

Wu, X., Li, C., Wang, X. and Yang, H. (2018) 'A creative

approach to reducing ambiguity in scenario-based software

architecture analysis’, International Journal of Automation

and Computing. doi: 10.1007/s11633-017-1102-y.

The final publication is available at Springer via http://doi.org/10.1007/s11633-017-1102-y

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have

permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

http://doi.org/10.1007/s11633-017-1102-y
http://researchspace.bathspa.ac.uk/

A Creative Approach to Reducing Ambiguity in
Scenario-based Software Architecture Analysis

Xiwen Wu∗
∗Department of Computer Science

and Engineering
Shanghai Jiao Tong University

Shanghai, China
Email: jxnuwxw@gmail.com

Chen Li†
†Department of Computing
Imperial College London
London, United Kingdom

Email: Chen.li1@imperial.ac.uk

Xuan Wang and Hongji Yang‡
‡Center for Creative Computing

Bath Spa University
Bath, United Kingdom

Email: xuan.wang13,h.yang@bathspa.ac.uk

Abstract—In software engineering, a scenario describes an
anticipated usage of a software system. As scenarios are use-
ful to understand the requirements and functionalities of a
software system, the scenario-based analysis is widely used in
various tasks, especially in the design stage of software archi-
tectures. Although researchers have proposed various scenario-
based approaches to analyse software architecture, there are still
limitations in this research field, and a key limitation lies in
that scenarios are typically not formally defined and thus may
contain ambiguities. As these ambiguities may lead to defects, it is
desirable to reduce them as many as possible. In order to reduce
ambiguity in scenario-based software architecture analysis, this
paper introduces a creative computing approach to scenario-
based software requirements analysis. Our work expends this
idea in three directions. Firstly, we extend an ADL-based lan-
guage - Breeze/ADL to model the software architecture. Secondly,
we use a creative rule - Combinational Rule (CR) to combine the
vector clock algorithm for reducing the ambiguities in modeling
scenarios. Then, another creative rule - TransformationalRule
(TR) is employed to help to transform our Breeze/ADL model to
a popular model - UML model. We implement our approach as
a plugin of Breeze, and illustrate a running example of modeling
a poetry to music system in our case study. Our results show the
proposed creative approach is able to reduce ambiguities ofthe
software architecture in practice.

Keywords—Creative Computing, Vector Clock Algorithm,
Scenario-based Analysis of Software Architecture, Sequence Di-
agram, Breeze/ADL

I. I NTRODUCTION

For a given software system, its software architecture de-
fines its structure, communication and interrelation amongits
components [1], and its scenarios describe its usages [2]. As
scenarios are useful to improve the quality of an architec-
ture [3], the scenario-based analysis of software architecture
has been a hot research topic in recent years [3], [4], [5],
[6]. Although this research direction is intensively studied,
Sibertin-Blancet al. [7] complain that even the basic diagram
notation, sequence diagrams, may contain ambiguities, since
existing work typically does not define scenarios formally.For
example, a sequence diagram may show that componentA
receives two messagesm1 andm2 from componentsB andC
respectively, and componentA delivers another messagem3.
From the sequence diagram, it is tricky to determine the partial
order betweenm1, m2 andm3, since sequence diagrams do

not define the conditions of messages. Here, componentA may
need one message (m1 or m2) or both messages (m1 and
m2) to deliverm3, and different conditions lead to different
message orders. The ambiguities in the design phase may lead
to defects in the latter phase of software development. As it
takes much effort to fix those defects in software, it is desirable
to reduce the ambiguities as many as possible.

Thus, we introduce the creative computing combining with
popular algorithm and modeling language into our approach.
In software architecture, the architecture description language
(ADL) is commonly used to formally define architectures.
Although researchers [8], [9], [10], [11] have proposed various
ADLs, it is still a blind spot to model scenarios with ADLs. In
practice, programmers typically use the sequence diagram of
Unified Modeling Language (UML) [12] to model scenarios.
As the state of the art, UML is a general-purpose modeling
language in the field of software engineering, and it provides
a standard way to visualize the design of a system. Despite
of its popularity, UML is not suitable for automated analysis
(e.g., verification and validation), since its constructs lack
formal semantics. As a result, Pandey [1] criticizes that the
informal UML can lead to ambiguities and inconsistencies.
As far as the definition of scenarios is concerned, ADL has
advantages over UML [1], since ADL presents a formal way
to define scenarios, and thus allows automating architecture-
level scenario-based analysis (e.g.[3], [4], [5], [6]). However,
it is challenging to reduce such ambiguities in scenario-based
software architecture analysis with ADLs:
Challenge 1.Although it is relatively easy to introduce new
features for modeling scenarios, it is tricky to detect and reduce
possible ambiguities in scenarios.
Challenge 2.To make our approach more general and com-
patible with existing works, we need rules to translation ADL
into a general model. It is tricky to choose a popular modeling
language and define such rules and to ensure the correctness
during the translation.

To address the above challenges, in this paper, we present
a creative computing approach to reducing ambiguity in
scenario-based software architecture analysis and propose
combinational rule and transformational rule. Based on the
creative rules, we extend our previous tool, called Breeze.Our

extension supports the formalization of scenarios, the elimi-
nation of possible ambiguities, and the translation from ADLs
to UMLs. This paper makes the following key contributions:

• Based on combinational rule, we propose an extended
ADL, called Breeze/ADL, that introduces new features
for modeling scenarios, and an algorithm to reduce possi-
ble ambiguities in scenarios. We leverage the combination
rule to borrow ideas from the vector clock algorithm [13]
that produces positive results in determining event orders
in distributed systems.

