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Abstract  

Domain analysis aims at obtaining knowledge to a particular domain in the early stage of software 

development. A key challenge in domain analysis is to extract features automatically from related 

product artifacts. Compared with other kinds of artifacts, high volume of descriptions can be collected 

from app marketplaces (such as Google Play and Apple Store) easily when developing a new mobile 

application (App), so it is essential for the success of domain analysis to obtain features and 

relationship from them using data technologies. In this paper, we propose an approach to mine 

domain knowledge from App descriptions automatically. In our approach, the information of features 

in a single app description is firstly extracted and formally described by a Concern-based Description 

Model (CDM), this process is based on predefined rules of feature extraction and a modified topic 

modeling method; then the overall knowledge in the domain is identified by classifying, clustering and 

merging the knowledge in the set of CDMs and topics, and the results are formalized by a Data-based 

Raw Domain Model (DRDM). Furthermore, we propose a quantified evaluation method for prioritizing 

the knowledge in DRDM. The proposed approach is validated by a series of experiments.  

Keywords: domain analysis, feature extraction, app descriptions, data analysis 

1. Introduction 

With the development of software industry, there always exist some products similar or related to the 

software to be developed. Whether these products come from inside of the company itself or extensive 

markets, they provide the software development with reference assets, such as requirements, use cases, 

architecture and frameworks[1]  . Based on these assets, domain analysis is conducted to gain 

knowledge in the early stage of software development, helping the developers understand and define a 

particular domain accurately. This supports a quick start of the development process and benefits the 

reuse of source code or other higher level life cycle artifacts. In this way, the success of domain 

analysis can effectively improve the product competitiveness, including less time-to-market and high 

quality products [2]  . 

In domain analysis, feature is a basic notation used to describe a user-perceived characteristic of a 

system, and feature extraction is one of core work to obtain such information [3]  . In the process of 

feature extraction, texts related to the products are always taken as an important analyzing object 

because they are a kind of main forms recording the information of software system. In general, 

software related texts can be classified into three types [4]  : 1) the first type is given by the 

developers to support or record the software development process, such as requirement specifications; 

2) the second type is also given by the developers but intended for potential users to introduce the 

software, such as descriptions, brochures; 3) feedbacks given by software users are the third type, 

which is often expressed as reviews or comments. Initially, most of domain analysis methods focus on 

utilizing the first type of texts, and rely upon analysts reviewing them to obtain domain knowledge. 

Thus, it is very labor-intensive [5]  [6]  . In recent years, fast growth of the second and third type 

texts from various sources makes more and more data can be collected easily. Such high volume of 



texts makes it difficult to understand or analyze manually. By introducing data science into the field of 

domain analysis, many researches propose approaches that (semi-)automatically generate feature 

diagrams, clustered requirements, keywords or direct objects through systematic or quantitative 

processes of data analyzing. So as to mine domain knowledge from such natural language-based 

documents to better support the subsequent software development process. 

Mobile application (App) is a kind of software system carried on mobile terminals and grows in 

popularity rapidly[7]  . App descriptions are the introductions of app products and belong to the 

second type of texts introduced above. Compared with the first type of texts, app descriptions can be 

collected more easily due to the existence of app marketplaces. For example, when we want to develop 

an app for social communication, there are hundreds of apps within the same domain in Google Play. 

Meanwhile, because app descriptions are given by app providers, they contain denser domain 

knowledge than user feedbacks. Therefore, developers can obtain the main feature information of apps 

by analyzing their descriptions. Considering the description of an app ’Instagram’ shown in Table 1, it 

contains the main features of the app, such as the common features ‘discover accounts’ and ‘Post 

photos and videos’, and the variable feature ‘combine multiple clips into one video’. Similarly, more 

features with their attributes can be extracted from a huge number of related app descriptions. By using 

such information synthetically, the domain analysis can be performed to effectively support the 

development of a specific app. Hence, app descriptions, as a kind of abundant and useful data, cannot 

be ignored in the domain analysis of app products. However, due to their huge amount and lack of 

expression standard, intensive efforts are needed to analyze app descriptions.  

To solve this problem, we propose an approach that automatically mines domain knowledge, 

including features and their relationship, from app descriptions. We define Concern-based Description 

Model (CDM) and Data-based Raw Domain Model (DRDM) to formally describe the knowledge in a 

single app description and overall knowledge in the domain separately. In addition, a quantified method 

is given to prioritize the knowledge for facilitating their application in practice. For the purpose of 

evaluation, we conducted a series of experiments with 574 app descriptions from Google Play.  

Firstly, we conduct a quantitative evaluation of each method in our approach by comparing them 

with several well-established methods. The results show that our feature extraction method has a 

precision of 86.15% and a recall of 83.45% on average, which indicates the good performance of our 

method. Also, our topic modeling method can obtain more meaningful and understandable results than 

LDA, and our feature clustering method can achieve about 10 percent improvement over K-means in 

purity. These results verify that our approach can obtain domain knowledge from app descriptions 

effectively. 

Secondly, we give a case study and surveys to compare the usefulness of report generated in our 

approach with raw data of app descriptions and the feature model constructed by the approach 

proposed in [8]  . By analyzing the results of the surveys with statistical methods, we find that the 

participants using our report can complete the tasks with significantly shorter time than the ones using 

the other two materials. Furthermore, we also find that our approach are more adaptive for overall 

analyzing the whole domain and generating creative ideas, which are important tasks in domain 

analysis. 

The paper is organized as follows. Section II presents the related work. Section III gives problem 

statement in our research and an overview of our approach. In Section IV, the automatic proceeding of 

feature extracting and modeling from app descriptions is introduced. The integration and prioritization 

of domain knowledge are provided in V. Finally, our experiments and the conclusion are shown in 



Section VI and VII separately (respectively). 

Table 1 An example of App descriptions 

 

2. Related work 

In previous researches on domain analysis, the methods usually need to be done manually, such as 

Feature-Oriented Domain Analysis(FODA)[5]  , Feature-Oriented Reuse method (FORM)[6]  , and 

Organization Domain Modeling (ODM)[9]  . Despite some tools[10]  [11]  [12]   that have been 

proposed to support these methods, most of them can only help analysts to manage the process of 

feature extraction, whereas feature extraction itself and establishment of constrains still rely on 

intensive human interaction. This makes these methods only adapt to analyze relatively low volume of 

data. 

With the abundance of data resources in recent years, the limitation of methods mainly depending on 

human analysis is obvious. Thus, technologies in data science, such as LDA, Clustering, N-gram, SVM, 

have been introduced to domain analysis to support the researches on automatic or semi-automatic 

methods. Based on the types of texts introduced in Section 1, we classify research works related to our 

work into three categories. 

1) To support the development process, the first type of texts is expressed normatively and records 

complete information of software, so we define it as the inputs with high quality. Many researches 

focus on utilizing this type of texts to construct Feature Models (FM) for Software Product Line 

Engineering (SPLE) [4]  . Some of these researches take the formal texts as the input. For example, 

from tabular data files, Acher et al. propose a semi-automated method to extract FMs through a 

dedicated language and a specific merging algorithm[13]  . They further propose a tool-supported 

approach to extract and manage the evolution of software variability[14]  . Additionally, other 

researches analyze this type of texts expressed in natural language and extract features by introducing 

data analyzing technologies. From text-based software requirements specifications (SRSs), Mu et al. 

extract functional requirements by analyzing the linguistic characterization of SRSs [15]  ; Bagheri et 

al. propose an approach that employs natural language processing techniques to identify potential 

features and integrity constraints in the domain document for support domain engineering 

lifecycle[16]  ; in [17]  , Niu Nan propose a systems-oriented approach based on information 

retrieval (IR) techniques to extract functional requirements profiles automatically; based on natural 

language semantics analyzing and classification technology, Mefteh et al. propose a fully top-down 

method to extract potential features and group similar ones for structuring the FM [18]  ; applying a 

sequence of machine learning steps, Rahimi M et al. present a data mining approach for extracting and 

modeling quality concerns from quality related requirements to generate goal graphs[19]  ; Nili Itzik 

et al. proposing SOVA, which uses ontological and natural language semantic considerations to 

Instagram is a simple way to capture and share the world’s moments. Follow your friends and family to see what they’re 

up to, and discover accounts from all over the world that are sharing things you love. Join the community of over 500 

million people and express yourself by sharing all the moments of your day––the highlights and everything in between, too. 
Use Instagram to: 

• Post photos and videos, edit them with filters and creative tools, and combine multiple clips into 

one video.  
• Share multiple photos and videos (as many as you want!) to your story. Bring them to life with text and drawing tools. 

They disappear after 24 hours and appear on your profile grid or in feed.  

• Watch stories from the people you follow in a bar at the top of your feed. View them at your own pace. 
• Discover photos and videos you might like and follow new accounts in the Explore tab. 

• Send private messages, photos, videos and posts from your feed directly to friends with Instagram Direct. 

• Instantly share your posts to Facebook, Twitter, Tumblr and other social networks. 



generate feature diagrams for modelling variability in SPLE[20]  . Although these approaches can 

achieve fairly good results, the limitation of inputs restraints their effectiveness. For the reason of 

secrecy and copyright, this kind of inputs is always limited inside of companies, so it is hard to be 

collected for the developers when they come to a new domain. Different from these researches, we 

analyze app descriptions that widely exist in various app marketplaces and data collection is no longer a 

problem. 

2) Facing to users, the second type of texts is usually from web-sites and has a huge volume. Limited by 

the length, this type of texts cannot contain as complete and accurate information as the first type, 

whereas it only contains the most important features of the products to attract users. Thus, it is taken as 

the inputs with relatively good quality and the researches on it mainly center on feature extraction. Yue 

Yu et al. propose an approach to mine features from web repositories and organize these features by 

constructing a HESA[21]  ; based on contrastive analysis, Alessio Ferrari et al. propose an approach to 

identify commonalities and variabilities from the brochures of a group of vendors[22]  ; Negar Hariri 

et al. use incremental diffusive algorithm to discover common features from online product 

descriptions, and give a quantitative feature recommendation algorithms for domain analysis 

process[8]  . Considering that feature is also a form to express software requirements, Lian et al. 

propose MaRK to identify and retrieve requirement knowledge from the documents that containing 

descriptions of functional features [23]  . There are also researches on constructing FM based on this 

kind of texts, but they generally overlook the relationship between features. For example, the approach 

given by Jean-Marc Davril et al. can construct FMs from publicly available product descriptions, but it 

does not include exclusion clauses[24]  . Although these methods can effectively utilize the 

information in the texts, there usually exists some constraints to their inputs, such as feature descriptors, 

which are not contained in the app descriptions. Thus, these methods may not achieve the same good 

results when analyzing app descriptions. Besides, we find that the colloquial and incomplete nature of 

app descriptions are even more serious, so it needs more effort for feature extraction. 

