed transformation in image segmentation. Section 4 describes the

proposed level set image segmentation approach and its implementations. The

experimental results are evaluated in Section 5 and the conclusions are drawn in

Section 6.
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2. Relate work for level set image segmentation

In this section, three classical level set image segmentation models: KM, LIF

and BCLBF [16–18] are reviewed and discussed. The LIF and BCLBF models

are two popular local region-based level set image segmentation models, while

the KM model is a global region-based level set image segmentation model. The

discussion here focuses on the energy functionals and their time complexity.

2.1. The LIF model

For an image I in an image domain Ω, the energy functional of the LIF model

is defined as follows:

ELIF (u) =
1

2

∫

Ω

|I(x)− ILFI(u(x))|2dx, x ∈ Ω (1)

ILFI = m1Hε(u) +m2(1−Hε(u)) (2)

where m1 and m2 meet the following conditions:

m1 = mean(I(x) ∈ {u(x) > 0, and, x ∈ Wk}) (3)

m2 = mean(I(x) ∈ {u(x) < 0, and, x ∈ Wk}) (4)

where Wk is a rectangular Gaussian window. The level set evolution equation is:

∂u

∂t
= (I − ILFI)(m1 −m2)δε(u) (5)

Note that in Eqs.(1)-(5), Hε(u) and δε(u) are Heaviside function and Dirac func-

tion respectively, u(x) indicates the level set function. The LIF model has three

characteristics. First, the local fitted image (LFI) formulation is defined to ex-

tract the local image information. Second, the Gaussian filter is used to regularise

the level set function and eliminate the requirement of re-initialisation for each

iteration. Last, the traditional regularised term is removed because the level set

function of the LIF model has been smoothed by using the Gaussian filter. In

this way, the LIF model has less computational complexity to finish the image

segmentation than other local region-based models [15, 18]. However, the LIF

model is sensitive to the local region scale and the initial contour, and easy to

produce segmentation errors.

The time complexity of the LIF model: in every iteration, the computing of

the LIF model includes the updating of the region parameters, the level set, and

the regularisation term in every iteration. Since the LIF model uses Gaussian
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kernel to regularise the level set, the traditional regularised term can be removed.

The time complexity of Gaussian filtering is O(gl∗gl∗N). According to literature

[17], gl indicates the parameter of Gaussian filtering, where 1 < gl < 6. The time

complexity of updating every region parameter is O(gw ∗ gw ∗ N), where gw

indicates the size of Gaussian window. According to Section 3.1 of literature [17],

gw ≥ 5. The time complexity of updating the level set is O(N). Therefore, the

time complexity for every iteration of the LIF model is O((gl ∗ gl+2 ∗ gw ∗ gw+

1) ∗N).

2.2. The BCLBF model

For an image I with an image domain Ω, the energy functional of the BCLBF

model is defined as follows:

E(u, c, b) =

∫

∑N

i=1
ei(x)Mi(u(x))dx +

∫

R(u(x))dx, x ∈ Ω (6)

where N=2 and ei(x) is given as follows:

ei(x) =

∫

K(y − x)|I(x) − b(y)ci|
2dy (7)

The level set evolution equation is deduced as follows:

∂u

∂t
= (e1 − e2)δε(u) +R(u(x)) (8)

In the above Eqs.(6) and (8), Mi(u) and δε(u) are Heaviside function and Dirac

function respectively, whereM1(u) = Hε(u) andM2(u) = 1−Hε(u). The BCLBF

model presents the bias field estimation to correct the image with intensity inho-

mogeneities. c indicates the region parameter, b is referred to as a bias field. ei(x)

is a local clustering criterion function to evaluate the classification of intensities

in neighbourhood of a pixel. The smaller value of ei(x) implies the better classifi-

cation. R(u(x)) is referred to as a regularisation term (see literature [18] for more

details). Although this model has been well applied to some kinds of medical im-

ages with inhomogeneity and noise under high contrast between the foreground

and the background, it does not consider the clustering variance, which may cause

unsatisfied segmentation for the images with severe intensity inhomogeneity [21].

The time complexity of the BCLBF model: in every iteration, the computing

of the BCLBF model includes the updating of the region parameters, the level

set, the bias field term and its two gaussian kernel convolutions, as well as the

regularised term which contains the curvature term and the penalty term. The

time complexity of the curvature term is O(8N), whereas the time complexity

of the penalty term is O(4N). So the time complexity of the regularised term is
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O(12N). The time complexity of the bias field term and its two gaussian kernel

convolutions is O(3 ∗ gn ∗ gn ∗N), where gn indicates the parameter of truncated

Gaussian function, gn ≥ 3. The time complexity of updating the level set and the

region parameters is O(3N). Therefore the time complexity for every iteration of

the BCLBF model is O((15 + 3 ∗ gn ∗ gn) ∗N).

2.3. The KM model

Let ϕ(.) be a nonlinear mapping function. The energy function of the KM

model is defined as follows:

FK(R1, R2, µ1, µ2) =

∫

R1

||ϕ(I(x)) − ϕ(µ1)||
2dx

+

∫

R2

||ϕ(I(x)) − ϕ(µ2)||
2dx+ λ

∮

−→γ

ds (9)

where the first two terms are data driven terms, the last term is a regularisation

term used for smoothing segmentation boundaries, λ is a positive constant. The

level set evolution equation is defined as follows:

∂u

∂t
(x, t) = [||ϕ(I(x)) − ϕ(µ1)||

2−

||ϕ(I(x)) − ϕ(µ2)||
2 − λku]||u|| (10)

where ku is a curvature function. More details are available in [16]. The basic

idea is to shift the problem of image segmentation from the low dimensional

observation space to the higher dimensional feature space. The energy functional

of the CV model is defined as follows:

F (R1, R2, C1, C2) = λ1

∫

R1

||(I(x)) − (C1)||
2dx

+λ2

∫

R2

||(I(x)) − (C2)||
2dx+ λ

∮

−→γ

ds (11)

where λ1 = 1 and λ2 = 1, C1 and C2 indicate the average gray value of region

R1 and region R2. The KM model can be essentially viewed as a variant of the

CV model, which the curve evolution is only implemented in higher dimensional

space. Because the KM model adopts the kernel mapping function, it can effec-

tively segment many types of homogeneous images. However it cannot obtain

satisfactory segmentation result for images with narrow part of the object, or

images with severe intensity inhomogeneity [16].
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The time complexity of the KM model: in every iteration, the computing of

the KM model includes the updating of the curvature, the gradient, the region

parameters and the level set elements. The time complexity of updating the

curvature is O(8N). The time complexity of updating the gradient is O(8N). The

time complexity of updating the region parameters and the level set is O(3N).

Therefore the time complexity for every iteration of the KM model is O(19N).

3. Review of two classical watershed transformations

In this section, definitions and basic ideas of traditional watershed transfor-

mation are reviewed in literature [29–32].

For an image I with an image domain Ω, x ∈ Ω, I(x) indicates the gray value

of pixel x. The watershed transformation is defined as follows:

Definition 1. The catchment basin CB(mi) of a regional minimum mi is a set

of points x ∈ Ω which are closer to mi than to any other regional minimum mj

in the topographical distance [29–32].

Definition 2. Watersheds are obtained by piercing a hole at each minimum mi

of an image I. Starting from the minima of lowest altitude, the water will progres-

sively fill up the different catchment basins CB(mi). A dam is built at each pixel,

where the water coming from two or more minima would merge. At the end of

the immersion procedure, each minimum is completely surrounded by dams, which

delimit its associated catchment basins. The dams are called the watersheds of the

image I [29, 30, 32].