• Based on transformationl rule, we choose UML as
our target model and define mapping relations between
Breeze/ADL and the UML sequence diagram. The map-
ping relations allow us to translate Breeze/ADL into
UMLs, which allows integrating our approach with exist-
ing tools. A user may design more accurate architectures
with our tool, and then translate these architectures to
UML to gain the benefits of existing industry tools.

• A plugin of Breeze that is implemented for our approach.
The latest version of Breeze is now available at Github1.
With the support of the extended Breeze, we conducted a
case study on modeling an online shop. The results show
the effectiveness of our approach.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III presents combinational
rule and Breeze/ADL. Section V presents transformational rule
and the mapping between Breeze/ADL and UML. Section VI
presents a case study. Section VII concludes.

II. RELATED WORK

Creative Computing With the rapid development of infor-
mation technology, a great deal of novel computing emerges,
such as Google search engine and Facebook, which enrich the
human life much more convenience and colorful. This kind of
computing could be considered as Creative Computing. The
nature of creative computing, grammatically, focuses on the
term ’creative’. It can be seen that the meaning of creativity
is the core of creative computing.

Creativity can be defined as the ability to generate novel and
valuable ideas [18]. If we look carefully at many examples of
human creativity that surrounds us, we can see that there are
three different ways in which creativity happens. Novel ideas
may be produced by combination, by transformation, or by
exploration [19].

Combinational Creativity means to combine familiar ideas
to produce unfamiliar ones, through making associations be-
tween ideas [19]. Examples include many cases of poetic
imagery, collage in visual art, and mimicry of cuckoo song
in a classical symphony. Analogy is a form of combinational
creativity that exploits shared conceptual structure and is
widely used in science as well as art.

In transformational creativity, the space or style itself is
transformed by altering (or dropping) one or more of its
defining dimensions. As a result, ideas can now be generated

1https://github.com/BreezeCSA/Breeze

that simply could not have been generated before the change
[19]. For instance, if all organic molecules are basically strings
of carbon atoms, then benzene cant be a ring structure. In
suggesting that this is indeed what benzene is, the chemist
Friedrich von Kekule had to transform the constraint string
(open curve) into that of ring (closed curve). This stylistic
transformation made way for the entire space of aromatic
chemistry, which chemists would explore [sic] for many years.

Exploratory creativity rests on some culturally accepted
style of thinking, or conceptual space [19]. This may be a
theory of chemical molecules, a style of painting or music,
or a particular national cuisine. The space is defined (and
constrained) by a set of generative rules. Usually, these rules
are largely, or even wholly, implicit. Every structure produced
by following them will fit the style concerned, just as any word
string generated by English syntax will be a grammatically
acceptable English sentence. In exploratory creativity, the
person moves through the space, exploring it to find out whats
there (including previously unvisited locations)ł and, inthe
most interesting cases, to discover both the potential and the
limits of the space in question.

In this paper, we propose related rules based on combina-
tional creativity and transformational creativity.
Scenario-based Analysis of Software Architecture.Kazman
et al. [3] analyse relations between quality attributes and
scenarios. Lassinget al. [14] work on a similar research
problem, with an emphasis on the impacts of complex sce-
narios. Lunget al. [15] present an approach that estimates the
reusability of software architectures through scenarios.Bose
[4] models scenarios with finite-state machines and verifies
their consistency. Tekinerdoganet al. [2] propose an approach
that analyses the reliability of software architecture. Yacoub
et al. [5] propose a reliability analysis method that is based
on scenarios of component interactions. Rodrigueset al. [16]
propose a reliability prediction approach that is based on
scenarios. Cheunget al. [6] employ scenarios to predict the
reliability of concurrent systems. Williams and Smith [17]
present a scenario-based approach that estimates performance
at architecture level. The above approaches typically do not
formally define scenarios. Although Bose [4] uses finite-state
machines to model scenarios, it is not helpful to detect many
ambiguities in sequence diagrams (e.g., the sample ambiguous
sequence diagrams shown in Section I), since finite-state ma-
chines do not define conditions for transitions either. Our work
complementing the preceding approaches, since it presentsa
formal language to define scenarios and an algorithm to reduce
such ambiguities.
Sequence Diagram.In practice, the sequence diagram of
UML is widely used to describe scenarios [20]. Figure 1 shows
an example sequence diagram, and we present more details on
UML sequence diagrams in Section V. Although it is popular,
Pandey [1] complains that UML suffers the incapability of
automated analysis, since it is informal. As a part of UML,
sequence diagrams also have the same limitation. Furthermore,
as shown by Sibertin-Blancet al. [7], sequence diagrams may
suffer from ambiguity. Our work complements the notation of

client Lifelineserver

request

response

Invoction

Message

Client and Server
Name of

Scenario

Message-

Occurrence-

Specification

Execution-

Specification

Message-

Occurrence-

Specification Reply

Message

Fig. 1. An example of basic interaction

 Modeling Element Description

Breeze.xsd

Style

Component template,

Connector template,

Interface template

Templates for elements.

Style Constraints Constraints for specific style.