3) The third type of texts mainly contain the information of user experiences, and it tends to be short, 

large volume, and noisy-nature, so we take it as the inputs with low quality. Many automatic methods 

are proposed to obtain effective information from the reviews or comments. The work by Claudia Iacob 

et al. define 237 linguistic rules manually and design MARA to extract feature requests from 

reviews[25]  [26]  ; while Phong Minh Vu et al. propose keyword-based/ phrase-based approaches to 

acquire user opinions[27]  [28]  . In addition, Emitza Guzman et al. emphasize the analysis of 

relationship between app features and user sentiments and present an approach for understanding app 

reviews[29]  ; and Lorenzo Villarroel et al. introduce CLAP to prioritize the clusters of reviews for 

supporting released planning of apps[30]  . These methods aim at supporting the modification of app 

existing features or identification of app evolution direction, while reviews also can be used in other 

aspects. For example, Noor Hasrina Bakara et al. propose a semi-automated approach FENL to extract 

features for initiating the requirements reuse process[31]  . These researches can analyze and use 

reviews efficiently. However, most of them only focus on the extraction of features, without analyzing 

the relationship between features. Hence these approaches are restricted in domain analysis process. 

  From the related works presented in this section, it can be seen that the approaches of domain 

analysis focus on different type inputs. From this perspective, the natural difference between our work 

and these researches is that we focus on analyzing app descriptions. Specifically, in order to better 

support the process of domain analysis, we extract not only features but also relationship from app 

descriptions based on their characteristics to construct a model. Moreover, to the best of our knowledge, 



there is no research describing this problem and the analyzing process in a formal way.  

3. Problem statement and the overview of our approach 

Many researches have defined the activities in the process of domain analysis[2]  [32]  [33]  . We 

summarize them and divide the domain analysis process into three general stages, as shown in Fig.1: in 

the early stage (before time a), domain scope is identified and data is collected from different sources; 

in the middle stage (between time a and b), domain knowledge is obtained by data analysis, and it is 

refined and clustered; and in the last stage (after time b), the domain knowledge is evaluated by the 

developers to make further business decisions. It can be seen that the success of both the early stage 

and the last stage depends on developers’ cognition of the product to be developed, so the activities in 

them need more manual effort; whereas the activities in the middle stage are the objective data 

handling, which can be done by data technologies. Thus, this research mainly focuses on completing 

the middle stage efficiently and accurately to reduce time-cost and improve the quality of domain 

analysis. 

 Considering the development of a new app, developers identify its domain scope and establish the 

dataset of related app products Dset = {𝑑1, … , 𝑑𝑛} before time a, where data di={text, A} is an app 

description text with a set of market attributes A={A1,A2…,Am}, such as rating and downloads. At time 

b, the analysis of dataset Dset  is completed, and the domain knowledge can be expressed as a 

three-tuple (F,NF,R), including functions related knowledge, non-functions related knowledge and 

relationship among them. As the result of the middle stage, (F,NF,R) provides the basis for the last 

stage of domain analysis. Based on the introduction above, we formalize our research question as “how 

to mine domain knowledge from Dset to construct (F,NF,R) automatically”. In this paper，we propose an 

approach to solve this problem, as shown in Fig.2. 

Early stage

 Domain scope 

identification

 Data

     Collection

 Data analysis

 Knowledge 

refinement 

 Evaluation by 
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a b Time
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Fig.1. The process of domain analysis 
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Fig.2. Overview of our approach 

Firstly, a Concern-based Description Model (CDM) is defined to formally describe the domain 

knowledge in an element of Dset. We obtain and express the domain knowledge in Dset with a set of 

CDMs and Topics. Three sub-steps are conducted to complete this step: 1) feature extraction rules 

based on sentence syntax are acquired by reviewing and summarizing samples of data in Dset, so that 

for each 𝑑𝑖 ∈ Dset, we can automatically extract function related and non-function related features 

from di.text by utilizing these predefined rules and formalize them in the form of concerns; 2) 

furthermore, we change the process of LDA to make it more adaptive to our problem and use it to 

obtain the topics of domain knowledge in Dset; 3)based on these topics, we further classify the 

function related concerns into two types, according to whether or not the features commonly exist in 

app marketplaces, and the relationship among the concerns are gained to complete the modeling of 

each 𝑑𝑖. 

Secondly, we analyze the data obtained above and define a Data-based Raw Domain Model (DRDM) 

to formalize the final domain knowledge (F,NF,R). In this step, we obtain and define different levels of 

knowledge in F by data classification, clustering and merging the function related concerns in CDMs; 

and NF is gained from non-function related concerns in CDMs; meanwhile, R is obtained by analyzing 

the relationship among different kinds of knowledge in F and NF. Moreover, in order to improve the 

usability of knowledge expressed by DRDM, we give a quantified method based on the attributes of 

each app di.A in Dset to prioritize the knowledge in DRDM, so that a report is generated to express the 

results of our approach. 

4. Automated modeling of app descriptions 

A concern refers to a specific goal, concept or region of interest, corresponding to one or more 

problems or features that software developers care about. ‘Separate of Concern’ is a fundamental 

principle complied in software engineering, and the software development methods and modeling 

methods depending on it have been widely studied and applied. In our earlier work, we use concern as 

the basis to describe requirements and achieve good results[34]  [35]  [36]  . Thus, we formalize a 

feature extracted from App descriptions by a concern, and the domain knowledge in one app 

description can be formally described by a CDM. This section gives the detailed definitions and the 

automatic modeling method. 

4.1 Definitions of model 

  A CDM is formally defined as: CDM=(App_Name,Cset,CRset). Let App_Name be the unique 

identifier of the app product corresponding to CDM; and the set of concerns is defined as Cset; the set 

of relationship between concerns is CRset. The definition in each part is given as below. 

Definition 4.1. Concern：each concern C is specified as a 4-tuple (id, Des, type,Nums),where 

 id refers to the identifier of C;  

 Des is the description of a feature expressed by C; 

 type is the type of C in category theory; 

 Nums is the set of sentence numbers that are relied by C. 

  A concern represents the information of a feature in the domain, and it can be classified into three 

types: common, which represents the feature related to the function that is usually contained by 

products in the domain; special, which describes the feature related to the function that is extraordinary 



in products of the domain; property, which records the non-function related feature. 

Definition 4.2. relationship between concerns: the relationship between two concerns is defined as a 

4-tuple CR=(Ci,Cj,sentN,kind), where Ci and Cj are two concerns that have relationship in CDM; sentN 

is a set of sentence numbers, and it represents the sentences which are the basis of the relationship. So 

we have sentN=Ci. Nums∩Cj. Nums.  

The relationship is categorized into four kinds: Common_of, Special_of, Common_Special and 

Property_of, where Common_of/Special_of is the relationship between two concerns with the same 

type, that is common or special；Common_Special is the relationship between common-concerns and 

special-concerns; Property_of is the relationship between common-concern or special-concern and 

property-concern. 

It should be noted that, for the concerns whose types are properties, there is no relationship between 

them and there must exist relationship from common/special-concern to them. This is because 

property-concern represents the non-functional information related to the functions, such as attributes 

or constraints, thus it relies on other types of concerns. 

Based on the above definitions, the automatic modeling method is introduced step by step. 

4.2 Feature extraction based on syntax 

Feature extraction is the central process of mining domain knowledge from app descriptions. In 

software related texts, features are expressed by the words with particular POS (Part of Speech), such 

as nouns, verbs, and/or adjectives[8]  [31]  . In app descriptions, features are always related to certain 

structures in a sentence. For example, the function related features are expressed by the verb with 

nouns, such as ‘post video’ and ‘share photos’ in Table 1, whereas the non-functional features are 

always given as a limitation structure. Thus, we can extract features by analyzing the structures of 

sentences and POS of words. Furthermore, since the syntax in app description tends to be simple for 

readability, we can identify the relationship between structures in sentences and features by analyzing 

the natural language semantic meaning of some app description texts manually, and construct feature 

extraction rules by summarizing them. Based on these rules, the knowledge of features can be mined 

from any data unit 𝑑𝑖 ∈ Dset. This process consists of the following three steps. 

Firstly, we preprocess 𝑑𝑖 . 𝑡𝑒𝑥𝑡. We remove the non-English or non-text parts from 𝑑𝑖 . 𝑡𝑒𝑥𝑡 and 

split it into a set of sentences. Since our process of feature extraction depends on syntax analysis of 

sentence, the stop word removing and stemming are not contained in our preprocessing. 

Secondly, syntax analysis is done by taking the sentence as a unit. We choose Stanford Parser, which 

is one of the state of art parsers in the general English domain, as the tool to transform a sentence to a 

parsing tree. For example, for the sentence ‘Post photos and videos, edit them with filters and creative 

tools, and combine multiple clips into one video’ shown in in Table 1, its parsing tree is given in Fig.3. 
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Fig.3. Parsing tree of a sentence 

Finally, the features are extracted from the parsing tree and expressed by a set of concerns. This is 

the most important step in the process of feature extraction, and it relies upon the predefined extraction 

rules. The detailed information of this step is given in this sub-Section.  

4.2.1 The acquirement of feature extraction rules 

In order to acquire the feature extraction rules, we collect descriptions from 140 app products 

covering 7 mainstream classes in Google Play, and there are 2245 sentences in total. By analyzing 

some examples of these sentences, we summarize the set of rules, denoted by 𝑅set (𝑅set = ∅ 

initially). 

The 𝑅set is acquired in an iterative way. Specifically, we select a sentence s from a description text 

in order and transform it into a parsing tree t by Stanford Parser. Then we extract features from t based 

on the rules in 𝑅set, and the result is evaluated by domain analysts manually: if the results can reflect 

the features in s correctly, 𝑅set is not changed and we proceed to the next sentence; otherwise, we 

analyze the syntax structures in s to gain a new rule r and add it into the 𝑅set. In this process, if there 

is a confliction between the new added rule r and existing rules in 𝑅set, we eliminate it by adding 

constrains or setting different priorities to the conflicted rules. 

With the enrichment of 𝑅set, it is difficult to discover new rules. We use 𝑅set on large-scale app 

descriptions to evaluate its completeness, and the results are also used to complete 𝑅set constantly.  

4.2.2 The basic definitions for formal descriptions of feature extraction rules 

In order to describe feature extraction rules clearly, some basic definitions are given. In a parsing 

tree: 

G(n) describes the grammar symbol in the node n. For example in the node N
f
 in Fig.3, G(N

f
)=VP. 