The traditional watershed transformation can be categorised into two ap-

proaches: immersion and rainfall.

Vincent and Soille propose a classical watershed algorithm [29] by simulating

an immersing process. The main idea: all pixels are sorted in an ascending order

of their gray values, the progressive flooding process starts from the minimal gray

level, suppose the flooding rises to a given level h, the pixels below the given level

h will have been labeled. If the flooding rises to level h + 1, then the pixels with

altitude h + 1 will be added the labeled catchment basins by computing geodesic

influence zones. Those remained unlabeled pixels of level h + 1 are regarded as

new minima, and will be given new labels. Such watershed transformation is very

close to the concept of natural watershed.
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Bieniek and Moga propose a distinct watershed algorithm [31] which is imple-

mented by simulating a rainfall process, not an immersing process as usual. The

basic idea: Simulates pouring down water from top (as raining) on topograph-

ic surface. It is regarded as a distributed approach since every droplet follows,

independently from neighbouring droplets, the steepest descent until reaching a

minimum. This process continues for every droplet that falls on the surface and

stops when each point is allocated to a minimum. All droplets that follow to

the same local minimum form a catchment basin. No point belongs to a water-

shed line; instead each point is considered as belonging to a particular catchment

basin. Compared with the immersion, this algorithm is faster and can segment

the image completely.

4. The proposed approach

In this section, a weighted kernel mapping approach to image segmentation

is proposed as shown in Fig. 1. An extended watershed transformation method

based on spring simulation is introduced and its corresponding algorithm is p-

resented to preprocess the image data. The extended watershed transformation

can provide the weighted information for evolving level set and updating region

parameters, and reduce the impact of intensity inhomogeneity. Two energy func-

tionals in low dimensional observation space and higher dimensional feature space

are designed. The weighted kernel mapping energy functional in higher dimen-

sional space is minimised by means of the weighted level set evolution to guide

the motion of the zero level set towards the object boundaries.

4.1. The extended watershed transformation based on spring simulation

Inspired by the immersion simulation [29, 30] and the rainfall simulation [31],

an extended watershed transformation method is proposed in this research to

simulate a general spring on a hill with a fountain process and a rainfall process.

Every minimum in an image is regarded as a spring. Although the actual maxi-

mum of jetting height of each spring may be different, the same upper bound of

jetting height are set for all the springs. It is supposed that the water will stop

jetting when the water level reaches the maximum jetting height. The rising of

the water level can be treated as an immersion process, while the falling back of

spring water can be viewed as a local rainfall process. The area of local rainfall

will at least cover the area of immersion. The immersion process and local rainfall

process will construct a catchment basin around a spring. If all gray values of an

image are changed to negative values, the local maximum in the original image

will become the local minimum in the negative image. If the local maximal point

is used as an initial seed point, then the whole catchment basin can be traversed
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by using the region growing method without knowing the local minimal pixel

point, which can save the time of traversing the seed points. Similar to the tra-

ditional watershed transformation, the proposed watershed transformation needs

to resolve the problem of water coming from different catchment basins. How-

ever, the proposed watershed transformation does not need to erect dams and

sort the pixels, but needs to determine to which basin the pixels belong. Unlike

the classical watershed transformation methods [29–32] which are used for image

segmentation, the proposed watershed transformation method are used for the

pre-process of the image segmentation.

For an image I with an image domain Ω, I(x) indicates the gray value of

pixel x, x ∈ Ω. The catchment basin of the extended watershed transformation

is defined as follows:

ECB(emi) = {y|y ∈ Ng(rmi), (−1)min B(emi)(I(emi)− I(y)) ≤ d} (12)

min B(emi) =

{

1, if emi take the local minimum

0, otherwise

where Ng(x) indicates 4-connected neighbourhoods of pixel x, rmi indicates

any one of pixels which can meet a given condition and be traversed by search-

ing 4-connected neighbourhoods starting from emi, and emi can be the local

minimum or maximum point.

Suppose that D(x) indicates the image data after the watershed transforma-

tion andMean() denotes the average function. If x ∈ ECB(emi) andECB(emi) ⊂

Ω then D(x) = Mean(ECB(emi)). Here, the loss of image information should

be within the tolerance, which means that the image has no visual changes after

the extended watershed transformation.

The traditional watershed transformation is sensitive to noise and isolated

points. The extended watershed transformation method adds a selective step

to resolve this problem. The image is traversed in row-major order. The ex-

treme points can be attained by comparing 8-connected neighborhoods, and then

searching 4-connected neighborhoods. Every pixel has at most two chances to

be caught by different catchment basins. Such pixel will be added to the closest

catchment basin.

The algorithm for the extended watershed transformation is shown in the

following steps:

Input: original image

Output: new image and weighted matrix

Step 1: Build three null matrixes with the same size of the original image.

The variable L is used as a counter and initialised to zero. The first matrix

(Mt1(x)) is used to save the label of every pixel. The second matrix (Mt2(x)) is
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used to store the weight of every pixel. The third matrix (Mt3(x)) is used to save

the extremum of every catchment basin before the last step, and then is used to

store the average value of every catchment basin in the last step.

Step 2: Traverse the image in row-major order. Select an extremum point

emi by comparing a pixel with 8-connected neighborhoods; get points meeting the

condition of Eq.(12) by searching 4-connected neighborhoods from this extreme

point, ECB(emi) = ECB(emi)
⋃

x; update the corresponding labels in the first

and the third matrix, L = L + 1, Mt1(ECB(emi)) = L, Mt3(ECB(emi)) =

I(emi).

Step 3: Repeat step 2 until the traversing is over. If a pixel y has been added

to a catchment basin ECB(emi), for catchment basin ECB(emj), if |I(y) −

I(emi))| > |I(y)− I(emj)|, then the pixel y will be added in the ECB(emj).

Step 4: Search all pixels which are labeled as zero or the outliers (L=1) in

Mt1. According the original image and Mt3, these pixels will be added to the

closest catchment basin by 8-connected neighborhoods comparison.

Step 5: According to Mt1, compute the weight of every pixel in Mt2 and

update Mt3, if x ∈ ECB(emj) then Mt3(x)=Mean(ECB(emj)). Output the

weighted matrix Mt2 and the new image Mt3.

Here Mt2(x) can be viewed as |Dp(x)| and its calculation is given in next

subsection. Mt3(x) also indicates D(x) mentioned above.

Fig. 2 is an example that shows the results using extended watershed trans-

formation with different values of d from Eq.(12). The result equals the original

image when d = 0. The image has barely visual change and presents better in-

tensity homogeneity when d = 5. If the value of d is too large, the strong edges

will appear in the image as illustrated in Fig. 2(c) and (d). In other words, af-

ter the extended watershed transformation the image will have better intensity

homogeneity so long as the parameter d is carefully adjusted.

4.2. The weighted information

Let’s suppose |Dp(x)| indicates the number of pixels from Dp(x), DP (x) =

{y|if x ∈ ECB(emi), then ∀y ∈ ECB(emi)}, max{|Dp(x)|} ≤ |N | ≤ Area(I).

Area(I) indicates the area of the image. |N | indicates a parameter which can take

various values with the different models, and in this paper |N | equals Area(I).