Reconfiguration Operations Defining the changes

State Options Allowed state transformation

Definition
Component, Connector,

Interface,

Definitions of the elements

according to the templates

Configuration
Instances (Component,

Connector and Connection)

The configuration of

architecture instances.

State State Transformation Rules
The transformation rules for

elements state

 Fig. 2. The schema for Breeze/ADL

sequence diagrams, since our extended Breeze/ADL is formal
and it allows our algorithm to reduce ambiguities in scenarios.
Breeze/ADL. As the underlying ADL of our Breeze tool [8],
[21], Breeze/ADL models software architecture in the formats
of both XML and graphs. Figure 2 shows the schema file
of the existing Breeze/ADL. To support modeling scenarios,
iur work in this paper extends the Breeze/ADL in Figure 2
with more elements. Furthermore, we propose an algorithm to
reduce ambiguities of scenarios, and implement a translator
from Breeze/ADL to UML sequence diagrams.

III. SCENARIO MODELING IN BREEZE/ADL

The specification of UML2 defines the concrete and abstract
syntaxes of sequence diagrams. After inspecting elements of
sequence diagrams, we find that the basic modeling elements
in theBasicInteractionspackage of UML are quite useful. For
example, most approaches in Section II use only these basic
modeling elements. As a result, in this paper, we focus on
these basic modeling elements.

In this section, we present new elements to model scenarios
(Section III-1), and the vector clock algorithm to ensure that
scenarios are defined without ambiguities (Section IV-B).

2http://www.omg.org/spec/UML/

1) Elements of Scenario Modeling:From the viewpoint
of software architecture, scenarios are interactions among the
components of a software system. Here, components can be
many, and their interactions may be in parallel. To define
scenarios formally, we need to focus on the two aspects of
scenarios such as the definition of scenarios and the inter-
actions among their components. In particular, we introduce
four additional elements to define a scenario, and the formal
definition of a scenario is as follows:

Definition 3.1 Scenario:={Description, ComponentList, Mes-
sageList, ParallelScenario} represents a scenario, where:

• Descriptionis a brief introduction of this scenario.
• ComponentListis a set of components that involve in

a scenarioS. Components inComponentListfollow the
traditional definition of software architecture.

• MessageListdenotes the messages among components,
and eachMessageis defined in the next definition.

• ParallelScenariois a vector that defines possible active
instances of scenarios. Here, in a vector{a1, a2, ..., am},
ai denotes number of possible active instances of theith
scenarioSi, andm denotes the total number of scenarios.
For example, ifS1, S2, S3 andS4 are four scenarios and
their vector is{0, 0, 3,∞}, the first ‘0’ and the second
‘0’ denote thatS1 and S2 cannot have active instance;
‘3’ denotes thatS3 can have 3 active instances; and∞
denotes thatS4 can have infinite active instances.

Definition 3.2 Message:={SourceComponent, TargetCompo-
nent, VectorClock, Type} represents a message, where:

• SourceComponentis a component that sends a message.
• TargetComponentis a component that receives a message.
• VectorClockis a vector clock that defines timestamps of

messages.
• Type is the type of a message. We define two types of

messages,i.e., a request or a response.

In Figure 3, the left part shows the elements that are added
to define scenarios, and the right part shows an example
scenario that is defined in Breeze/ADL. In this example, the
two components areClient and Server, and they are defined
inside thecomponentlistlabel. The messages between the two
components are defined inside themessagelistlabel, and the
definition of a message includes its attributes such astype,
source, and target.

IV. COMBINATIONAL RULE FOR REDUCING THE

AMBIGUITY

A. Combination Rule

Combinational Ruleleads to improve the result and reduce
ambiguity in scenario-based software architecture analysis.
The rule is described as below:

Definition 4.1. A Combinational Rule(CR) is to combine
different requirements modules (xi) based on variety weights
(ki) (i.e., probability of the selected modules) for inferring

Scenario Description

ComponentList

MessageList Message

Source

ScenarioList

Type

Response

ParallelScenario

VectorClock

Target

Request

An Example of Scenario Definition in Breeze/ADLAn Example of Scenario Definition in Breeze/ADL

<scenariolist>

 <scenario ID="S1" name="client and server">

 <description> the scenario of clients and server </description>

 <componentlist>

 <component ID="N1" name="Client"/>

 <component ID="N2" name="Server"/>

 </componentlist>

 <messagelist>

 <message ID="M1" name="request" type="request" source="N1" target="N2">

 <vectorclock timestamp="1,0"/>

 </message>

 <message ID="M2" name="response" type="response" source="N2" target="N1">

 <vectorclock timestamp="1,1"/>

 </message>

 </messagelist>

 <parallelscenario>

 <maxparallelnum scenarioID="S1" num="INF">

 </parallelscenario>

 </scenario>

</scenariolist>

MessageList Message

Source

Type

Response

VectorClock

Target

Request

MessageList

Fig. 3. The added elements for Breeze/ADL and an example

related requirements modules (y) where i is the index of the
module. The formal definition ofCR is as follows:

k0x0 + k1x1 + ...+ knxn → y (1)

where then is the total number of the possible modules and
the sum of theki should equal to 1, i.e.,

k0 + k1 + ...+ kn = 1 (2)

By using the above rule, we definex0 as Breeze/ADL
model, and introduce the Vector Clock Algorithm (see next
section) asx1. Thus the equation for our approach can be
written as:

k0(Breeze/ADLModel) + k1(V ectorClockAlgorithm)

→ (Breeze/ADLModel)′

(3)

B. Vector Clock Algorithm

This section presents the vector clock algorithm that reduces
ambiguities. After we present the details of the algorithm,
we next illustrate the algorithm with the sample ambiguous
sequence diagram as shown in Section I.