The set of grammar symbols Gset(𝑔) = {𝑔′|string(𝑔′) = string(𝑔) ∷ α} , where 𝑔, 𝑔′  are 

grammar symbols in the non-leaf nodes of a parsing tree; α is a string of characters; symbol :: 

represents string connection. For example, Gset(VB) = {VB, VBD, VBG, … }. 

Simple-tree is the tree composed of a node n and its sub-nodes, where n has only one level of 

sub-nodes. 

The result of feature extraction process is described by 𝑟𝑒𝑠𝑢𝑙𝑡 = [A, B], where A,B are the set of 

words or phrases. For a result, it is further handled as follow: 

 L([A, B]) = {[𝑥, 𝑦]|x ∈ A ∧ y ∈ B}; 

 L([A, B]) = {xy|x = A ∧ y = B}.  

Then, a result is changed into phases, each of which describes a feature. Note that [A] = [A, ∅]. 

Besides the above definitions, we also define functions to support the rules as follow: 

In order to judge the structure of tree t which takes node N as the root, we construct two functions 

𝑓𝑗𝑢𝑑𝑔𝑒(𝑁, 𝑔𝑖 , 𝑔𝑗) and 𝑓𝑠𝑖𝑚𝑝𝑙𝑒(𝑁, 𝑔𝑖 , 𝑔𝑗). Suppose the child nodes of N from left to right are (n1,…,nk), 

then 𝑓𝑗𝑢𝑑𝑔𝑒(𝑡, 𝑔𝑖 , 𝑔𝑗) = {(n𝑙 , n𝑙+1)|(𝑙 ∈ [1, 𝑘 − 1]) ∧ (G(n𝑙) = 𝑔𝑖) ∧ (G(n𝑙+1) = 𝑔𝑗)} . Similarly, 

suppose the roots of simple-tree in t are (n1,…,nk), if there exists 𝑙, 𝑚 ∈ [1, 𝑘], 𝑙 < 𝑚, G(n𝑙) = 𝑔𝑖 , G(n𝑚) =

𝑔𝑗  and ∀ℎ ∈ (𝑙, 𝑚), G(nℎ) ≠ 𝑔𝑖 , G(nℎ) ≠ 𝑔𝑗 , 𝑓𝑠𝑖𝑚𝑝𝑙𝑒(𝑡, 𝑔𝑖 , 𝑔𝑗) = (n𝑙 , n𝑚), otherwise, 𝑓𝑠𝑖𝑚𝑝𝑙𝑒(𝑡, 𝑔𝑖 , 𝑔𝑗) = ∅. 

Furthermore, we have two functions to gain words/phases from the phasing tree. For a Node N, if 

there exists a path (n1,…,nk) where n1=N, ∀𝑙 ∈ [1, 𝑘 − 2]), G(n𝑙) = 𝑔𝑖 , G(n𝑘−1) = 𝑔𝑗 , and nk is the 

leaf, 𝑓𝑙𝑒𝑎𝑓(𝑁, 𝑔𝑖 , 𝑔𝑗) returns the set of words in all the nk that meet the conditions above. 𝑓𝑝ℎ𝑎𝑠𝑒(𝑁) 



returns a phase in the tree t, which takes node N as the root, thus the words in all the leaves of t from 

left to right compose the phase, such as 𝑓𝑝ℎ𝑎𝑠𝑒(Npp) = {(into one video)} in Fig.3. 

4.2.3 The classification and use of feature extraction rules 

Based on the definitions and functions introduced in 4.2.2, the rules in 𝑅set are described formally. 

As shown in Table 2, the final 𝑅set contains 24 rules, which are classified into 2 kinds with 4 

sub-kinds and 3 priorities (1-3 from high priority to low priority). The details are given as follow. 

  The rules in the first classification R_1 aim at overall analyzing and transforming the parsing tree to 

improve the accuracy of feature extraction. Specially, there are two conditions to be considered: 

1) Before feature extraction, the pronouns need to be replaced with their anaphors according to the 

structure of sentence. For example, the phrase ‘edit them’ shown in Fig.3 is meaningless itself 

until it is replaced by “edit photos and videos”. In order to achieve this goal, we analyze the 

positions of pronouns and find the verbs near them. Based on this information, the relationship 

between pronouns and their corresponding nouns are obtained to generate the rules in R_1.1. Such 

as the rule 1 in Table 2, it can handle one of the simple but common conditions: for a tree t that 

takes node n as root, we analyze the simple-tree in t to judge if there are pronouns and reduce the 

pronouns to the noun right before it.  

2) In a sentence of app description texts, there are always grammar structures that are useless or even 

misleading for feature extraction, such as the structure that represents the tense of sentences. Since 

such grammar structures have their fixed presentation forms, we summarize these forms to 

generate the rules in R_1.2 for eliminating them. For example, the rule 2 in Table 2 can judge 

whether the tree t taking node n as root has passive pattern (which is presented as a be-verb with a 

passive verb) and deletes the be-verb if necessary. 

  After handling the parsing tree based on R_1, the rules in the second classification R_2 are utilized 

to extract the concrete features. Since the features can be classified into function and non-function 

related, the R_2 is also further divided into two sub-kinds. 

1) For extracting function related features, R_2.1 identifies the function related structures in a tree 

and acquire the effective words/phrases in them. According to practical conditions, different rules 

are generated. Considering two most common cases, if the verb in a sentence is transitive, it and 

the noun phase after it together can construct a feature. The rule 3 in Table 2 can get such features, 

for example, phases ‘post photos’ and ‘post videos’ can be extracted from the sub-tree that takes 

N
f
 as the root; otherwise, if the verb is intransitive, there need to be a preposition after it connect 

(connecting it to) a noun to express a function. The rule 4 in Table 2 gets features in such 

condition, for example, the sentence ‘you can search for broadcasts by location or topic’ satisfies 

the above rule and yields the phase ‘search broadcasts’. 

2) Similarly, the rules in R_2.2 identify the non-function related parts to extract non-functional 

features. Our research shows that the non-functional features are always expressed as the 

limitation or supplement of the function features, so we get such structures based on the parsing 

tree. The rule 5 in Table 2 judges if a preposition phrase is the supplement of a verb object phrase 

and extract such information as a non-function feature, for example, the phase ‘into one video’ 

under the note Npp is extracted by this rule. 

Table 2 shows five typical rules, which can support most feature extraction tasks (about 60% to 

70%). Other rules are expressed in the same formal way to cope with other special structures of 

sentences, such as object ahead of predicate, object ahead of verb, modifier behind central word. 



Based on the rules in Rset, features can be extracted from the parsing tree of a sentence. A tree T is 

analyzed in a top-down traversal strategy. Firstly, the structures of T are matched with the rules in R_1 

(Tree transform rules), so that T is transformed to a new tree T’; secondly, T’ is further analyzed to 

extract concerns, and the results are divided into two conditions for the current node N in T’:  

 If N satisfies the rules in R_2.1, a common/special-concern is generated to record the result. Note 

that the type of these concerns is distinguished in Sub-section 3.3. 

 If N satisfies the rules in R_2.2, a property-concern is generated to express the result. 

When the traversal of tree T’ is completed, a set of concerns is gained to record all the features in the 

sentence. In this set, the Nums of any one concern C is the number of this sentence. For example, from 

the parsing tree in Fig.3, we can get a set of concerns {(Instagram_12, post photos, common/special, 

{4}), (Instagram_13, post videos, common/special, {4}), (Instagram_14, edit photos, common/special, 

{4}), (Instagram_15, edit videos, common/special, {4}), (Instagram_16, with filters and creative tools, 

property, {4}), (Instagram_17, combine clips, common/special, {4}), (Instagram_18, into one video, 

property, {4})}. 

After all the sentences in an app description are analyzed in turn, the set of concerns CDM.Cset is 

established to describe all the features gained in this process. However, some important features may be 

mentioned in an app description for multiple times, and hence there are concerns in CDM.Cset that are 

generated from different sentences but express the same content. In order to delete such redundant 

information, we stem the words in C.Des to their root form and merge the similar concerns. 

Specifically, if all the words in Ci.Des appear in Cj.Des, we have 𝐶𝑗 . 𝑁𝑢𝑚𝑠 = 𝐶𝑗 . 𝑁𝑢𝑚𝑠 ∪ 𝐶𝑖 . 𝑁𝑢𝑚𝑠 

and delete Ci. 

Table 2 Description of feature extraction rules 

Kinds Sub-kinds Feature extraction rules 

R_1: 

Tree 

transform 

rules  

R_1.1： 

Rules of pronouns 

reduction.  

 

(Rule 1)： 

∀node n, ((𝑓𝑠𝑖𝑚𝑝𝑙𝑒(n, 𝑁𝑁, 𝑃𝑅𝑃) = (n𝑙 , n𝑚))) 

⟹ 𝑓𝑙𝑒𝑎𝑓(𝑛𝑚, 𝑃𝑅𝑃, 𝑃𝑅𝑃)] = 𝑓𝑙𝑒𝑎𝑓(𝑛𝑙 , 𝑁𝑁, 𝑁𝑁)]. 

 (priority-3).  

R_1.2： 

Rules for judgement 

of sentence pattern. 

 

(Rule 2) 

∀node n, ((𝐺(n) = 𝑉𝑃) ∧ 

((n𝑙 , n𝑙+1) ∈ 𝑓𝑗𝑢𝑑𝑔𝑒(n, 𝑉𝐵, 𝑉𝑃)) ∧ (𝑓𝑙𝑒𝑎𝑓(n𝑙 , 𝑉𝐵, 𝑉𝐵) ⊆ beSet)) 

⟹ ignore(n𝑙), where beSet = {be, am, is, are, was, were}. 

 (priority-1). 

R_2: 

Information 

extraction 

rules. 

 

R_2.1： 

Rules for extracting of 

function related 

features. 

 

(Rule 3) 

∀node n, ((𝐺(n) = 𝑉𝑃) ∧ ((n𝑙 , n𝑙+1) ∈ 𝑓𝑗𝑢𝑑𝑔𝑒(𝑡, 𝑉𝐵, 𝑁𝑃))) ⟹

[𝑓𝑙𝑒𝑎𝑓(n𝑙 , 𝑉𝐵, 𝑉𝐵), 𝑓𝑙𝑒𝑎𝑓(n𝑙+1, 𝑁𝑃, 𝑁𝑁)]. 

(priority-1). 