The weighted information of the energy functional is defined as follows:

WEx =
|N |

|Dp(x)|
(13)

The weighted information of the kernel mapping function on the WKM model

is defined as follows:

Wx =
1

|Dp(x)|
(14)

11



Here WEx denotes the weight of energy functional at some pixels. Fundamentally,

it can also be used as the weight of the step-size about the level set implemen-

tation at pixel x. In each iteration, the higher the value of WEx becomes, the

faster it updates at pixel x. If the catchment basin is extremely small, then noises

or outliers might exist and the corresponding weight of the level set will become

large. Hence the updated level set element cannot give correct guidance to seg-

mentation. In order to solve this problem, a threshold of the level set element

is set to mitigate the influence of noise and outlier points. The value of WEx is

greater than or equal to 1. When the weighted value of every level set element

equals 1, it can be treated as traditional level set. As a consequence, the level set

of the WKM model updates quicker than the traditional level set. Wx is used to

indirectly express the weight of the kernel function. In each iteration, the region

parameters are obtained by the weighted kernel function through using mean

shift. The usage of WEx and Wx will be introduced in detail in next subsection.

4.3. The proposed energy functionals and the related level set formulations

In this research, two new energy functionals are designed to segment the image

in the low dimensional observation space and the higher dimensional feature space

respectively. The basic idea is that the problem of image segmentation can be

transformed into the minimisation of an energy functional.

Let us define the evolving curve −→γ in Ω, µi expresses the parameter of the

region Ri, and λ parameter is a positive factor. The new energy functional in the

low dimensional observation space is defined as follows:

∫

Ω

∣

∣

∣

∣

(p(x)µ1 + (1 − p(x))µ2)(
µ1 + µ2

2
−D(x) ±

µ1 − µ2

2
)

∣

∣

∣

∣

dx+ λ

∮

−→γ

ds (15)

The first term in Eq.(15) indicates the data term and the second term indicates the

regularisation term in the low dimensional observation space, where ± depends

on whether the point lies inside or outside the evolving curve, and the functional

p(x) is given by

p(x) =

{

1, x ∈ inside(C)

0, x ∈ outside(C)
(16)

Obviously, Eq.(15) can be described as follows:

E(R1, R1, µ1, µ2) =

∫

Ri

| µi(µi −D(x)) | dx+ λ

∮

−→γ

ds (17)

Whenever the evolving curve matches the boundary of the objective region, the

energy functional can achieve a minimum value. So the proposed energy func-

tional can transform the issue of image segmentation into that of energy minimi-
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sation. It is assumed that the image is constructed by the foreground region and

the background region, and every region has the same pixel value. Let us define

the foreground region by R0
1 and the background region by R0

2 which are also

used to express the segmentation result. Let us define regions R1 and R2, inside

and outside the evolving curve respectively.

It is obvious that if R1 is entirely inside the foreground area, then E(R1) = 0

and E(R2) > 0; if R1 is partly inside the foreground area then E(R1) > 0 and

E(R2) > 0; and so on. There are five possible cases in relation of the evolving

curve and segmented region. The main remarks are illustrated in Fig. 3.

The new energy functional in higher dimensional feature space is defined as

follows:

EKw
(Ω, µ1, µ2) =

∫

ΩWEx | (p(x)φ(µ1) + (1 − p(x))φ(µ2))(
φ(µ1)+φ(µ2)

2

−φ(D(x)) ± φ(µ1)−φ(µ2)
2 ) | dx+ λ

∮

−→γ
ds

(18)

where φ() is a nonlinear mapping from the low dimensional observation space to

the high dimensional feature space. Eq.(16) can be rewritten as

EKw
(R1, R2, µ1, µ2) =

∫

Ri

WEx | (φ(µi))(φ(µi)− φ(D(x)) | dx + λ

∮

−→γ

ds (19)

Minimising EKw
depends both on −→γ and region parameters µ1 and µ2, because

the regularisation term does not depend on the region parameters, let

DKw
=

∫

Ri

WEx | (φ(µi))(φ(µi)− φ(D(x)) | dx (20)

In this way,
∂DKw

∂µi
can be derived from

∂EKw

∂µi
. According to the Mercer’s theorem

[33], any continuous, symmetric, as well as positive semi-definite kernel function

can be expressed as a dot product in higher dimensional space, i.e. K(y, z) =

φ(y)∗.φ(z), ∀(y, z) ∈ D2. In this research, the RBF kernel function: K(y, z) =

exp(− ‖ y−z
σ

‖) is adopted. Hence

∂DKw

∂µi

=

∫

Ri

∂

∂µi

WEx | (K(µi, µi)−K(D(x), µi)) | dx (21)

13



The necessary condition for the minimum of EKw
is

∂DKw

∂µi
= 0, therefore,

µi,n+1 =

∫
Ri

D(x)WExK(‖
D(x)−µi,n

σ
‖2)dx

∫
Ri

WExK(‖
D(x)−µi,n

σ
‖2)dx

=

∫
Ri

D(x)WxK(‖
D(x)−µi,n

σ
‖2)dx

∫
Ri

WxK(‖
D(x)−µi,n

σ
‖2)dx

(22)

Here, i ∈ {1, 2}, the sequence {µi,n}n=1,2,... converges. The proof is given in

Appendix A in the light of reference [16].

When region parameters are fixed and EKw
is minimised with respect to

−→γ , the Euler-Lagrange descent equation corresponding to EKw
is derived by

embedding the curve −→γ into the family of one-parameter curves −→γ (s, t) : [0, 1]×

R+ → Ω and solving the following partial differential formulae:

d−→γ

dt
= −

∂EKw

∂−→γ
(23)

Segmentation region R1 and R2 are obtained from curve −→γ at convergence when

time t → ∞. Because EKw
can be expressed by the integral of a scalar func-

tion,
∂DKw

∂−→γ
is equal to −WEx(| (φ(µ1))(φ(µ1) − φ(D(x))) | − | (φ(µ2))(φ(µ2) −

φ(D(x))) |)−→n where −→n is the outward unit normal to −→γ , the derivative of the

length prior with respect to −→γ is ∂
∂−→γ

∮

−→γ ds = k−→n , we have

d~γ

dt
= [WEx(| (φ(µ1))(φ(µ1)−φ(D(x))) | − | (φ(µ2))(φ(µ2)−φ(D(x))) |)−λK]−→n

(24)

The well-known level set method [34] is used here to evolve the curve −→γ (t) which

is very stable. The topological changes of the evolving curve can be handled

automatically. The curve is implicitly represented by the zero level set of function

u : R2 × R+ → R at time t, i.e., ~γ(t) = {x ∈ Ω | u(x, t) = 0}, d~γ
dt

= VKw

−→n .

When VKw
: R2 → R, the corresponding level set function u evolves according to

∂u
∂t
(x, t) = Vkw

||
−→
∇u||, therefore,

∂u
∂t
(x, t) = [WEx

(|(ϕ(µ1))(ϕ(µ1)− ϕ(D(x)))|

−|(ϕ(µ2))(ϕ(µ2)− ϕ(D(x)))|) − λku]||~∇u||
(25)

where the curvature function is given as follows:

ku = div(

−→
∇u

||
−→
∇u||

) (26)

It should be noted that Eq.(25) is not only applied for points (x, t) on the curve
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−→γ but also extended to the entire image region. In other words, the function u

evolution is also suitable for points outside level set curve without affecting the

process of segmentation.
~∇u

||~∇u||
represents the unit normal to a level set curve at

every point, and Ku represents the curvature of every level set element.