The vector clock algorithm is a kind of logical time which
is widely used in distributed systems to define the partial order
of events [13]. A partial order set [22] consists of a set and a
binary relation. In such a set, a pair of elementsa→ b denotes
that a precedesb, and the relation is called a partial order. In
a partial order set, the relation between two elements (a and
b) falls into three categories,a → b, b → a, or a ‖ b, where
a ‖ b denotes that there is no order relation between them.

Algorithm 1 shows the detail of the vector clock algorithm.
For a software architecture that containsn components, we
useArc = {C1, C2...Cn} to denote the architecture, where
Ci denotes theith component ofArc. In the algorithm, a
component is associated with an n-dimensional, non-negative
vectorvti[1..n], wherevti[i] records the timestamps of mes-
sages that are sent byCi. The n-dimension vector of each
component is initialized as a zero vector, and is updated
according to the following rule. If componentCi is about to

send out a messageM , our algorithm updates every dimension
of its clock and chooses the message whose dimension is the
biggest one happens beforeM . Here, our algorithm increases
vti[i] by 1 beforeCi sends the message. We assume that
a component cannot send out more than one message at a
time, so we separate messages by adding decimals. As the
algorithm concisely define the partial order of message sending
or receiving in scenarios, the ambiguity example in SectionI
will be eliminated.

In our approach, the timestamps have the basic property
of isomorphism. We find that the timestamps ofvti and vtj
follow the three relations:

• vti ≤ vtj ⇔ ∀x ∈ [1, n] : floor(vti[x]) ≤ floor(vtj [x])
• vti < vtj ⇔ vti ≤ vtj and ∃x ∈ [1, n] : floor(vti[x]) <

floor(vtj [x])
• vti ‖ vtj ⇔ not(vti < vtj) and not(vti > vtj)

Here,floor(x) roundsx downward. For example, ifx = 1.6,
floor(x) returns 1.

As the relation→ defines partial orders, timestamps of
messages follow the two properties:

m1 → m2 ⇔ vtm1

i < vtm2

j (4)

m1 ‖ m2 ⇔ vtm1

i ‖ vtm2

j (5)

Here,m1 is a message sent by componentCi, andm2 is
a message sent by componentCj . Their timestamps arevtm1

i

andvtm2

j , respectively. For these two equivalence relations, if
Equation 4 holds, Equation 5 also holds. As a result, we need
to proof only Equation 4. Furthermore, according to Algorithm
1, if m1 → m2, vtm1

i < vtm2

j . As a result, we need to proof
only vtm1

i < vtm2

j ⇒ m1 → m2, and the proof is as follows:

• Assumingvtm1

i < vtm2

j andm1 || m2.
• Supposevtm1

i = x. The only way componentCj can
obtain a value for theith entry of its vector, is that at
least x is through a chain of messages originating from
Ci (at messagem1 or later).

• Such a chain implies thatm1 andm2 are not concurrent.
However, we find a contradiction, so the assumption does

 <component ID="N1" name="Client"/>

Client

 <message ID="M1" name="request"

type="request" source="N1" target="N2">

Client Server

request

Convert component into Lifeline

Convert invocation into message

Fig. 4. Component and Message Translation

not hold. For example, ifvtm1

i < vtm2

j , m1 → m2 or
m2 → m1. At the same time, ifm2 → m1, vtm2

i <
vtm1

j . Here is a contradiction. Therefore,vtm1

i < vtm2

j ⇒
m1 → m2.

• In summary, Equation 4 holds.

In summary, there exists an isomorphism between the set
of partial ordered messages and the timestamps that attach
to them. As a result, timestamps are useful to determine the
relations between two messages.

We illustrate how to use our algorithm for detecting the
ambiguity in the sequence diagram in Section I. For simplic-
ity, we assume that this scenario consists of only the three
components (i.e., A, B, andC), and we assume thatB andC
do not send any messages beforem1 andm2 are sent. Under
this assumption, the timestamps ofm1 andm2 are〈0, 1, 0〉 and
〈0, 0, 1〉, respectively. IfA needs bothm1 andm2 to deliver
m3, the resulting timestamp ofm3 will be 〈1, 1, 1〉 to m3.
On the other hand, ifA needs onlym2 (or m3), the resulting
tamestamp ofm3 will be 〈1, 1, 0〉 (or 〈1, 0, 1〉). As every set
of timestamps corresponds to a unique sequence, our approach
detects an ambiguity, if more than one set of timestamps is
produced during analysis.