(Rule 4) 

∀node 𝑡, (
(𝐺(𝑡) = 𝑉𝑃) ∧ (∃(n𝑙 , n𝑙+1) ∈ 𝑓𝑗𝑢𝑑𝑔𝑒(𝑡, 𝑉𝐵, 𝑃𝑃)) ∧

(∃(n𝑘 , n𝑘+1) ∈ 𝑓𝑗𝑢𝑑𝑔𝑒(𝑛𝑙+1, 𝐼𝑁, 𝑁𝑃))
) ⟹

𝑓𝑙𝑒𝑎𝑓(n𝑙 , 𝑉𝐵, 𝑉𝐵), 𝑓𝑙𝑒𝑎𝑓(n𝑘+1, 𝑁𝑃, 𝑁𝑁). 



(priority-2). 

R_2.2： 

Rules for extracting 

non-function related 

features.  

(Rule 5) 

∀node 𝑡, (
(𝐺(𝑡) = 𝑉𝑃) ∧ (∃(n𝑙 , n𝑙+1) ∈ 𝑓𝑗𝑢𝑑𝑔𝑒(𝑡, 𝑉𝐵, 𝑁𝑃)) ∧

(∃(n𝑙+1, n𝑙+2) ∈ 𝑓𝑗𝑢𝑑𝑔𝑒(𝑡, 𝑁𝑃, 𝑃𝑃))
) ⟹

{[𝑓𝑝ℎ𝑎𝑠𝑒(n𝑙+2)]}. 

(priority-1). 

4.3 The construction of CDM 

In order to identify the type of concerns in CDM.Cset, we analyze the topics of Dset, and distinguish 

type of common/special concerns based on the correlation between them and topics. Then the set of 

relationship between concerns CRset can be established to complete the construction of CDM.  

4.3.1 Topic analysis of Dset 

  We tried to use LDA to analyze the topics in Dset. LDA relies on statistical models to discover the 

topics that occur in a collection of unlabeled text [37]  , and it has been used to analyze text data in 

many researches. However, when we use LDA to analyze Dset directly, the meanings of gained topics 

are unclear. Table 3(a) shows a result of LDA in experiments (top-10 keywords are presented), the 

example is chosen because it gives similar topics as the final result we used in our case study (shown as 

Table 3(b)). It can be seen that the result contains some domain irrelative topics, for example ‘Use(T1)’ 

is a topic of words expressing activity; also the difference between T6 and T7 is not obvious and the 

meaning of T8 is unclear. These topics would affect the correctness of our domain model and hinder 

the developers understanding the domain knowledge. 

 To solve this problem and get better results, we give a method (denoted by O-LDA) based on basic 

LDA process by handling its input and output. 

  Firstly, we extract features from Dset by the approach given in Sub-section 3.2. And the verb parts 

of the features are deleted, because they are not helpful for describing the domain knowledge in a 

highly abstract way. The results are used as the input of LDA instead of using texts in Dset directly. 

This can be viewed as a data filtering process to improve information density of the input.  

Secondly, the input is handled by a basic LDA process, and we get a topic set 

Topicset={topic1,topic2,…,topicn}. In Topicset, each topic is described by a set of words, that is 

𝑡𝑜𝑝𝑖𝑐𝑖 = {𝑤1, … , 𝑤𝑚}, where each word w has a P(w/topici) to represent the presence probability of w 

appeared in topici.  

Finally, further analysis is conducted to the above results. We only reserve the nouns for each topic 

to make it clearer to represent the related domain knowledge. In this process, for the word describing 

different topics, we reserve it in only one topic to increase the differences between topics. That is if 

∃𝑤 ∈ 𝑡𝑜𝑝𝑖𝑐𝑖 ∩ 𝑡𝑜𝑝𝑖𝑐𝑗(𝑖 ≠ 𝑗) ∧ 𝑃(𝑤/𝑡𝑜𝑝𝑖𝑐𝑖) > 𝑃(𝑤/𝑡𝑜𝑝𝑖𝑐𝑗), delete 𝑤 from 𝑡𝑜𝑝𝑖𝑐𝑗.  

We get the final set of topics Topicset from Dset through the above process. Table 3(b) gives the 

result of topic modeling in our case study. It divides the domain into five parts, and the keywords of 

topics are meaningful and clear for describing the domain knowledge. 

Note that in practice, the final result may be identified with the help of app developers if necessary, 

so as to improve the quality of O-LDA. 

Table 3 Topics on ‘social’ apps and top-1 word is used as the name of topic. 



(a)The results of basic LDA (K=8) 

Use(T1)  video(T2) People(T3) Text(T4) love(T5) Chat(T6) Chat(T7) Input (T8) 

Use 

Chat 

Find 

Share 

Live 

Meet 

Call 

Like 

Get 

Video 

Chat 

Use 

Call 

find 

Voice 

Convers 

Media 

Application 

People 

Like 

Follow 

Use 

Chat 

Network 

Find 

Person 

Profile 

Text 

People 

Message 

Email 

Use 

Emoticon 

Smiley 

Language 

Time 

Love 

Woman 

Girl 

Use 

Data 

Phone 

People 

Message 

Locate 

Chat 

Photo 

Use 

Picture 

Like 

Love 

Share 

Image 

Friend 

Chat 

People 

Love 

Use 

Call 

Date 

Status 

World 

Live 

Input 

Support 

Emoticon 

Free 

Share 

Smiley 

People 

Message 

Like 

Free People Game Status Fun People Single Number 

(b)The results of O-LDA(K=5). 

Photo(T1) video(T2) People(T3) Text(T4) love(T5) 

Photo 

picture 

image 

world 

group 

moment 

event 

life 

family 

video 

chat 

call 

voice 

convers 

media 

application 

inform 

tag 

people 

follow 

network 

person 

profile 

game 

share 

birthday 

experience 

Text 

message 

email 

emoticon 

smiley 

language 

time 

status 

update 

love 

woman 

girl 

data 

phone 

number 

locate 

fun 

caller 

parent site Date flower idea 

4.3.2 Classify the concerns and establish relationship 

The Topicset represents the main information that app developers concern about in a particular 

domain. We define the type of concerns that are directly related to Topicset as common. By calculating 

correlation degree between a common/special type concern and topic, we can identify the concrete type 

of concerns. 

Definition 4.3 Correlation degree: For a concern 𝐶 ∈ 𝐶𝐷𝑀. 𝐶𝑠𝑒𝑡 and a 𝑡𝑜𝑝𝑖𝑐 ∈ 𝑇𝑜𝑝𝑖𝑐𝑠𝑒𝑡 , 

suppose that the set of words in C.Des is {w1,…,wn} and topic={wl,…,wk}, the correlation degree 

between C and topic is the maximum value of words similarity in two sets: 

Cor(𝐶, 𝑡𝑜𝑝𝑖𝑐) = Max𝑖=1,𝑗=𝑙
𝑖=𝑛,𝑗=𝑘

𝑠𝑖𝑚(𝑤𝑖 , 𝑤𝑗), 

where𝑠𝑖𝑚(𝑤𝑖 , 𝑤𝑗) ∈ [0,1] , which is the similarity between wi and wj and calculated based on 

WordNet[38]  . 

  Using the formula above, the type of concerns in CDM.Cset can be identified through setting a 

threshold 𝜃 (𝜃=0.9 in our case study). ∀C ∈ CDM. Cset⋀C. type ≠ property, 

C. type = {
𝐶𝑜𝑚𝑚𝑜𝑛                   ∃𝑡 ∈ 𝑇⋀𝐶𝑜𝑟(𝐶, 𝑡) > 𝜃,

𝑆𝑝𝑒𝑐𝑖𝑎𝑙                          𝑒𝑙𝑠𝑒.        
 

  The CDM.Cset is obtained when the types of all concerns are determined. And each common-type 

concern in Dset can be assigned to a topic according to the highest value of correlation degree, so we 

can obtain a set of concerns for each topic t in Topicset, denoted by C𝑡𝑠𝑒𝑡, which is the preparation for 



the subsequent analysis. 

  The relationship between concerns can be established. ∀𝐶𝑖, 𝐶𝑗 ∈ 𝐶𝐷𝑀. 𝐶𝑠𝑒𝑡, 𝑖𝑓 𝐶𝑖 . 𝑁𝑢𝑚𝑠 ∩

𝐶𝑗 . 𝑁𝑢𝑚𝑠 ≠ ∅, there is relationship CR between Ci and Cj, we have: 

 If 𝐶𝑖 . 𝑡𝑦𝑝𝑒 = 𝐶𝑜𝑚𝑚𝑜𝑛 ∧ 𝐶𝑗 . 𝑡𝑦𝑝𝑒 = 𝐶𝑜𝑚𝑚𝑜𝑛, 𝐶𝑅 = (𝐶𝑖 , 𝐶𝑗 , 𝐶𝑖 . 𝑁𝑢𝑚𝑠 ∩ 𝐶𝑗 . 𝑁𝑢𝑚𝑠, 𝐶𝑜𝑚𝑚𝑜𝑛_𝑜𝑓);  

 If 𝐶𝑖 . 𝑡𝑦𝑝𝑒 = 𝐶𝑜𝑚𝑚𝑜𝑛 ∧ 𝐶𝑗 . 𝑡𝑦𝑝𝑒 = 𝑆𝑝𝑒𝑐𝑖𝑎𝑙, 𝐶𝑅 = (𝐶𝑖 , 𝐶𝑗 , 𝐶𝑖 . 𝑁𝑢𝑚𝑠 ∩ 𝐶𝑗 . 𝑁𝑢𝑚𝑠, 𝐶𝑜𝑚𝑚𝑜𝑛_𝑆𝑝𝑒𝑐𝑖𝑎𝑙); 

 If 𝐶𝑖 . 𝑡𝑦𝑝𝑒 = 𝑆𝑝𝑒𝑖𝑐𝑎𝑙 ∧ 𝐶𝑗 . 𝑡𝑦𝑝𝑒 = 𝑆𝑝𝑒𝑐𝑖𝑎𝑙, 𝐶𝑅 = (𝐶𝑖 , 𝐶𝑗 , 𝐶𝑖 . 𝑁𝑢𝑚𝑠 ∩ 𝐶𝑗 . 𝑁𝑢𝑚𝑠, 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑜𝑓); 

 If (𝐶𝑖 . 𝑡𝑦𝑝𝑒 = 𝐶𝑜𝑚𝑚𝑜𝑛⋁𝐶𝑖 . 𝑡𝑦𝑝𝑒 = 𝑆𝑝𝑒𝑐𝑖𝑎𝑙) ∧ 𝐶𝑗 . 𝑡𝑦𝑝𝑒 = 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦,  

𝐶𝑅 = (𝐶𝑖 , 𝐶𝑗 , 𝐶𝑖 . 𝑁𝑢𝑚𝑠 ∩ 𝐶𝑗 . 𝑁𝑢𝑚𝑠, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑜𝑓). 