4.4. Main algorithm of WKM model for level set image segmentation

The main procedure of the proposed algorithm is summarised as follows:

Step 1: Initialise the level set evolution curves.

Step 2: Compute {µı} and Ku by Eq.(22) and Eq.(26), respectively.

Step 3: Update u by Eq.(25) and evolve the level set function according to

step 2.

Step 4: Check the stopping criterion. If not, return to step 2.

Step 5: Output the final image segmentation results.

Note that the stopping criterion needs to be designed according to the practical

problem. Therefore no unified stopping criterion is presented here.

Multi-region segmentation using several active curves can lead to ambiguity

when two or more curves intersect. To address this problem, the method described

in [16, 35] is adopted. The main idea is based on the following definition of a

partition. If the segmentation has N regions, let {−→γ }=1,...,N−1 be N-1 simple

closed plane curves and {R−→γ 
} be the enclosed regions, let {R} denote some par-

tition regions, R1 = R−→γ 1
;R2 = RC

−→γ 1

⋂

RC
−→γ 2

; . . . ;Rj = RC
−→γ 1

⋂

RC
−→γ 2

⋂

. . .
⋂

RC
−→γ −1

⋂

RC
−→γ 

; . . . ; and RN = RC
−→γ 1

⋂

RC
−→γ 2

⋂

. . .
⋂

RC
−→γ −1

⋂

RC
−→γ N−1

, where RC
−→γ

is the

complementary of R−→γ in Ω.

4.5. Complexity analysis of algorithm EWT and algorithm WKM

Complexity analysis for algorithm EWT: N indicates the total number of pixel-

s in an image. To traverse every pixel, the complexity is obtained by calculating

the complexity of 4-connected neighborhood search and 8-connected neighbor-

hood comparison. At worst, a pixel is not determined as an extreme point by

8-connected neighborhood comparison, but it is added to different catchmen-

t basins twice by 4-connected neighborhood search. In this situation, the time

complexity is O(16N). In Step 5, the second matrix is updated according to the

first matrix, and the third matrix is updated by adopting the hash link-table, so

the time complexity of updating three matrixes is O(3N). The step 4 is a selec-

tive step and its time complexity is O(8N), therefore, the time complexity of the

extended watershed transformation is O(19N) or O(27N).

As discussed in Section 2.3, the complexity of every iteration of the KM model

is O(19N). Although the WKM model has one more process with the extended

watershed transformation than the KM model, the WKM model requires much
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fewer iterations than the KM model, so the time spent on the extended watershed

transformation can be ignored.

In every iteration, the time complexity of the LIF model is O((gl∗gl+2∗gw∗

gw+1)∗N), the time complexity of the BCLBF model is O((15+3∗gn∗gn)∗N),

and the MBCLBF model is more complex than the BCLBF model because of the

local regional difference estimation in each iteration. Therefore the WKM model

is superior to the LIF, BCLBF,and MBCLBF models as to the time complexity

aspect.

5. Experimental results

To show the advantages of the proposed approach, quantitative and compar-

ative performance evaluation is given including a large number of experiments

on natural images from Berkeley database, medical images from Normal Brains

Database as well as synthetic images with different characteristics. The proposed

WKM model is compared with the aforementioned four models: Local Image

Fitting (LIF) model [17], Bias Correction based Local Binary Fitting (BCLBF)

model [18] and its modified model (MBCLBF) [22], as well as Level set image

segmentation with Kernel Induced Data Term (KM) model [16]. In each exper-

iment, the settings of initial curves and the parameters of each model are based

on the recommendations of the original papers [16–18, 22]. Some parameters are

slightly adjusted in order to get the better results. The settings of the parameters

used in this research are shown in Table 1, Table 3, and Table 6.

5.1. Synthetic image segmentation

For synthetic images, we choose three images with different characteristics of

noise: an image with much greater noise, an image with severe intensity inhomo-

geneity, and an image with narrow gaps. High contrast between the background

and the foreground is the common feature among these three images. In Fig. 4,

columns(a)-(e) show the segmentation results obtained by the BCLBF, LIF, KM,

MBCLBF and WKM models respectively. Fig. 5 shows that the initial contours

of every model are plotted on the original synthetic images, where the initial con-

tours of the MBCLBF model are the same as the BCLBF model in column (a).

The initial contours of the LIF model and the KM model are shown in column

(b), column (c) respectively. The corrected images by the BCLBF method, the

MBCLBF method and our EWT method are shown in Fig. 6. The same initial

contours of the BCLBF, LIF, KM and MBCLBF models are chosen for the exper-

iments of the WKM model, which are shown in the first column of Fig. 7, Fig. 8

and Fig. 9. The setting of parameters of each model is shown in Table 1. Unless
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specified otherwise, apart from the parameters λ and d, other parameters of the

WKM model are set to defaults in this section.

The first row of Fig. 4 shows an image with much greater noise than two other

images and its segmentation results with curves can not be seen clearly. The last

row shows the final segmentation regions in order to exhibit the segmentation

result clearly. The BCLBF and MBCLBF models give the worse segmentation

results than the LIF, KM and WKM models because the LFI function of the LIF

model, the kernel function of the KM model can reduce the noise to a certain

extent. Both the EWT method and the weighted kernel function of the proposed

approach can reduce the noise significantly. As for the image with serious noise,

the bias field of the BCLBF and MBCLBF models can not reduce the influence

of noise. The corrected images by the BCLBF model and the MBCLBF model

in Fig. 6 further explain the reason why these two models can not segment the

images with stronger noise correctly. The column(c) of Fig. 6 shows that the

EWT method reduces more noise than the BCLBF and MBCLBF models.

The second row of Fig. 4 shows an image with severe intensity inhomogeneity

and noise. The BCLBF and MBCLBF models yield better segmentation results

than the LIF and KM models because the bias field of the BCLBF and MBCLBF

models is applied to deal with intensity inhomogeneity. The LIF and KM models

may fail to extract the object boundary with severe uneven gray values and

produce many local minima of the energy functional. because the EWT method

can improve the homogeneity of an image and reduce the impact of noise, the

WKM model can obtain better segmentation results than other four models.

The third row of Fig. 4 shows an image with narrow gaps and noise. Noise

is the main cause of poor synthetic image segmentation. The LIF and KM mod-

els yield a litter bit better segmentation results than the BCLBF and MBCLBF

models because the influence of narrow gaps is less than that of noise in high con-

trast image. The WKM model can produce more accurate segmentation results

than other four models for the similar reason mentioned above. Fig. 7, Fig. 8

and Fig. 9 show that the WKM model with different initial contours can produce

almost the same desirable segmentation results for the three synthetic images.

The contour evolution processes are depicted by showing the initial contours, in-

termediate contours, and the final contours from the columns(a)-(e) of Fig. 7 and

Fig. 8 as well as Fig. 9. This illustrates that the WKM model is insensitive to the

initial contours. To sum up, the WKM model yields the best visual segmentation

result for images with noise, narrow gaps and severe inhomogeneity with high

contrast. Table 2 also shows that the WKM model can segment synthetic images

with the fewest iterations.
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5.2. Medical image segmentation

The medical images from Normal Brains Database [36, 37] are used to test the

proposed WKM model. These brain images have the common features of narrow

parts of the object with weak edges, a small amount of noise, inhomogeneity

and low contrast between the background and the foreground. Because the KM

model is not specifically used to segment the images with intensity inhomogeneity

and low contrast, the segmentation results of the KM model for the brain images

are very poor. Therefore, in this section, the WKM model is only compared

with the LIF, BCLBF and MBCLBF models for the brain images. In Fig. 10,

the first row shows the original brain images, and the second row shows the

ground truth or gold standard for the brain images. In order to better compare

the proposed model with other models, the segmentation error rate and Dice

Similarity Coefficient (DSC) [38] are used to evaluate the performance of all

models.