V. TRANSFORMATIONAL RULE FOR MODEL

TRANSFORMATION

A. Transformational Rule

Transformational Ruleleads to change the thinking pattern
of users and provides more practical way to implement it in
the industry area. The rule is inspired by Machine Learning
algorithm. To be specific, we borrow some ideas of Decision
Tree [23] which helps us to determine the transformation
directions. The rule is defined as follows:

Definition 5.1 A Transformational Rule(TR) is to retrieve the
module (x′) which has the maximum entropy (E) based on
the current requirements module (xi) according to the users’
preference ratio (ki) (i.e., weight for the module feature). The
formal definition ofTR is as follows:

max(E1 ∗ k1, E2 ∗ k2,, En ∗ kn)→ x′ (6)

Algorithm 1 The Vector Clock Algorithm
1: initialize the local clock for each component as a zero

vector.
2: if componentCi is about sending a messageM then
3: dims← the total number of dimensions ofvti
4: for j = 0 to dimsdo
5: tol ← all of the MessageOccurrenceSpecifications

happen before sendingM
6: for each MessageOccurrenceSpecificationsMp in tol

do
7: if vt

Mp

i [j] > vti[j] then
8: vti[j]← vt

Mp

i [j]
9: end if

10: end for
11: end for
12: vti[i] = vti[i] + 1
13: while there exist another messageM1 on component

C1 whosevtM1

i [i] equalsvti[i] do
14: vti[i]← vti[i] + 0.1
15: end while
16: timestampM with clock vti and send it
17: end if

where then is the total number of the possible modules,Ei

is entropy of modulexi and the sum of theki should equal
to 1, i.e.,

k0 + k1 + ...+ kn = 1 (7)

Here we consider some popular models which are used to
model architecture in the high level in different areas. The
candidate models are selected as Petri net, UML model, AADL
model and LQN model. The above equation can be written as:

max(EPetri ∗ k1, EUML ∗ k2, EAADL ∗ k3, ELQN ∗ kn)

→ GeneralModel
(8)

According to the domain expert experience, the UML is a
most popular modeling language in industry area and the
corresponding entropy is the maximum.

B. Model Transformation

To make our approach more general, we provide a set of
mapping rules between Breeze/ADL and UML. The benefit
of mapping is that we can combine the advantages of both
ADL and UML. The combination not only supports formally
modeling scenarios at architecture-level, but also allowstrans-
lating scenarios from Breeze/ADL to UML sequence diagrams
that are supported by industrial tools,e.g., Rational Rose,
Enterprise Architect (EA), and PowerDesigner.

As EA is a professional and famous tool in industry, our
approach translates scenarios from Breeze/ADL to EA style
XML files. In this section, we define the mapping relations
in the concrete syntax (Section V-B1) and the abstract syntax
(Section V-C), respectively.

1) Mapping Rules for Concrete Syntax:To illustrate the
mapping relations, we first present the concrete syntax of
Sequence Diagram (CSSD).
Definition 5.2 CSSD:={Lifeline, Message, MessageOccur-
renceSpecification, ExecutionSpecification} is the concrete
syntax of sequence diagrams, where:

• Lifeline is a set of participants of an interaction and a
participant is defined as a component in Breeze/ADL.

• Messageis an invocation/response among components.
• MessageOccurrenceSpecificationspecifies the occurrence

of the events,e.g., sending and receiving of messages, or
invoking and receiving of operation calls. As defined in
UML3, it is a type of messages.

• ExecutionSpecificationis a specification of the execution
or an action within a Lifeline.

As in Breeze/ADL, components incomponentlistcorrespond
to lifelines in the sequence diagram, Figure 4 illustrates the
mapping rule. The invocations in Breeze/ADL are mapped to
messages between lifelines in sequence diagrams. In sequence
diagrams, a message has two attributes such as a type (source
or target) and a label. In particular, sequence diagrams use
solid arrows to denote requests, and dot arrows to denote
responses. Our approach maps these attributes to the corre-
sponding attributes in Breeze/ADL.

Each message in Breeze/ADL corresponds to two events,i.e.
a request and a response, in sequence diagrams. Our approach
translates these events intoMessageOccurrenceSpecification
elements in sequence diagrams. As a result, each lifeline
may have manyMessageOccurrenceSpecificationelements. In
sequence diagrams, the interval between the earliest and latest
MessageOccurrenceSpecificationelements on the lifeline is
specified by theExecutionSpecificationelement. For example,
the sequence diagram in Figure 1 includes twoMessageOc-
currenceSpecificationelements onClient, i.e., sending request
and receiving response. The timestamp ofsending request
〈1, 0〉 is smaller than that ofreceiving Response〈1, 1〉, which
means thatsending requesthappens beforereceiving response.
Figure 5 shows an example translation from Breeze/ADL
to sequence diagrams. The event order is encoded in the
ExecutionSpecificationelement of the lifeline.

C. Mapping Rules for Abstract Syntax

The abstract syntax of sequence diagrams is defined in
the meta-modeling language of UML. In particular, several
fragments are related to sequence diagrams,e.g., theBasicIn-
teractionspackage and theFragmentspackage. Breeze/ADL
focuses on the elements in theBasicInteractionspackage, and
it covers lifelines, messages, message ends, interactions, and
general orders of sequence diagrams. Figure 6 shows the rela-
tions among these elements. In particular, aGeneralOrdering
element denotes a binary relation amongOccurrenceSpec-
ification elements, and the binary relation defines that an
OccurrenceSpecificationelement must occur before the other
in a valid trace. This mechanism allows defining partial orders

3http://www.omg.org/technology/documents/formal/uml.htm

 <messagelist>

 <message ID="M1" name="request" type="request" source="N1" target="N2">

 <vectorclock timestamp="1,0"/>

 </message>

 <message ID="M2" name="response" type="response" source="N2" target="N1">

 <vectorclock timestamp="1,1"/>

 </message>

 </messagelist>

Client

request

Server

reponse

Execution-

Specification

Of WebUI

Fig. 5. Translation of ExecutionSpecification

InteractionMessage

Lifeline

InteractionFragment[0..*]