  Till now, the set of relationship CDM.CRset is generated, and the construction of CDM is completed.  

Since each step in this process can be conducted automatically, the transformation from an app 

description text to a model CDM is automatic. After modeling all the app descriptions in Dset, we can 

obtain a new dataset 𝐷𝑠𝑒𝑡
′ , 𝐷𝑠𝑒𝑡

′ = {𝑑1
′ , … , 𝑑𝑛

′ },where 𝑑𝑖
′ = (𝐶𝐷𝑀𝑖 , 𝑑𝑖. 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒). Also, the Topicset is 

also reserved to support the subsequent analysis of 𝐷𝑠𝑒𝑡
′ . 

5. Modeling and Prioritizing domain knowledge 

To deeply mine and organize the domain knowledge from D′set, the approach of data integration is 

given in this section, and the results are used to construct a Data-based Raw Domain Model (DRDM). 

Moreover, we give a quantified method to prioritize the information in DRDM, and a report of DRDM 

is generated based on the priorities to help developers use the model and get key domain knowledge 

quickly.  

5.1 Construction of DRDM 

  The central idea of DRDM constructing is to group the similar concerns. Before introducing the 

detailed process, we give the structure of DRDM and related definitions. For the purpose of clarity, we 

use 𝐶𝐷𝑀𝑠𝑒𝑡  to represent the set of all models in D′set, that is 𝐶𝐷𝑀𝑠𝑒𝑡 = {𝑑′. 𝐶𝐷𝑀|𝑑′ ∈ D′set}. 

A DRDM is the representation of knowledge to a particular domain, it classifies the domain 

knowledge into three types and can be specified as a 3-tuple (F,NF,R). The detailed illustrations for 

each part are given. 

F is the representation of function related domain knowledge, and F = {T, CcTset, 𝐶𝑐𝑠𝑠𝑒𝑡}, where 

 T = {𝑡1, … , 𝑡𝑛} is the set of domain topics; 

 CcTset = {𝐶𝑐𝑡1𝑠𝑒𝑡, … , 𝐶𝑐𝑡𝑛𝑠𝑒𝑡} , where 𝐶𝑐𝑡𝑖𝑠𝑒𝑡 = {𝐶𝑐1
𝑡𝑖 , … , 𝐶𝑐𝑛

𝑡𝑖} , and 𝐶𝑐𝑗
𝑡𝑖  is a cluster of 

concerns and represents a kind of features that is related to topic ti in T; 

 𝐶𝑐𝑠𝑠𝑒𝑡 = {𝐶𝑐1
𝑠 , … , 𝐶𝑐𝑛

𝑠 }, where 𝐶𝑐𝑖
𝑠 is a cluster of concerns and represents a kind of features that 

are not ordinary in the domain; 

  In F, T is the Topicset obtained in section 3.3.1, while 𝐶𝑐𝑇𝑠𝑒𝑡 and 𝐶𝑐𝑠𝑠𝑒𝑡 are the results of 

grouping common-concerns and special-concerns separately.  

  NF is the representation of non-functional domain knowledge, which includes the features related to 

non-functional attributes or constraints of app products in the descriptions. We define NF as the set of 

property-concerns, that is, NF = {C|C ∈ CDM. Cset ∧ C. type = property ∧ CDM ∈ CDM𝑠𝑒𝑡}. Because 

the presentations of such non-functional features are diverse, we do not cluster this kind of information 

to avoid misguiding developers. 

  R is the set of relationship between domain knowledge and contains two parts: 

 Rf−f(A, B) = (dgree, rel) , where A ∈ 𝐶𝑐𝑡𝑖𝑠𝑒𝑡  and B ∈ 𝐶𝑐𝑠𝑠𝑒𝑡 , and 𝐶𝑐𝑡𝑖𝑠𝑒𝑡  is an arbitrary 

element in CcTset. Rf−f(A, B) reflects correlation degree and inner links between knowledge A 



and B. For a Rf−f(A, B), its rel = {CR|CR = (𝐶, 𝐶′, sentN, Common_Special) ∧ 𝐶 ∈ A ∧ 𝐶′ ∈

B ∧ CR ∈ CDM ∧ CDM ∈ CDMset}, and its degree has two values: if degree=‘High’, it indicates 

that the relationship between A and B is strong; otherwise, degree=‘Low’ shows that such 

relationship is weak.  

 Rn−f = {CR|CR. type = Property_of ∧ CR ∈ CDM. RCset ∧ CDM ∈ CDM𝑠𝑒𝑡} , it reflects the 

correlation between functional and non-functional domain knowledge, and it is the set of all the 

Property_of type relationship in elements of CDM𝑠𝑒𝑡. 

  In order to define the process of constructing DRDM clearly, we give the following expression rules. 

According to the process of feature extraction introduced in Section 4.2, the descriptions of a common 

or special concern C include two parts: verb part and noun part. We use 𝐶. 𝐷𝑒𝑠𝑣𝑒𝑟𝑏  and 𝐶. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛 

to denote them respectively, and take them as attributes of such concern C.  

Definition 5.1 𝑨−𝒑: Suppose that A is a set and P={p1,…,pn},where pi is one attribute of the elements 

in A, 𝐴−𝑝𝑖
 represents a sub-set of A and is constructed by dividing the elements in A based on pi. 

  Note that: ⋃ 𝐴−𝑝𝑖
= 𝐴𝑖=𝑛

𝑖=1  and 𝐴−𝑝𝑖
∩ 𝐴−𝑝𝑗

= ∅ (𝑖 ≠ 𝑗). 𝐴−𝑝 can be used in an iterative way, that 

is 𝐴−𝑝𝑖−𝑞𝑗
 donates a sub-set of 𝐴−𝑝𝑖

 constructed by further dividing 𝐴−𝑝𝑖
 according to qj. 

Based on the illustrations above, the specific process of DRDM construction is given next. 

  Construction of F As some concerns generated from different app descriptions but may express the 

same content in CDMset, we eliminate such redundant information in CDMset by preprocessing: for 

any two concerns Ci and Cj in the elements of CDMset, if all the words in Ci.Des appear in Cj.Des and 

Ci.type= Cj.type, Ci and Cj are merged: 𝐶𝑗 . 𝑖𝑑 = 𝐶𝑗. 𝑖𝑑 ∪ 𝐶𝑖. 𝑖𝑑, 𝐶𝑗. 𝑁𝑢𝑚𝑠 = 𝐶𝑗. 𝑁𝑢𝑚𝑠 ∪ 𝐶𝑖 . 𝑁𝑢𝑚𝑠 ; 

simultaneously, the relationship with Ci are delivered to Cj, that is if CR = (𝐶𝑖 , 𝐶𝑙 , sentN, type) in 

CDM.RCset, new relationship CR′ = (𝐶𝑗, 𝐶𝑙 , sentN, type) is generated. Then 𝐶𝑖 and CR are deleted. 

After the preprocessing, we conduct data integration to common-concerns and special-concerns 

respectively. 

  Construction of 𝑪𝒄𝑻𝒔𝒆𝒕 in F According to the classification method of concerns introduced in 

Section 4.3.2, a common-concern must relate to a special topic t in Topicset. Thus, for an arbitrary topic 

𝑡 ∈ Topicset, its related concerns are obtained to establish a set C𝑡𝑠𝑒𝑡 = {𝐶1, … , 𝐶𝑛}. Here, we take 

part of C𝑡𝑠𝑒𝑡 related to the topic Photo(T1) shown in Table 3(b) as a simple example, as shown in 

Fig.4 (Note that only the descriptions of concerns are presented). Initially, there are 8 concerns related 

to T1 in C𝑡𝑠𝑒𝑡, that is C𝑡𝑠𝑒𝑡={Take photo, Take picture, Select picture, choose photo, share photo, 

send picture, download picture, tag photo}.The data integration takes C𝑡𝑠𝑒𝑡 as the unit and the process 

is  divided into three steps: classification, clustering and merging.  

  Firstly, C𝑡𝑠𝑒𝑡  is classified according to the 𝐶. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛  of concerns to obtain its sub-set 

C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛. Topic t is expressed by a set of keywords, that is t={keyword1,…,keywordk}. For a concern 

C in C𝑡𝑠𝑒𝑡, we classify it to the keywordi which has the maximum correlation degree with 𝐶. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛. 

In this way, the C𝑡𝑠𝑒𝑡  is divided into k classes, and we define 

C𝑡𝑠𝑒𝑡 = {C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛1
, … , C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛𝑘

}, where C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛𝑖
 is the set of concerns related to the 

keywordi in t. In Fig.4, C𝑡𝑠𝑒𝑡 is classified into two sub-set C𝑡𝑠𝑒𝑡−𝑝ℎ𝑜𝑡𝑜
 and  C𝑡𝑠𝑒𝑡−𝑝𝑖𝑐𝑡𝑢𝑟𝑒

 based on 

the two keywords ‘photo’ and ‘picture’ in the topic T1. 

  Secondly, for each C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛 ∈ C𝑡𝑠𝑒𝑡, we use hierarchical clustering method[39]   to group its 

concerns according to the 𝐶. 𝐷𝑒𝑠𝑣𝑒𝑟𝑏. In the process of clustering, the distance between any two 

concerns Ci and Cj is calculated by Cor(𝐶𝑖 . 𝐷𝑒𝑠𝑣𝑒𝑟𝑏 , 𝐶𝑗. 𝐷𝑒𝑠𝑣𝑒𝑟𝑏), and the number of clusters is 

adjusted by setting the threshold 𝛽 of distance among concerns in one cluster, that is for an arbitrary 



concern C in a result of clustering C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏, it satisfies 
∑ 𝐶𝑜𝑟(𝐶.𝐷𝑒𝑠𝑣𝑒𝑟𝑏,𝑐′.𝐷𝑒𝑠𝑣𝑒𝑟𝑏)

𝑐′∈C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏

|C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏|
>

𝛽 (𝛽=0.6 in our case study). We handle all the elements in C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛 in the above way. Based on the 

results, C𝑡𝑠𝑒𝑡  is further divided, and we have C𝑡𝑠𝑒𝑡 = {C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏1
, … , C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑙

} , 

where C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏 is a cluster of concerns. After this step, C𝑡𝑠𝑒𝑡−𝑝ℎ𝑜𝑡𝑜
 in Fig.4 is divided into 

C𝑡𝑠𝑒𝑡−𝑝ℎ𝑜𝑡𝑜−𝑣𝑒𝑟𝑏1
 and C𝑡𝑠𝑒𝑡−𝑝ℎ𝑜𝑡𝑜−𝑣𝑒𝑟𝑏2

. And C𝑡𝑠𝑒𝑡−𝑝𝑖𝑐𝑡𝑢𝑟𝑒
 is divided similarly. This step is not 

obvious in Fig.4 because the volume of data in the example is too small. 