The segmentation error rate is computed as the ratio of the number of wrong-

ly classified pixels to the total number of pixels in an image. Dice Similarity

Coefficient (DSC) is defined as DSC = 2S(N1∩N2)
S(N1)+S(N2)

where N1 and N2 represent

the obtained segmentations, and S(Ni) indicates the area of the region (Ni). The

closer the DSC value turns to 1, the better the segmentation result will be.

In this section, we will discuss two-phase and three-phase image segmentation.

We will not discuss three-phase image segmentation for the LIF model because

it is not extended to be a multi-phase model. When evaluating the performance

of all models, the accuracy for white matter (WM) in the brain is compared.

The settings of parameters are shown in Table 3. Here, BCLBF2, LIF2, MB-

CLBF2 and WKM2 indicate the two-phase segmentation, BCLBF3, MBCLBF3

and WKM3 indicate the three-phase segmentation. Two-phase and three-phase

segmentation results of BCLBF model are shown in the first row and the last

row of Fig. 11. The initial contours of the LIF model are shown in the first row

of Fig. 12. The initial contours of the BCLBF and MBCLBF models are also

shown in the first row and the third row of Fig. 13. The corrected brain images

by the BCLBF and MBCLBF models are shown in the middle row of Fig. 11

and Fig. 13. The segmentation results of the BCLBF, LIF, MBCLBF and WKM

models are shown in Fig. 11, Fig. 12, Fig. 13, Fig. 14. Obviously the white mat-

ter segmentation results of BCLBF2 are worse than that of BCLBF3 in Fig. 11,

the white matter segmentation results of MBCLBF2 are worse than that of MB-

CLBF3 in Fig. 11, we will choose the better segmentation results of the BCLBF

and MBCLBF models to compare with the LIF and the WKM models. That is to

say, we compare WKM2 and WKM3 with BCLBF3, LIF2 and MBCLBF3. The

segmentation performances of BCLBF3, LIF2, MBCLBF3, WKM2 and WKM3

are compared in Table 4. According to Table 4, the segmentation performance
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of the LIF model is a little bit better than that of the BCLBF model, the seg-

mentation results of MBCLBF3 are superior to BCLBF3 and LIF2. The reason

is that the MBCLBF model utilises the local regional difference to improve the

bias field estimation of the BCLBF model. The WKM model achieves much bet-

ter segmentation results and performance than the MBCLBF model because the

EWT method can improve the intensity homogeneity of an image and the region

parameters deduced by the WKM model can better represent the the intensity

of the evolving regions. In Section5.3 we will illustrate how the region param-

eters of the WKM model can better represent the the intensity of the evolving

regions. In other words, the WKM model is superior to the LIF, BCLBF and

MBCLBF models for the brain images segmentation. Table 5 also demonstrates

that the WKM model takes fewer iterations to finish the segmentation than the

LIF, BCLBF and MBCLBF models.

5.3. Natural image segmentation

Compared to synthetic and brain images, natural images are often not artifi-

cially inhomogeneous but inherently inhomogeneous, and usually contain complex

features. For instance, some natural images have the weak object boundaries but

the strong (wrong) edges inside a target region. Because the segmentation re-

sults of the KM model for natural images are better than the LIF, BCLBF and

MBCLBF models, in this section, the proposed WKM model is only compared

with the KM model on natural images from Berkeley Database [39]. There exists

neither ground truth nor gold standard on segmentation of the natural images. A

set of benchmark segmentation results is used here, which is provided by four to

seven human observers for each image and these benchmark segmentation results

are publicly available [39–42].

There are four performance measures including Probabilistic Rand Index (PRI)

[40], Variation of Information (VOI) [41], Global Consistency Error (GCE) [39],

and Boundary Displacement Error (BDE) [42]. The PRI counts the fraction of

pairs of pixels whose labels are consistent between the computed segmentation

and the ground truth. The range of PRI is [0,1]. The higher value indicates the

better result. The VOI measures the average conditional entropy of one segmen-

tation given to the other. The range of VOI is [0,∞). The lower value indicates

the better result. The GCE measures the extent to which segmentation can be

treated as a refinement of the other. The range of GCE is [0,1]. The lower value

indicates the better result. The Boundary Displacement Error (BDE)measures

the average displacement error of boundary pixels between two segmented im-

ages. The ranges of BDE is [0,∞) in the unit of pixel, lower is better. We use

the algorithms provided by Allen Y. Yang as mentioned in [43], to compute the

four segmentation indices.
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Fig. 15 shows nine natural images with initial contours from Berkeley database

which are colour images in size 481×321. These images are selected in our exper-

iments since they have been used as typical examples in many papers [16, 40–43]

related to image segmentation. Table 6 lists the settings of parameters for the

WKM and KM models. To compare the WKM model with the KM model fairly,

initial contour of the WKM model for every natural image is the same as that

of the KM model. Fig. 16 and Fig. 17 show the final segmentation results with

curve representation. Column one, two and three of Fig. 16 and Fig. 17 show

the two-phase, three-phase and four-phase natural images segmentation results

respectively. The numerals underneath each of the natural images, such as 86016

and 35010, are the code names in Berkeley Database. In this section, we show

the segmentation results and the segmentation performances to demonstrate the

advantages of the WKM model on two-phase, three-phase and four-phase seg-

mentation experiments. For the four-phase segmentation experiments, we also

demonstrate the variation of the region parameters in iterations to further eval-

uate the effectiveness of the WKM model.

Column one of Fig. 16 and Fig. 17 shows that the WKM model can yield vi-

sually satisfactory segmentation results compared with the KM model. For image

86016 with serious noise and intensity inhomogeneity in the background as well

as very high contrast between the foreground and the background, the KM model

cannot segment the background well, whereas the WKM model provides prop-

er or better segmentation result. Image 3096 has two segmented regions with

complicated intensity inhomogeneity, strong edges in the background, and the

weak edges from partial boundary between the foreground and the background.

Image 80099 has severe intensity inhomogeneity and low contrast between the

foreground and the background after gray transformation. Obviously, the WKM

model can segment the foreground successfully, while the KM model cannot ex-

tract the boundary of the foreground correctly for image 3096 and image 80099.

The reasons are that, firstly, our EWT method can significantly reduce the impact

of the inhomogeneity and the noise, secondly, combining the the weighted ker-

nel mapping function, the WKM model can overcome the influence of the wrong

edges.

Column two of Fig. 16 and Fig. 17 illustrates the three-phase segmentation

results of natural images obtained by the KM model and the WKM model. In

Fig. 16, the results for image 183055 and image 118035 show that the KM model

yields poor results in terms of four performance measures and gives the bad visual

results. These two images have severe intensity inhomogeneity and contain strong

edges inside the objective regions and weak edges from part of the boundary

among the target regions after gray transformation. According to Fig. 17, the

results for image 183055 and image 118035 show the WKM model can extract
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the boundary of target regions successfully. According to Table 7 and Table 8,

for image 238011, the WKM model and the KM model produce almost the same

results in terms of the four performance measures. Image 238011 has high contrast

among the target regions and has relative intensity homogeneity. However, the

KM model fails to extract the moon area from image 238011 correctly and yields

the boundary deviation. Since the moon area is a very small proportion of the

whole image and the results of segmentation in other areas are desirable, the

segmentation results obtained by both methods are satisfactory.