[0..*]

MessageEnd

[0..*]

Fragment
Enclosing

Interaction

[0..1]

OccuranceSpecification
[0..1]

Events

Covered

GeneralOrdering

[0..*]

Before

[0..*]

After

MessageOccuranceSpecification

[0..*]GeneraOrderingl

InteractionFragment [0..1]

[0..1]

[0..1]

Send Event

[0..1]

Receive Event

[0..1]

[0..1]

Message

End

[0..1]

Fig. 6. Part of the abstract syntax of the BasicInteractionspackage

of OccurrenceSpecifications. When using the sequence dia-
gram to depict scenarios, the partial order depicted by Vector
Clock between messages is mapped to theGeneralOrdering.
When transforming Breeze/ADL into sequence diagrams, our
approach infers partial orders between messages by comparing
their timestamps, which is based on the isomorphism property
of the vector clock algorithm.

VI. CASE STUDY

We implemented our approach as a plugin of Breeze, and
with the support of the tool, in this section, we illustrate our
approach using a poetry to music system. the latest version of
Breeze is available at Github:

https://github.com/BreezeCSA/Breeze

A. The Requirements

The implementation of the poetry to music system should
follow the MVC framework4. As defined in the framework,
the requests from customers are delivered to control com-
ponents, and components further invoke function modules to

4http://www.martinfowler.com/eaaDev/uiArchs.html

Fig. 7. The software architecture of poetry to music system

WebUI Control
Candidate

Music List

Poetry

Style Info

Customer

Info

Generate Candidate

Music List

Feedback

Request Poetry Style Info

Search Customer Info

Search Poetry Style Info

Poetry Style Info
Search Customer Info

Customer Info

Reply

Generate Candidate Music List

Fig. 8. The scenario of generating candidate music list (S3) illustrated in a
sequence diagram

accomplish functionalities that are requested by customers. For
simplicity, we focus on the functionalities of querying poetry
style and generating related music list. To accomplish the two
tasks, the system should at least implement the functionalities
in the following scenarios:

1) Loginning (S1). Customers sign in the poetry to music
system with their usernames and passwords.

2) Querying Poetry Style Information(S2). Customers
query poetry with keywords, and find their correspond-

ing style.
3) Generating candidate music list(S3). According to poet-

ry style, the system retrieval music library and generate
candidate music list.

4) Confirmation (S4). The system arrange the music list
and return results to customers.

We focus on only modelingS3, due to space limit. Follow-
ing the MVC framework, when a customer enters keywords,
the WebUI component sends a request,Generate Candidate
Music List, to the Control component. To accomplish this
request, theControl component retrieves the poetry style
and customer information from thePoetryStyleInfocomponent
and the CustomerInfocomponent, respectively. After that,
the Control component returns the information to theWebUI
component, and the latter component presents the feedback to
the customer.

B. Modeling with UML

According the requirements as described in Section VI-A,
with UML, the best choice for a designer it to draw a sequence
diagram to describeS3. Figure 8 shows such an example,
and it presents many details ofS3 (e.g., components and their
messages). However, when developers implement the system
according to the sequence diagram, they may easily become
confused. For example, a developer may wonder whether
there exists a strict order betweenRequestPoetryStyleInfoand
RequestCustomerInfo, and whether bothPoetryStyleInfoand
CustomerInfoare required or only one of them is required
beforeReply.

C. Modeling with Breeze

As introduced in Section II, Breeze supports two modeling
languages such as Breeze/ADL and its graph format. Figure 7
shows the built architecture of the poetry to music system, in
both formats. In particular, the upper part of Figure 7 shows
the WebUI and Control components in Breeze/ADL. Due to
space limit, we do not present the definitions of the other
components. The Breeze/ADL file defines the ports of the two
components and the interactions among these ports. According
to directions of their messages, ports have three types such
as in, out and inout. An interaction is defined as an edge
between two ports. For example,〈edge ID = “e1′′ source =
“p12′′ target = “p21′′〉 denotes ane1 interaction from the
p12 port to thep21 port. The lower part of Figure 7 shows the
architecture of the whole poetry to music in the graph format
of Breeze/ADL. In the graph, the small rectangles adhering to
components represent ports, and lines represent interactions
between ports.

D. Reducing Ambiguities with our Extension

Our extension first encodes the components and their mes-
sages of the architecture in Section VI-C. Figure 9 shows
the encoded architecture in Breeze/ADL. In the encoded
Breeze/ADL file, the components in this scenario are defined
in thecomponentlisttag, and the messages among the compo-
nents are defined in themessagelisttag. TheParallelScenario

<scenariolist>

<scenario name="Login" id="S1">

<componentlist>

<component id="N1" name="WebUI"/>

<component id="N2" name="Control"/>

<component id="N3" name="Candidate Music List"/>

<component id="N4" name="PoetryStyleInfo"/>

<component id="N5" name="CustomerInfo"/>

</componentlist>

<messagelist>

<message id="M1" name="Input Keywords" type="request" source="WebUI" target="Control">

<vectorclock timestamp="1,0,0,0,0"/>

</message>

<message id="M2" name="Request Poetry Style Info" type="request" source="Control" target="PoetryStyleInfo">

<vectorclock timestamp="1,1,0,0,0"/>

</message>

<message id="M3" name="Request Customer Info" type="request" source="Control" target="CustomerInfo">