  Finally, we merge the elements in C𝑡𝑠𝑒𝑡 based on the relationship between concerns. In C𝑡𝑠𝑒𝑡, if 

the concerns in any two elements have the relationship of Common_of, there exists relationship 

between the two elements. And when the percentage that such relationship occupy in any element is 

higher than the threshold δ, it indicates that the relationship between these two elements is close and 

we merge them together. Specifically, for any C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑖
, C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑗

∈ C𝑡𝑠𝑒𝑡, a set 𝐶𝑠𝑒𝑡 

is generated, 

𝐶𝑠𝑒𝑡 = {(𝐶, 𝐶′)|(𝐶 ∈ C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑖
) ∧ (𝐶′ ∈ C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑗

) ∧ ((𝐶, 𝐶′, sentN, Common_of) ∈

CDM. RCset) ∧ (CDM ∈ 𝐶𝐷𝑀𝑠𝑒𝑡)} , if  MAX (
|𝐶𝑠𝑒𝑡|

|C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑖
|
,

|𝐶𝑠𝑒𝑡|

|C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑗
|
) > δ  ( δ =0.3 in our case), 

C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑖
 and C𝑡𝑠𝑒𝑡−𝑛𝑜𝑢𝑛−𝑣𝑒𝑟𝑏𝑗

 are merged into one cluster. By merging all the elements that 

meet the above conditions in C𝑡𝑠𝑒𝑡, the data integration of C𝑡𝑠𝑒𝑡 is completed. A new set 𝐶𝑐𝑡𝑠𝑒𝑡 =

{𝐶𝑐1
𝑡 , … , 𝐶𝑐𝑛

𝑡 } is constructed to record the results. In the example shown in Fig.4, C𝑡𝑠𝑒𝑡−𝑝ℎ𝑜𝑡𝑜−𝑣𝑒𝑟𝑏1
 

and C𝑡𝑠𝑒𝑡−𝑝𝑖𝑐𝑡𝑢𝑟𝑒−𝑣𝑒𝑟𝑏1
 are merged together to form 𝐶𝑐1

𝑡 , while C𝑡𝑠𝑒𝑡−𝑝ℎ𝑜𝑡𝑜−𝑣𝑒𝑟𝑏2
 and 

C𝑡𝑠𝑒𝑡−𝑝𝑖𝑐𝑡𝑢𝑟𝑒−𝑣𝑒𝑟𝑏2
 are merged together to form 𝐶𝑐2

𝑡 in the final 𝐶𝑐𝑡𝑠𝑒𝑡 based on the formula above. 

Thus the result of data integration of C𝑡𝑠𝑒𝑡 is 𝐶𝑐𝑡𝑠𝑒𝑡 = {𝐶𝑐1
𝑡 , 𝐶𝑐2

𝑡}. 

  The essential idea of the above process is taking C𝑡𝑠𝑒𝑡 as a whole and dividing it step by step. To 

improve the accuracy of the process, the classification step with a higher accuracy is conducted first, so 

that the clustering of concerns can be conducted with relatively fewer concerns.  

  By acquiring 𝐶𝑐𝑡𝑠𝑒𝑡 for each topic t in Topicset, the construction of 𝐶𝑐𝑇𝑠𝑒𝑡 is completed. 

C
t
set={C1,�,C8}, that is

{Take photo, Take picture, Select picture, choose photo, share photo, send 

picture, download picture, tag photo}.

C
t
set={C

t
set-photo,C

t
set-picture},where

C
t
set_photo={Take photo, Choose photo, Share photo, Tag photo},

C
t
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C
t
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t
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t
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t
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C
t
set-photo-verb1={Take photo, Choose photo};

C
t
set-photo-verb2={Share photo, Tag photo};

C
t
set-picture-verb1={Take picture, Select picture};
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t
set-picture-verb2={ Send picture, Download picture}}
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t
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1={Take photo, Choose photo, Take picture, Select picture},
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t
2={Share photo, Tag photo Send picture, Download picture}

Step 1: Classify

Step 2: Cluser

Step 3: Merge

 
Fig.4. An example of the generation of 𝐶𝑐𝑡𝑠𝑒𝑡. 



  Construction of 𝑪𝒄𝒔𝒔𝒆𝒕 in F  For the concerns belong to special type, since all the topics gained 

from O-LDA are not related to them directly, they can be viewed as all under another topic t′. 

However, different from common-concerns, there are no keywords in topic t′ for the classification 

step of specific-concerns. So we propose a modified classification method for specific-concerns. 

   Given the set of all the specific-concerns C𝑠𝑠𝑒𝑡 = {𝐶1, … , 𝐶𝑛}, the noun part of all its concerns 

generates a set 𝐷𝑒𝑠_𝑠𝑒𝑡 = {𝐶1. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛 , … , 𝐶𝑛. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛}, where 𝐶. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛 is a set of words. Let 

Wordset = ⋃ 𝐶𝑖. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛𝑖=𝑛
𝑖=1 ={𝑤𝑜𝑟𝑑1, . . , 𝑤𝑜𝑟𝑑𝑚}, we sort the words in Wordset according to the 

frequency of the word appearing in 𝐷𝑒𝑠_𝑠𝑒𝑡. Then top-k words are obtained to form the Keyset =

{keyword1, … , keywordk}(k=10 in our case), where the similar degree between any two words in 

Keyset is smaller than the threshold μ (μ=0.5 in our case). Keyset is taken as the set of keywords of 

topic t′. The concerns in C𝑠𝑠𝑒𝑡 can be classified according to these keywords: for a concern C, if the 

correlation degree between 𝐶. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛  and keyword in Keyset  is higher than the threshold 

η(η=μ=0.5 in our case), it is classified to the most related keyword; otherwise, 𝐶. 𝐷𝑒𝑠𝑛𝑜𝑢𝑛 is added to 

Keyset as a new keyword. In this way, the concerns in C𝑠𝑠𝑒𝑡 can be classified, and we have 

C𝑠𝑠𝑒𝑡 = {C𝑠𝑠𝑒𝑡−𝑛𝑜𝑢𝑛1
, … , C𝑠𝑠𝑒𝑡−𝑛𝑜𝑢𝑛𝑚

}(𝑚 ≥ 𝑘). Based on this condition, the subsequent process of 

data integration is the same as common-concerns, and we get the final results of data integration is 

𝐶𝑐𝑠𝑠𝑒𝑡 = {𝐶𝑐1
𝑠, … , 𝐶𝑐𝑛

𝑠}. 

 

  Construction of 𝑹 After obtaining 𝐶𝑐𝑇𝑠𝑒𝑡 and 𝐶𝑐𝑠𝑠𝑒𝑡, the construction of DRDM.F is completed. 

Next, Rf-f in DRDM.R can be gained by analyzing the relationship between the elements in each 

𝐶𝑐𝑡𝑠𝑒𝑡 of 𝐶𝑐𝑇𝑠𝑒𝑡 and the elements in 𝐶𝑐𝑠𝑠𝑒𝑡. For 𝐶𝑐𝑖
𝑡 ∈ 𝐶𝑐𝑡𝑠𝑒𝑡 and 𝐶𝑐𝑗

𝑠 ∈ 𝐶𝑐𝑠𝑠𝑒𝑡, suppose that 

𝐶𝑐𝑖
𝑡 = {𝐶1, … , 𝐶𝑛} and 𝐶𝑐𝑗

𝑠 = {𝐶1
′ , … , 𝐶𝑚

′ }, we can generate a set of relationship rel = {RC|𝐶 ∈ 𝐶𝑐𝑖
𝑡 ∧ 𝐶′ ∈

𝐶𝑐𝑗
𝑠 ∧ RC = (𝐶, 𝐶′, 𝑠𝑒𝑛𝑡𝑁, 𝐶𝑜𝑚𝑚𝑜𝑛_𝑆𝑝𝑒𝑐𝑖𝑎𝑙) ∧ RC ∈ 𝐶𝐷𝑀. 𝑅𝐶𝑠𝑒𝑡 ∧ 𝐶𝐷𝑀 ∈ 𝐶𝐷𝑀𝑠𝑒𝑡} . If rel ≠ ∅ , generate 

relationship Rf−f(𝐶𝑐𝑗
𝑡𝑖 , 𝐶𝑐𝑘

𝑠) = (𝑑𝑔𝑟𝑒𝑒, 𝑟𝑒𝑙), where 

dregee = {
𝐻𝑖𝑔ℎ              MAX (

|rset|

|𝐶𝑐𝑖
𝑡|

,
|rset|

|𝐶𝑐𝑗
𝑠|

) > δ,

𝐿𝑜𝑤                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.         

 (δ = 0.3 in our case). 

  To illustrate DRDM clearly, we give its structure shown in Fig.5. For each topic ti, there must exist a 

related 𝐶𝑐𝑡𝑖𝑠𝑒𝑡; and the relationship between common-concerns and special-concerns are the basis of 

the relationship between the clusters containing them respectively; additionally, the concerns in NF 

must relate to a concern related to functional feature in F. Such structure can support the generation of a 

report (details are given in 4.3) to help developers retrieve and understand the domain knowledge in 

DRDM. 
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Fig.5. Structure of DRDM 



5.2 Determine the priority of information 

In data of D′set, there is a set of attributes obtained from app marketplace (introduced in Section 3). 

These attributes not only indicate the market value of app products, but also reflect the value of 

features contained in the apps. Thus, the priority of information is determined based on these attributes.   

  In D′set, we collect the attributes related to the market value of apps to generate the set Attibute =

{A1, … , An}, then the value of CDM established from a description can be quantified by the formula 

generally expressed as follow:  

V(CDM) = 𝑓𝑣(𝑔1(𝐴1), … , 𝑔𝑛(𝐴𝑛)), 

where function 𝑓𝑣()  is generated based on the relationship between the attributes; 𝑔𝑖(𝐴𝑖)  is a 

transformation function for Ai to adjust its change tendency. All these functions balance the range of 

various attributes. 

  In this paper, we set Attribute=(Rating, Downloads). Rating and Downloads of app products are 

widespread attributes existing in almost every app marketplace, and they can indicate the market value 

of an app directly. Thus, we give the concrete function expressions in the formula of V(CDM) based on 

them. 