Column three of Fig. 16 and Fig. 17 shows the four-phase segmentation re-

sults of natural images obtained by KM and WKM respectively. Image 35010 is

inhomogeneous and especially contains strong edges in the target regions. The

WKM model can get competitive results comparing with the KM model from

Table 7 and Table 8. As shown in Fig. 16 and Fig. 17, it is hard to judge which

model is better for image 140075 and image 35010. However, the WKM model

yields better results than that of the KM model in terms of PRI, BDE, VOI and

GCE in Table 7 and autoreft8.

Table 9 shows the contrast of the KM model and the WKM model on the

variations of four region parameters during evolutionary iterations. As can be

seen in Fig. 18, the first row and the second row show the variations of four

region parameters produced by the KM model and the WKM model for image

35010, image 140075 and image 124084 during the iterations. Because the KM

model has very slow convergence rate, more iterations are required to get the

desirable values of the region parameters. In this experiment, the iterations of

the KM model are 5 times of the WKM model. Obviously, every region parameter

obtained by the WKM model can converge quickly than that of the KM model.

Meanwhile, since the image segmentation is spatially constrained clustering of

image data, the more dispersed values of the region parameters mean the better

performance. there is no doubt that the values of region parameters for the WKM

model are more dispersed than that of the KM model.

Table 10 shows the contrast of the region parameters for image 35010, image

140075 and image 124084 by the KM model, the Benchmarks and the WKM

model in low dimensional observation space. According to this table, the value of

every region parameter by the WKM model is closer to the value of benchmarks

than that of the KM model. Actually, this is one of main reasons that the WKM

model can reach more accurate segmentation results than other models. However,

it is surprised that the value of region parameter of image 35010, Region 3 by

the WKM model is zero. The reason is that the corresponding region contains

very few pixels and its corresponding intensity value is replaced by the EWT

process. Since these pixels cannot influence the segmentation result due to the

small quantity of the pixels, Region 3 of image 35010 can be ignored and the
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four-phase segmentation is transformed into three-phase segmentation. Because

the value of every region parameter by the WKM model in the low dimensional

observation space is closer to the value of benchmarks than that of the KM

model, and the values of region parameters for the WKM model in the higher

dimensional space are more dispersed than that of the KM model, the region

parameters deduced by the WKM model can better represent the the intensity

of the evolving regions than that of the KM model.

Table 11 demonstrates that the proposed WKM model is much more efficient

than the KM model in terms of iterations. Table 12 shows the quantitative com-

parison of the WKM model against the KM model on the VAL set of Berkeley

Database, which indicates that the WKM model can produce better average per-

formance in terms of BDE, VOI and GCE. It is remarkable that the KM model

yields a little better performance than the WKM model in terms of the PRI on

image 86016. However, the PRI is not the only criterion, and the segmentation

result is not absolutely better when the PRI score is higher. An inverse example

is given in Appendix B. Overall the WKM model outperforms the KM model on

segmentation results of the natural images.

6. Conclusions

In this research, an Extended Watershed Transformation (EWT) method

based on spring simulation is proposed and its algorithm is also presented. The

EWT method can improve the image intensity homogeneity with almost no visual

change. At the same time, the EWT method provides the weighted information

for further level set image segmentation.

A Weighted Kernel Mapping (WKM) model for level set image segmentation

is also proposed and its algorithm is presented as well. Two energy function-

als in low dimensional observation space and higher dimensional feature space

are proposed respectively. By combining the EWT method, the WKM model

leads to better segmentation accuracy and iterative efficiency. According to the

experiments on the synthetic images segmentation under high contrast between

the foreground and the background, the brain images segmentation under low-

er contrast between the foreground and the background, as well as the complex

natural images segmentation, all the results of these segmentations are sufficient

to demonstrate the advantages of the WKM model. Compared with the popular

LIF, BCLBF, MBCLBF and KM models, the WKM model has the minimum

time complexity.

Because the texture features are not explicitly processed by the weighted ker-

nel mapping function, the proposed WKM model cannot accurately segment the
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texture images. Recently, an intensity-texture model [21] was introduced to seg-

ment texture images. However only two-phase texture images can be segmented.

The first track for future work is to extend the WKM model to segment multi-

phase texture images by building a good texture term in the energy functionals.

The extension of the proposed energy functionals for more new applications is al-

so promising. Since the proposed method can deal with many types of images in

an efficient way, another future perspective is to investigate the proposed method

on big image segmentation.
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Appendix A.

Let MR be the mean shift update function defined in Eq.(21), the convergence

of the following sequence equations is proved below

Zj+1 = MR (Zj) =
∫RD (X)KW (D (X) , Zj) dx

∫RKW (D (X) , Zj) dx
, j = 1, 2, . . . (A.1)

Here, R is a region within Ω and KW is the weighted kernel function.

Because K (x) = exp (−x), sequence {Zj} j = 1, 2, . . . can be written as

follows:

Zj+1 =

∫RD (X)WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)

dx

∫RWxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)

dx

, j = 1, 2, . . . (A.2)

Let the sequence equations {Pσ (j)}j=1,2,... be defined as follows:

Pσ (j) = ∫
R

WxK

(

∥

∥

∥

∥

D (X)− Zj

σ

∥

∥

∥

∥

2
)

dx, j = 1, 2, . . . (A.3)

The following proof demonstrates that the sequence Pσ(j) converges and is a

Cauchy sequence.

Since,

0 < Wx ≤ 1, 0 < K

(

∥

∥

∥

∥

D (X)− Zj

σ

∥

∥

∥

∥

2
)

≤ 1, ∀x ∈ RandR ⊂ Ω (A.4)
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It will get

0 < Pσ (j) ≤ ∫
R

dx ≤

∫

Ω

dx (A.5)

Thus, Pσ(j) is bounded by the area of the image domain.

For Zj+1 6= Zj, j = 1, 2, . . . consider the following expression:

Pσ (j + 1)−Pσ (j) =

∫

R

[

WxK

(

∥

∥

∥

∥

D (X)− Zj+1

σ

∥

∥

∥

∥

2
)

−WxK

(

∥

∥

∥

∥

D (X)− Zj

σ

∥

∥

∥

∥

2
)]

dx

(A.6)

Because K is convex function, for all u, v ∈ R+ whenu 6= v, we have

K (v) ≥ K (u) +K ′ (v − u) (A.7)

For the properties of function K, we know K(u) = −K ′(u), then

WxK(u) ≥ WxK(u) +WxK(u− v) (A.8)

Combined with (A.2), (A.6) and (A.8),

Pσ (j + 1)−Pσ (j) ≥
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)

×

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2

−
∥

∥

∥

D(X)−Zj+1

σ

∥

∥

∥

2
)]

dx

≥ 1
σ2

∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)

×
(

‖D (X)− Zj‖
2 − ‖D (X)− Zj+1‖

2
)

]

dx

= 1
σ2

∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)

×
(

2D(X)Zj+1 − 2D (X)Zj + ‖Zj‖
2
− ‖Zj+1‖

2
)