<vectorclock timestamp="1,1.1,0,0,0"/>

</message>

<message id="M4" name="Search Poetry Style Info" type="request" source="PoetryStyleInfo" target="PoetryStyleInfo">

<vectorclock timestamp="1,1,0,1,0"/>

</message>

<message id="M5" name="Search Customer Info" type="request" source="CustomerInfo" target="CustomerInfo">

<vectorclock timestamp="1,1.1,0,0,1"/>

</message>

<message id="M6" name="Poetry Style Info" type="reply" source="PoetryStyleInfo" target="Candidate Music List">

<vectorclock timestamp="1,1,0,2,0"/>

</message>

<message id="M7" name="Customer Info" type="reply" source="CustomerInfo" target="Candidate Music List">

<vectorclock timestamp="1,1.1,0,0,2"/>

</message>

<message id="M8" name="Reply" type="reply" source="Candidate Music List" target="Control">

<vectorclock timestamp="1,1.1,1,2,2"/>

</message>

<message id="M9" name="Feedback" type="reply" source="Control" target="WebUI">

<vectorclock timestamp="1,2.1,1,2,2"/>

</message>

</messagelist>

<parallelscenario>

<maxparallelnum scenarioID="S1" num="INF"/>

<maxparallelnum scenarioID="S2" num="INF"/>

<maxparallelnum scenarioID="S3" num="INF"/>

<maxparallelnum scenarioID="S4" num="0"/>

</parallelscenario>

</scenario>

......

<arch>

Scenario Generate Candidate Music List Definition in Breeze\ADL

Fig. 9. The scenario of generating candidate music list (S3) illustrated in
Breeze/ADL

vectors of scenarios are defined in theparallelscenariotag.
Theparallelscenarioof S3 is 〈∞,∞,∞, 0〉, which means that
the execution ofS3 has no impact onS1, S2, or itself, and
S3 cannot run in parallel withS4, since a user has toinput
keywordsbefore returning the results to customers.

Each component is associated with a vector. AsS3 contains
5 components, a timestamp in this scenario is a 5-dimension
vector. According to Algorithm 1, the vectors are set to
zero vectors initially. When theWebUI component sends the
messageGenerate Candidate Music List, Breeze updates the
timestamp of the component by executingvt1[1]← vt1[1]+1,
and attaches the new timestamp,〈1, 0, 0, 0, 0〉, to the message

Fig. 10. Adding Scenarios

Generate Candidate Music List. When other messages such
asRequestPoetryStyleInfo, SearchPoetryStyleInfo, SearchCus-
tomerInfo, PoetryStyleInfo, CustomerInfoand Feedbackare
sent, Breeze updates their vectors in a similar way.

When theControl component sends theRequestCustomer-
Info message, Breeze executesvt2[2]← vt2[2] + 0.1, and the
adaption avoids its timestamp from equaling to the timestamp
of RequestPoetryStyleInfo. As Reply is the last message that
involves thePoetryStyleInfocomponent and theCustomerInfo
component, the timestamps of the two components become
the largest, after sending the message.

After the timestamps are calculated, Breeze presents the
partial order between these messages. In this scenario, there
is no partial order between messagesRequestPoetryStyleInfo
and RequestCustomerInfo, sincefloor(vtPoetryStyleInfo

i) =
floor(vtCustomerInfo

i). It is also very convenient for devel-
opers to obtain the information from these timestamps that
both messagePoetryStyleInfoandCustomerInfoare needed to
deliver messageReply. As each set of timestamps corresponds
to a unique conditions and sequences of events, a designer is
able to determine which sequence best fits the requirements
by choosing the correct set of timestamps.

Breeze allows translating the scenario from Breeze/ADL to
a UML sequence diagram . Based on the mapping rules, each
component is translated to a lifeline. In the sequence diagram,
Breeze fills inExecutionSpecificationelements based on the
timestamps of theMessageOccurrenceSpecificationelements.

In this example, the designer decides that the following
timestamps best fit the desirable functionality:

• RequestPoetryStyleInfo(〈1, 1, 0, 0, 0〉)
• RequestCustomerInfo(〈1, 1.1, 0, 0, 0〉)
• Reply(〈1, 1.1, 1, 2, 2〉)
• Feedback(〈1, 2.1, 1, 1, 2〉)

Based on the timestamps, Breeze determines the order of the
four messages, and encodes the event order in theExecution-
Specificationelement of the lifeline.

E. Tool support

This section illustrates how to use Breeze to model and to
translate scenarios step by step.

1) Step 1: Adding scenarios. As introduced in Section VI,
after modeling the software architecture of the poetry
to music system (Figure 7), we add the corresponding

Fig. 11. Adding Components and Messages

scenarios such asLogin, Query Poetry Style Informa-
tion, Generate Candidate Music List, andConfirmation
(Figure 10).
For each scenario, the user of Breeze needs to specific
its name, ID, and scenarios that can run in parallel run
with the scenario.

2) Step 2: Initializing scenarios. The user of Breeze needs
to initialize each scenario by adding all involved com-
ponents and messages. Figure 11 shows the component
list and the message list of theS3 scenario. The columns
in the message list correspond to the attributes that are
defined in Breeze/ADL.

3) Step 3: Generating scenario model. Breeze generates
scenarios in Breeze/ADL, when its user clicks the cor-
responding button in Figure 10.