  Firstly, the rating ranges from 1 to 5, and we formalize the Rating in V(CDM). In other words, the 

transformation function for Rating is 𝑔𝑟(𝑅𝑎𝑡𝑖𝑛𝑔) = (𝑅𝑎𝑡𝑒 − 1)/4. However, the range of Downloads 

can be from zero to thousands or even larger, so we design the following function to balance its value 

with Rating: 

𝑔𝐷(𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠) = 𝐶𝑜𝑠 (
𝜋

2 × (𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠/𝐾 + 1)
), 

where 𝑔𝐷() utilizes the property of cosine function to complete the formalization of Download. More 

often an app has been downloaded, the closer its value is to 1. K is an integral number, which is used to 

adjust the change tendency of 𝑔𝐷() for adapting different app domains. For a hot domain, K can be 

increased to discriminate the value of different apps with high downloads. 

  Based on the functions above, we define function 𝑓𝑣() as: 

𝑓𝑣(𝑅𝑎𝑡𝑖𝑛𝑔, 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑) = 𝑤1𝑔𝑟(𝑅𝑎𝑡𝑖𝑛𝑔) + 𝑤2𝑔𝐷(𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠), 

where wi is the weight determined according to the focus of developers and 𝑤1 + 𝑤2 = 1, so the range 

of 𝑓𝑣() is (0,1). 

  We can use function 𝑓𝑣() to quantify the market value of an CDM in CDMset, and the value of 

V(CDM) can be delivered to the concerns in this CDM: for 𝐶 ∈CDM.Cset, the value of C (donated by 

val(C)) is proportional to V(CDM). Additionally, there are some concerns that they are mentioned 

repeatedly in the app descriptions, that is |𝐶. 𝑁𝑢𝑚𝑠| > 1. This means the information in the concerns 

are highly emphasized by its developers, and their value should be increased correspondingly. Thus, we 

design the function to quantify the value of concerns as follow: ∀𝐶 ∈ CDM. Cset, 

val(C) = V(CDM) × (1 +
|𝐶. 𝑁𝑢𝑚𝑠| − 1

∑ |𝐶𝑖 . 𝑁𝑢𝑚𝑠|𝐶𝑖∈𝐶𝐷𝑀.𝐶𝑠𝑒𝑡

). 

  Utilizing the formula above, we can calculate the value of each concern in CDMset. This provides 

the basis for determining the priority of concerns in DRDM.  

  In DRDM, NF is the set of concerns and the value of its elements can be calculated by val(C) 

directly. Since the elements of 𝐶𝑐𝑡𝑠𝑒𝑡 or 𝐶𝑐𝑠𝑠𝑒𝑡 in DRDM.F are sets of concerns, we further 

propose the method to calculate their values. Suppose e is an element in 𝐶𝑐𝑡𝑠𝑒𝑡 or 𝐶𝑐𝑠𝑠𝑒𝑡, e is 𝐶𝑐𝑖
𝑡 

or 𝐶𝑐𝑗
𝑠, it can be expressed as 𝑒 = {𝐶1, … , 𝐶𝑛} in a unified way. We analyze the key factors that affect 

the value of e(donated by V_e(e). |e| is the number of elements in e, and it reflects the frequency that 



the information appears in original dataset, so V_e(e) is proportional to |e|. The average of element’s 

value 𝐸(𝑒) =
∑ 𝑣𝑎𝑙(𝐶𝑖)𝑖=𝑛

𝑖=1

|𝑒|
 indicates the general value of elements in e in the market and V_e(e) is also 

proportional to 𝐸(𝑒). The variance of element’s value D(𝑒) =
1

|𝑒|
∑ (𝑣𝑎𝑙(𝐶𝑖) − 𝐸(𝑒))2𝑖=𝑛

𝑖=1  can reflect 

the fluctuation of the values of elements in e, the larger D(𝑒) is, the more intense the fluctuation of e 

is in the market and the smaller value of e to developers, so V_e(e) is inversely proportional to D(𝑒). 

According to the analysis above, we calculate e by: 

V_e(e) = 𝑓𝑣
𝑒((

𝐸(𝑒)

1 + 𝐷(𝑒)
) , 𝑔𝑒(|e|)). 

  In function 𝑓𝑣
𝑒(), there are two parameters (

𝐸(𝑒)

1+𝐷(𝑒)
) and |e|. The two parameters can indicate the 

value of a data unit and frequency of data separately and we find that they are similar with Rating and 

Downloads in V(CDM) after Rating is changed to its formalization. So we define transformation 

function 𝑔𝑒() = 𝑔𝐷(). In addition, 𝑓𝑣
𝑒() is defined according to developers to balance between these 

parameters, and we define 𝑓𝑣
𝑒() = 𝑓𝑣(). In this way, the formula that quantifies the value of CDM is 

reused to calculate V_e(𝑒). 

   Based on the quantified values, the information with same type in DRDM can be sorted and its 

priority can be determined. 

5.3 The report of DRDM 

In order to facilitate app developers to retrieve and read the information in DRDM, we generate a 

report based on the priorities. Fig.6 shows the report generated in our case study, and we use it to show 

the overall framework of our report. The top in Fig.6 is the main part of report and it includes three 

layers, each of which takes a kind of information in DRDM.F as the main subject and takes the 

information in DRDM.NF as complement to establish a catalog. 

1) The ‘Topic Layer’ contains the information of F.T and its catalog is organized to two levels: the 

first level is the name of topics, and it can be unfolded to the second level which contains the 

keywords of each topic. This layer shown in Fig.6 is the five topics with their keywords given in 

Table 3(b).  

2) The ‘Common Layer’ is the exhibition of F.CcTset. As each element in CcTset is related to a 

topic, the information in this layer is shown taking 𝐶𝑐𝑡𝑖𝑠𝑒𝑡 as a unit. The ‘Common Layer’ in 

Fig.6. shows the information in 𝐶𝑐𝑡2𝑠𝑒𝑡 which is related to Video T(2). In a unit, the catalog is 

divided into three layers: the first level is the name of concern cluster 𝐶𝑐𝑗
𝑡𝑖 in 𝐶𝑐𝑡𝑖𝑠𝑒𝑡, gained by 

combining the most frequent verbs and nouns in the bag of words of 𝐶𝑐𝑗
𝑡𝑖; the second level is the 

concerns in 𝐶𝑐𝑗
𝑡𝑖; the third level is the property-concerns in DRDM.NF which has the Property_of 

relationship with the concerns in the second level, that is if there exists 

(Ci, Cj, sentN, Property_of) ∈ R. R𝑛−𝑓, the Ci in the second level can be unfold to Cj in the third 

level. An example of these three levels from top to bottom is ‘Send(Video) ⟶Broadcast 

video⟶Directly’ in Fig.6.  

3) The ‘Special Layer’ is the exhibition of F.Cc𝑠set, and its structure is similar as the ‘Common 

Layer’ except the third layer cannot be divided into units. In each layer, the developers can unfold 

the current information level by level as introduced above.  

On top of that, developers can jump to the next layer by clicking the label of the first level and get 



the related part of the next layer. Specially, by choosing the topic ti in the ‘Topic Layer’, developer can 

obtain the information of 𝐶𝑐𝑗
𝑡𝑖 in ‘Common Layer’. Furthermore, when developers select 𝐶𝑐𝑗

𝑡𝑖, the 

information 𝐶𝑐𝑘
𝑠 satisfying the condition that there exists Rf−f(𝐶𝑐𝑗

𝑡𝑖 , 𝐶𝑐𝑘
𝑠 ) = (High, rel) in DRDM.R is 

shown in ‘Special Layer’. For example, 𝐶𝑐𝑘
𝑠 ‘Find film’ is shown when developers select 𝐶𝑐𝑗

𝑡2’Send 

video’ in Fig.6. 

For an element 𝐶𝑐𝑘
𝑠 in F.𝐶𝑐𝑠𝑠𝑒𝑡, if there is no relationship Rf−f(𝐶𝑐𝑗

𝑡𝑖 , 𝐶𝑐𝑘
𝑠 ) or Rf−f(𝐶𝑐𝑗

𝑡𝑖 , 𝐶𝑐𝑘
𝑠 ) =

(Low, rel) in DRDM.R, 𝐶𝑐𝑘
𝑠 cannot be linked to the main part of report (Such as ‘Check room’ in 

Fig.6). These elements together with its related information in DRDM.NF construct a supplement part 

of report. Its organization shown in the bottom of Fig.6 is the same as the third layer of main part of 

report. 

In the report, information in each layer and each level is ranked based on its priority determined by 

our method (introduced in Section 5.2). The top-k ones are shown to developers each time to help 

developers discover the key knowledge they want, and the next top-k ones will be shown according to 

developers’ needs. Besides, if some information cannot be well understood in the process of using 

report, the developers can get the related app descriptions in which the concrete sentences are 

highlighted by opening the Page(PID_id). In some particular situations, developers may want more 

detailed information related to a given common-concern. So it can jump to related specific-concerns for 

a common-concern in our report. That is for a certain common-concern C𝑖 , if there exists 

(C𝑖 , Cj, Common_Special, sentN) ∈ Rf−f.𝑟𝑒𝑙 in DRDM.R, developers can gain the information of Cj 

from Ci directly.  
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Fig.6. Report of DRDM 

6. Evaluation and Results 

To evaluate the effectiveness of proposed approach, we conducted experiments that primarily aimed 

at answering the following two questions: 

Q1: What is the performance of each method used in constructing DRDM? 

Q2: Whether DRDM is useful for supporting domain analysis? 

Specifically, Q1 focused on ensuring whether the proposed approach can gain and express the 

domain knowledge in app descriptions correctly. The goal of Q2 was to analyze the usefulness of 

DRDM in helping developers make business decisions in the last stage of domain analysis, and it 



focused on examining whether DRDM have a sufficiently high level of comprehensibility and usability. 

This section reports the design and results of our experiments. 

6.1 Participants 

  The experiments were conducted at the University of Jilin from the fall semester of 2016 to the 

spring semester of 2017. The participants included the following three parts. 

1) 3 domain analysts who had more than five years’ experience in the development of software 

system. They created the ground truth set used in the experiments and gave the final evaluation 

and suggestions from a professional view. 

2) 10 graduates majoring in software engineering, especially domain analysis, modeling languages 

and techniques, data mining. They were the participants in the experiments that required professional 

knowledge. 3 of them had industrial experience in software engineering while others did not. 

3) 60 Computer Science students, all of them had taken the undergraduate course on software 

engineering and had studied modeling and requirements engineering. They were the participants of 

surveys, and they were not expected to be familiar with feature modeling prior to the experiments. 

6.2 Dataset 

  We had collected data from Google Play and created two datasets for our experiments. 