]

dx

= 1
σ2 (2Zj+1)×

∫

R

[

WxD (X)K

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

− 1
σ2 (2Zj)×

∫

R

[

WxD (X)K

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

+ 1
σ2 ‖Zj‖

2
×
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

− 1
σ2 ‖Zj+1‖

2
×
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

= 1
σ2 2‖Zj+1‖

2
×
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

− 1
σ2 2 ‖Zj‖ ‖Zj+1‖ ×

∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

+ 1
σ2 ‖Zj‖

2
×
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

− 1
σ2 ‖Zj+1‖

2 ×
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

dx

= 1
σ2 ‖Zj+1 − Zj‖

2
×
∫

R

[

WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)]

It is to say that

Pσ (j + 1)−Pσ (j) ≥
1

σ2
‖Zj+1 − Zj‖

2
×

∫

R

[

WxK

(

∥

∥

∥

∥

D (X)− Zj

σ

∥

∥

∥

∥

2
)]

dx (A.9)

Because Zj+1 6= Zj, j = 1, 2, . . ., the right term in (A.9) is strictly positive, and

consequently, the sequence equation Pσ is strictly increasing.
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To sum up both sides in inequalities (A.9) over j, j + 1, . . . , j + m − 1, it is

given that

Pσ (j +m)− Pσ (j) ≥
1
σ2 ‖Zj+m − Zj+m−1‖

2 ∫

R
WxK

(

∥

∥

∥

D(X)−Zj+m−1

σ

∥

∥

∥

2
)

dx

+ · · ·+ 1
σ2 ‖Zj+1 − Zj‖

2
×
∫

R
WxK

(

∥

∥

∥

D(X)−Zj

σ

∥

∥

∥

2
)

dx

≥ 1
σ2

[

‖Zj+m − Zj+m−1‖
2
+ · · ·+ ‖Zj+1 − Zj‖

2
]

Mmin

≥ 1
σ2 ‖Zj+m − Zj+m−1‖

2
Mmin

So that:

Pσ (j +m)− Pσ (j) ≥
1

σ2
‖Zj+m − Zj+m−1‖

2
Mmin (A.10)

Here Mmin is the minimum of the integral
∫

R
WxK

(

∥

∥

∥

D(X)−Zj+m−1

σ

∥

∥

∥

2
)

dx with

respect to {Zj}j=1,2,....

Note that Mmin is strictly positive, combined with inequalities (A.5) and

(A.10), it can be concluded that Pσ is convergent, and is a Cauchy sequence.

This result combined with (A.2) and (A.10) can conclude that {Zj}j=1,2,... is a

Cauchy sequence. As a result {Zj}j=1,2,... converges in the Euclidean space.

Appendix B.

An inverse example of the PRI:

Let one image have only nine pixels and be segmented into three standard

regions. These three regions are known as Tags. Tag one is indicated by bold

font; Tag two is indicated by underlined font and Tag three is indicated by Italic

font as shown in Fig. 19(a).

The count matrix is built by the benchmark segmentation results and from this

we can compute the PRI and the GCE as shown in Fig. 19(b).(PRI=1,GCE=0)

We suppose two algorithms A and B, which are the respective segmentation

algorithms. Fig. 19(c) shows the segmentation results based on algorithm A;

Fig. 19(d) shows the value of count matrix A. (A:PRI=7/9,GCE=16/45) The

segmentation results based on algorithm B is shown in Fig. 19(e) and the value

of count matrix B is shown in Fig. 19(f)(B: PRI=5/6,GCE=2/5)

Although the PRI of algorithm B is bigger than that of algorithm A, visually,

algorithm B produced worse segmentation result than algorithm A. The GCE of

algorithm B is Also bigger than that of the algorithm A. Hence PRI is not the

only criterion for image segmentation.
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Tables and Figures

Table 1

Parameters setting of five models on synthetic images

methods (a) (b) (c)
BCLBF ε = 1 ; σ = 14 ;mu = 1; ε = 1 ; σ = 10 ;mu = 2; ε = 0.8 ; σ = 8 ;mu = 1.5;

nu = 0.001 ∗ 255 ∗ 255; nu = 0.01 ∗ 255 ∗ 255; nu = 0.001 ∗ 255 ∗ 255;
LIF ε = 2 ; σ = 11 ; Gσ = 1; ε = 1 ; σ = 15 ; Gσ = 5; ε = 3 ; σ = 10 ; Gσ = 1;
KM λ = 20; ε = 1e− 10; λ = 10; ε = 1e− 10; λ = 20; ε = 1e− 10;

σ = 10000 σ = 10000; σ = 10000;
MBCLBF ε = 1 ; σ = 5 ;mu = 1; ε = 1 ; σ = 8 ;mu = 1.1; ε = 0.8 ; σ = 11 ;mu = 1.2;

nu = 0.007 ∗ 255 ∗ 255; nu = 0.01 ∗ 255 ∗ 255; nu = 0.01 ∗ 255 ∗ 255;
WKM λ = 10; ε = 1e− 10; λ = 1; ε = 1e− 10; λ = 0; ε = 1e− 10;

σ = 10000;d = 5; σ = 10000;d = 3; σ = 10000; d = 10;

Table 2

Iterations of five models on synthetic images

methods (a) (b) (c)
BCLBF 200 180 300
LIF 100 70 160
KM 40 60 45

MBCLBF 240 210 310
WKM 20 35 27

Table 3

Parameters setting of four models on brain images

methods (a) (b) (c)
BCLBF ε = 1 ; σ = 3 ;mu = 1; ε = 1 ; σ = 6 ;mu = 1; ε = 1 ; σ = 6 ;mu = 1.5;

nu = 0.001 ∗ 255 ∗ 255; nu = 0.001 ∗ 255 ∗ 255; nu = 0.001 ∗ 255 ∗ 255;
LIF ε = 1 ; σ = 15 ; Gσ = 0.3; ε = 1 ; σ = 25 ; Gσ = 0.6; ε = 1 ; σ = 15 ; Gσ = 0.7;

MBCLBF ε = 1 ; σ = 15 ;mu = 1; ε = 1 ; σ = 9 ;mu = 1.1; ε = 1 ; σ = 9 ;mu = 1.2;
nu = 0.004 ∗ 255 ∗ 255; nu = 0.009 ∗ 255 ∗ 255; nu = 0.008 ∗ 255 ∗ 255;

WKM λ = 10,d = 5; λ = 10,d = 5; λ = 10,d = 5;
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Table 4

Performances of four models in terms of DSC and ErrorRate on brain images

methods
DSC ErrorRate

brain1 brain2 brain3 brain1 brain2 brain3

BCLBF3 0.8089 0.7750 0.7849 0.1162 0.1489 0.1245
LIF2 0.8597 0.8586 0.8258 0.0826 0.0843 0.0975

MBCLBF3 0.9055 0.9027 0.8666 0.0522 0.0515 0.0689
WKM2 0.9268 0.9498 0.9479 0.0393 0.0259 0.0242
WKM3 0.9157 0.9379 0.9227 0.0427 0.0328 0.0369

Table 5

Iterations of four models on brain images

methods brain1 brain2 brain3
BCLBF 80 65 90
LIF 55 40 60

MBCLBF 200 160 210
WKM 30 25 18

Table 6

Parameters setting of KM model and WKM model on brain images

image 86016 118035 35010 3096 238011 140075 80099 183055 124084
KM λ=20; λ=10; λ=20; λ=20; λ=0; λ=20; λ=20; λ=20; λ=20;