4) Step 4: Translating scenarios. Breeze translates scenarios
from Breeze to sequence diagrams, when its user clicks
theGenerate UMLbutton in Figure 10. Breeze generates
sequence diagrams are in the format of Enterprise Ar-
chitect (EA). EA displays translated sequence diagrams
in its editor, and elements of scenarios in its project
browser. Figure 12 shows the translatedS3 scenario.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we reduce ambiguity in scenario-based soft-
ware architecture analysis by proposing a creative scenario
modeling and analysing approach, based on our extended
Breeze/ADL, that facilitates designers to define scenariosin an
unambiguity way. The modeling results are useful to support
subsequent scenario-based analysis at architecture level. In
addition, to combine the advantages of both Breeze/ADL and
UML, we propose a set of rules for model transformation.
These rules allow us to translate scenarios from Breeze/ADL
to sequence diagrams automatically.

There are still some issues that should be addressed in our
next step work. As Breeze does not support all the elements
in sequence diagrams, it cannot eliminate all ambiguities in
sequence diagrams, but we plan to introduce exploratory rule

to add more related elements in future work. In addition, we
plan to extend Breeze, so it can translate existing sequence
diagrams into Breeze/ADL for scenario-based software archi-
tecture analysis.

REFERENCES

[1] R. Pandey, Architectural Description Languages (ADLs)vs UML: A
Review,ACM SIGSOFT Software Engineering Notes, 35(3), 1–5, 2010.

[2] B. Tekinerdogan, H. Sozer, and M. Aksit, Software Architecture Reliabil-
ity Analysis Using Failure Scenarios,Journal of Systems and Software,
81(4), 558–575, 2008.

[3] R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenario-based Anal-
ysis of Software Architecture,Software, 13(6), 47–55, 1996.

[4] P. Bose, Scenario-driven Analysis of Component-based Software Archi-
tecture Models, In Proc. WICSA1, 1999.

[5] S. Yacoub, B. Cukic, and H. H. Ammar, A Scenario-based Reliability
Analysis Approach for Component-based Software,Reliability, IEEE
Transactions on, 53(4), 465–480, 2004.

[6] L. Cheung, L. Golubchik, and N. Medvidovic, Sharp: A Scalable Ap-
proach to Architecture-level Reliability Prediction of Concurrent Systems,
In Proc. 32th ICSE Workshop, pages 1–8, ACM, 2010.

[7] C. Sibertin-Blanc, N. Hameurlain, and O. Tahir, Ambiguity and Structural
Properties of Basic Sequence Diagrams,Innovations in Systems and
Software Engineering, 4(3), 275–284, 2008.

[8] C. Li, L. Huang, L. Chen, and C. Yu, Breeze/adl: Graph Grammar Support
for An XML-based Software Architecture Description Language, In Proc.
37th COMPSAC, pages 800–805, IEEE, 2013.

[9] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying Distributed
Software Architectures, In Proc. 5th ESEC, pages 137–153. Springer,
1995.

[10] R. Allen, R. Douence, and D. Garlan, Specifying and Analyzing Dy-
namic Software Architectures. In Proc. 2th FASE, pages 21–37. Springer,
1998.

[11] F. Oquendo, Y-adl: An Architecture Description Language Based On
the Higher-order Typed Y-calculus for Specifying Dynamic and Mobile
Software Architectures, ACM SIGSOFT Software EngineeringNotes,
29(3), 1–14, 2004.

[12] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide, Pearson Education India, 1999.

[13] M. Raynal and M. Singhal, Logical Time: Capturing Causality in
Distributed Systems,Computer, 29(2), 49–56, 1996.

[14] N. Lassing, D. Rijsenbrij, and H. van Vliet, On SoftwareArchitecture
Analysis of Flexibility, Complexity of Changes: Size isnt Everything. In
Proc. 2th NOSA Workshop, volume 99, pages 1103–1581, 1999.

[15] C. H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman. An Approach to
Software Architecture Analysis for Evolution and Reusability, In Proc.
7th CASCON, page 15, IBM Press, 1997.

[16] G. Rodrigues, D. Rosenblum, and S. Uchitel, Using Scenarios to Predict
the Reliability of Concurrent Component-based Software Systems, In
Proc. 14th FASE, pages 111–126, Springer, 2005.

[17] L. G. Williams and C. U. Smith, Pasa sm: a Method for the Performance
Assessment of Software Architectures, In Proc. 3th WOSP, pages 179–
189, ACM, 2002.

[18] M. A. Boden, The Creative Mind: Myths and Mechanisms (2nd ed),
Routledge, London, 2004.

[19] M. A. Boden, Computer Models of Creativity,AI Magazine, 30(3), 23–
34, 2009.

[20] Z. Micskei and H. Waeselynck, UML 2.0 Sequence DiagramsSemantics,
Universite de Toulouse, Tech. Rep, 8389, 2008.

[21] C. Li, L. Huang, and L. Chen, Breeze Graph Grammar: a Graph
Grammar Approach for Modeling the Software Architecture ofBig Data-
Oriented Software Systems,Software: Practice and Experience, 2014.

[22] wikipedia. Partially ordered set. http://en.wikipedia.org/wiki/Partially
ordered set Formal definition.

[23] Quinlan, J. R.: Induction of Decision Trees. Machine Learning. 1(1),
81–106 (1986)

Fig. 12. Scenario Generate Candidate Music List in Enterprise Architect

	Article coversheet Springer
	9943
	Yang's latest