WKM λ=20; λ=10; λ=20; λ=0; λ=0; λ=10; λ=10; λ=10; λ=10;
d = 10; d = 5; d = 7; d = 5; d = 5; d = 3; d = 3; d = 10; d = 5;

Table 7

Performances of the KM method in terms of the four measures on natural images

image BDE PRI VOI GCE
86016 24.6341 0.5330 2.8512 0.1982
118035 5.9042 0.7849 1.8585 0.1578
35010 6.3020 0.6539 3.7940 0.4050
3096 14.1129 0.8217 0.7294 0.0724

238011 1.2735 0.9362 0.4625 0.0527
140075 11.2946 0.5116 3.8818 0.5317
80099 27.2630 0.8241 0.6187 0.0414
183055 17.2096 0.6529 2.1148 0.2764
124084 9.9342 0.4707 2.9491 0.3081

Table 8

Performances of the WKM method in terms of the four measures on natural images

image BDE PRI VOI GCE
86016 23.8177 0.4978 2.2232 0.0114
118035 5.2991 0.8326 1.4472 0.0852
35010 6.0566 0.6566 3.7540 0.4004
3096 6.6405 0.8780 0.3950 0.0079

238011 1.2680 0.9403 0.4269 0.0477
140075 10.1736 0.6655 3.4296 0.4560
80099 11.8353 0.8896 0.3447 0.0089
183055 13.3802 0.7299 1.6537 0.1175
124084 5.7895 0.8017 2.0729 0.2193
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Table 9

Contrast of KM model and WKM model on region parameter variation in iteration

N.
Image1(35010) Image2(140075) Image3(124084)

µk1 µk2 µk3 µk4 µw1 µw2 µw3 µw4 µk1 µk2 µk3 µk4 µw1 µw2 µw3 µw4 µk1 µk2 µk3 µk4 µw1 µw2 µw3 µw4

1 111.1 125.5 129.2 126.2 136.1 107.3 128.7 123.7 115.7 92.3 116.4 87.4 100.1 97.0 105.9 85.8 67.3 63.9 69.0 55.3 67.3 69.7 71.5 55.1
2 109.9 126.1 129.9 126.1 164.1 121.5 123.0 0.00 123.6 84.4 120.6 87.3 53.6 53.9 106.0 44.3 67.7 63.8 69.4 55.2 53.9 50.1 86.7 46.6
3 108.6 126.7 130.6 126.0 55.2 101.6 161.9 0.00 132.3 72.0 123.6 87.5 67.6 197.7 132.2 28.7 68.2 63.8 69.8 55.1 65.6 145.2 29.2 40.1
4 104.0 129.0 133.1 126.0 54.1 122.5 168.4 0.00 158.8 39.6 119.1 92.1 72.8 197.7 132.3 28.4 69.5 63.6 71.2 54.9 68.2 145.2 29.2 41.5
5 75.7 147.7 153.4 128.4 55.0 122.6 179.4 0.00 157.6 37.9 120.3 84.6 76.0 197.7 135.3 29.1 72.1 63.2 73.9 54.4 70.2 148.8 31.9 43.5
6 68.2 151.1 156.4 142.9 55.3 135.7 180.3 0.00 157.2 37.7 119.4 83.8 78.1 197.7 136.7 29.6 74.9 62.5 77.9 54.0 71.9 149.1 31.9 44.8
7 71.3 141.6 171.7 143.3 57.7 136.2 189.7 0.00 157.2 37.5 119.1 83.6 79.1 197.7 137.5 29.9 78.6 61.3 86.5 53.6 72.9 149.9 29.2 45.8
8 70.7 126.4 184.0 133.9 57.9 136.3 190.1 0.00 157.1 37.5 119.1 83.7 79.6 197.7 137.8 30.3 82.4 58.8 99.0 53.9 74.3 149.9 29.2 46.6
9 69.6 122.7 188.3 122.6 57.9 136.3 190.1 0.00 157.1 37.5 119.1 83.7 79.7 197.7 137.8 30.3 85.6 57.0 111.1 54.1 74.9 151.1 29.2 46.9
10 69.0 128.5 188.1 119.8 57.9 136.3 190.1 0.00 157.1 37.5 119.1 83.7 80.0 197.7 137.8 30.5 87.4 57.2 123.5 53.7 75.1 151.4 29.2 47.1
11 68.6 133.1 188.3 119.1 57.9 136.3 190.1 0.00 157.1 37.5 119.1 83.6 80.7 197.7 138.3 30.6 92.8 59.5 138.2 51.7 76.2 151.4 29.2 48.2
12 67.7 136.0 188.7 118.0 57.9 136.3 190.1 0.00 157.1 37.5 119.1 83.6 80.7 197.7 138.3 30.6 103.8 83.9 139.3 46.4 77.7 152.3 28.0 48.8

Table 10

Contrast of region parameters by KM, Benchmarks, WKM in low dimensional
observation space

Region.
Image1(35010) Image2(140075) Image3(124084)

KM-lµi BenchM-lµi WKM-lµi KM-lµi BenchM-lµi WKM-lµi KM-lµi BenchM-lµi WKM-lµi

1 59.98 65.34 60.85 22.61 28.47 32.23 41.36 25.02 22.48
2 119.89 112.05 111.59 82.60 85.44 84.04 79.38 54.39 44.79
3 135.11 84.27 0 119.56 130.74 136.36 105.94 82.28 80.31
4 199.81 194.46 194.11 167.27 185.32 192.97 166.46 144.27 141.74

Table 11

Iterations of KM and WKM on natural images

image KM WKM
86016 66 30
118035 67 15
35010 132 13
3096 34 18

238011 96 9
140075 34 12
80099 152 27
183055 50 20
124084 150 14

Table 12

Average performances of WKM method against the KM method on natural images

methods BDE PRI VOI GCE
KM 25.9052 0.7049 3.0585 0.3478

WKM 22.1227 0.6908 2.8271 0.2304
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Fig. 1. Flowchart of the proposed image segmentation approach

Fig. 2. The result of the extended watershed transformation for image data with
different values of d
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Fig. 3. All possible cases in relation of the evolving curve and segmented region.
E(R1, R2) achieves minimum only when the evolving curve makes R0

1 = R1 and
R0

2 = R2

Fig. 4. Segmentation results on synthetic images obtained by BCLBF, LIF, KM,
MBCLBF and WKM
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Fig. 5. Initial level set contours of BCLBF(MBCLBF), LIF, KM

Fig. 6. Corrected images obtained by BCLBF and MBCLBF, and the extended
watershed transformation result on synthetic images

Fig. 7. Experimental results of WKM on synthetic images in iterations with the same
initial contour as KM
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Fig. 8. Experimental results of WKM on synthetic images in iterations with the same
initial contour as LIF

Fig. 9. Experimental results of WKM on synthetic images in iterations with the same
initial contour as BCLBF and MBCLBF

Fig. 10. Original images and ground truth on brain images
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Fig. 11. Experimental results of BCLBF on brain images

Fig. 12. Experimental results of LIF on brain images
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Fig. 13. Experimental results of MBCLBF on brain images
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Fig. 14. Experimental results of WKM on brain images

Fig. 15. Natural images with different initial contours for two-phase, three-phase
and four-phase segmentation
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Fig. 16. Segmentation results of KM on natural images

Fig. 17. Segmentation results of WKM on natural images
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Fig. 18. Illustration of region parameters variation in iterations

Fig. 19. the relative count matrices of the inverse example
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