  Dataset_1 was a set of 120 app description texts, which were collected from six classes of apps 

(‘Communication’, ‘Travel’, ‘Game’, ‘Photography’, ‘Sports’, ‘Education’) in Google Play. It covered 

the products from popular mainstream to relatively professional domain. To make the data more typical, 

The 20 app products with different Ratings were selected from each class. Then, three domain analysts 

extracted the features from each text in Dataset_1 individually for establishing a truth set, in which the 

final results are determined by the ‘majority rules’. 

Dataset_2 was a set of data collected from 454 apps from the class of ‘social’, which included the 

apps for social activities in Google Play. The reasons that we select ‘social’ as the object are: firstly, 

there are a huge number of such apps in Google Play with diffident popular degrees, so it can be able to 

cover all kinds of situations better; and secondly, since these apps aim at common people, the 

knowledge in this domain is relatively more understandable, which is beneficial for conducting our 

surveys. 

6.3 Experimental Design 

  The process of evaluation was divided into two parts for answering Q1 and Q2 respectively. The 

design of experiments are given as follow. 

6.3.1 The experiments for Q1 

  Our approach constructs two kinds of models: CDM and DRDM. CDM is constructed based on two 

methods: feature extraction and topic modeling. DRDM is constructed by integrating the set of CDMs, 

which mainly uses feature clustering or feature grouping. Thus, we conducted experiments to evaluate 

the performance of each method, and the three experiments together can answer Q1. 

  Firstly, we constructed CDM for each description text in Dataset_1 automatically and compared the 

features extracted in this process with the truth set. Three evaluation parameters are used in 

experiments: TP, the number of features which are included in both CDM and truth set; FP, the number 

of features which are contained in CDM but not in truth set; FN, the number of features which are 



contained in truth set but not in CDM. Then we evaluate the performance of our feature extraction 

method by calculating: Precision, Recall, and F-measure, which are defined as follows: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
;   Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
;   F − measure =

2 × Precision × Recall

Precision + Recall
. 

  Secondly, to study whether O-LDA is effective for our topic modeling task, we compared the outputs 

of O-LDA with the ones of the basic LDA. The topics of app description texts in each class of 

Dataset_1 and Dataset_2 were obtained by using O-LDA and the basic LDA separately. And 10 

graduates were asked to evaluate each result from two aspects: whether the result is understandable; 

and whether the result is reasonable. The responses were reported by the participants on a scale of 1 to 

5, where 1 indicates ‘strongly disagree’ and 5, ‘strongly agree’. In this way, each result got its final 

score from 2 to 10. There were totally 10 paired samples for each class. Because they was not 

distributed normally as the number of samples is less than 30, we adopted the Wilcoxon signed ranks 

test to analyze them with the null hypothesis H0effectiveness: there is no difference in effectiveness 

between the results of O-LDA and the basic LDA.  

  Thirdly, to evaluate our feature clustering method, we compare it with K-means, which is a common 

baseline used in many researches. Since the unsupervised measures such as cluster cohesion and cluster 

isolation evaluate the clustering method without reference to external information, they fail to evaluate 

how well the generated clusters support specific tasks [40]  . In contrast, supervised measures evaluate 

the extent to which generated clusters match to an external ideal structure or ground truth (called 

answer set). Thus, we use supervised measures in our experiment. In the evaluation, clusters of features 

in each class of Dataset_1 were generated by our method and K-means separately, and the ideal clusters 

were produced by domain analysts manually. Then Purity is measured by comparing generated 

clusters to the answer set clusters: let the total number of features to be clustered be N, 𝑊 =

{𝑤1, … , 𝑤𝑛} be the set of clusters found by the clustering algorithm and 𝐶𝐿𝑈 = {𝑐𝑙𝑢1, … , 𝑐𝑙𝑢𝑚} 

be the set of answer set, purity can be calculated as follow: 

Purity(𝑊, 𝐶𝐿𝑈) =
1

𝑁
∑ maxj|𝑤𝑘 ∩ 𝑐𝑙𝑢𝑗| .

𝑘

 

The range of Purity is 0-1, and the closer it to 1, the better clustering algorithm is. 

6.3.2 The experiments for Q2 

Evaluating the usefulness of DRDM is a nontrivial task. We firstly analyzed a case study based on 

Dataset_2, on which we conducted two surveys for answering Q2. The first survey focused on 

evaluating the priority of concerns (describing features) in DRDM; and the second one focused on 

evaluating the comprehensibility and usability of the report of the DRDM generated in the case study. 

The case study was conducted step by step according to our approach, so we do not explain its 

process here. The design of two surveys is introduced next. 

 

(1) The survey on the priority of domain knowledge in DRDM (Survey_1) 

It is difficult to evaluate the performance of our quantified method in determining the priority of 

domain knowledge directly, because even domain analysts cannot give us the right answers exactly. 

For example, it is hard to compare the market value of feature ‘share message’ with the feature ‘share 

video’. Thus, we designed a survey to study the performance of our method indirectly.  

Firstly, we selected the top-20 concerns from the same keyword in DRDM. These concerns satisfied 

two conditions: they were titles of concern clusters, so that they can describe a cluster of features, such 



as ‘take photo’; they belonged to the same keyword, which could be the keyword of topics or the ones 

we gained in the process of data integration of special concerns (introduced in 5.1). These conditions 

were used to guarantee the concerns were comparable. 

 Secondly, for each concern, we used a sentence to describe its meaning. There were constraints: the 

sentence was modified based on the app descriptions in Dataset_2 to guarantee its authenticity; 

furthermore, the sentence was simple by eliminating the redundant information as much as possible to 

avoid that it may mislead the readers. For example, we find a sentence ‘you can edit selfies and photos 

so that you can add some effects and some great masks to them’ for feature ‘edit photo’, and we 

simplify it to ‘You can edit photos so that you can add some effects.’ 

Finally, we gave the concerns and their illustrations in a random order to 60 students, and asked them 

to judge ‘whether it describes a basic/important feature for the product in this domain’ for each concern 

separately, the answer can be selected from ‘Yes’, ‘No’, or ‘I do not understand this concern’. 

  The answers were collected and divided into two groups: one group was the answers of Top 10 

concerns, the other was the answers of Top 11-20 concerns. We defined the percent of answer ‘Yes’ as 

the precision of a group. The survey included the concerns from 7 different keywords, 5 from topic and 

2 from data integration of special concerns, to guarantee it could cover all kinds of conditions in 

DRDM. Because there were 60 paired of results for each keyword, we assumed that they was 

distributed normally and used the Student’s t-test to analyze them. The null hypothesis H0priority 

evaluated in the survey was: there are no difference in precision between two groups. 

 

(2) The survey on the usefulness of report (Survey_2) 

  This survey aimed at evaluating the usefulness of DRDM by comparing it with raw data of app 

descriptions and the approach proposed in [8]  .  

  The approach proposed in [8]   mines feature descriptors from publicly available software 

repositories of product descriptions, then it analyzes the relationship between features and products, 

and generate a Feature Model (we donated it as FM-8) to recommend features for supporting domain 

analysis of a specific project. Due to this approach is typical and has been widely confirmed, besides it 

uses inputs and has goals similar to those in our approach, we choose it as the compared object to 

evaluate DRDM. In our experiment, two models (DRDM and FM-8) were generated automatically from 

Dataset_2 and used as the materials for the survey.  

Based on the materials (raw app descriptions, DRDM, or FM-8), we designed an online questionnaire 

to evaluate their usefulness. The questionnaire included three parts:  

1) The first part was the questions about the notions in domain analysis. This part aimed at ensuring 

the participants have basic knowledge of domain analysis to finish the tasks in the survey. Only 

when the participants had given the right answers to these questions, they could proceed to the 

next part. 

2) The second part was 10 questions on the domain knowledge of ‘social apps’. The participants 

needed to answer these questions with the help of the given material. For each question, we 

offered a multiple answer choice, and the participants could also give the open answer by listing 

the elements from the material. To prevent guessing, one option was given: ‘I don’t know’. At the 

end of this part, the participants were required to grade their agreement on the questions with two 

parameters: the difficulty in answering and the confidence in response. 

3) The third part was an open task, asking the participants to make business decisions for a specific 

app. The participants needed to describe the app and gave the features of the app. Also, they were 



required to classify the features into two types: which features are basic for the app; and which 

ones are creative for attracting users. Moreover, the participants needed to mark each feature with 

‘whether it comes from the material or from their own knowledge’. 

In the survey, the 60 students were randomly divided into 3 groups, each of which was given 

different materials (raw app descriptions, DRDM, or FM-8) for answering the questionnaire. Four 

variables were obtained from each questionnaire by the domain analysts. 

 Score is the evaluation of the answers in the questionnaire given by the domain analysts. Its 

range is 0-100, in which the second and third part of questionnaire occupy 50 separately. 

 Time to complete the questionnaire was recorded.  

 Difficulty in answering and confidence in response were reported by the participants on a scale of 

1 to 5. 

  Because the number of samples is less than 30, we did not assume that the data was distributed 

normally and adopted the Mann-Whitney U test for analyzing the data collected in this survey. Two 

null hypotheses are given in Table 4. 

Table 4 Null hypotheses for evaluating the usefulness of DRDM 

Null hypotheses  Independent variables Dependent variables 

H0
1
score/ H0

1
time / H0

1
diff / H0

1
con : 

There is no difference, in terms of 

score/time/difficulty/confidence, 

between responses answered using 

raw app descriptions and those 

answered using DRDM.  

 Materials: 

Raw app descriptions 

DRDM 

Score 

Time 

Difficulty 

Confidence 

H0
2
score/ H0

2
time / H0

2
diff / H0

2
con： 

There is no difference, in terms of 

score/time/difficulty/confidence, 

between responses answered using 

DRDM and those answered using 

FM-21. 

 Materials: 

DRDM 

FM-8. 

Score 

Time 

Difficulty 

Confidence 

Moreover, we used two-tailed statistical tests for all comparisons (whether when comparing raw app 

descriptions and DRDM or comparing FM-8 and DRDM) due to the non-directionality of the 

hypotheses. 

  Note that in all the statistical tests, we accepted a probability of 5% as the threshold to reject the null 

hypothesis. 

6.4 Results and Analysis for Q1 

To support the automation of our approach, we develop a tool based on Python. The tool contains 

three parts: the first part transforms app description to concerns, using Stanford Parser to obtain 

parsing trees of sentences and extracting features from the tree to generate concerns based on 

predefined abstract rules (introduced in Section 4.2); the second part implements O-LDA to obtain 

topics, and constructs CDM for each description by classifying concerns and establishing relationship 

between them; the third part groups the features to construct DRDM. With the help of this tool, we 

conducted the experiments for Q1 (introduced in 6.3.1), and the results for each experiment are 

analyzed next. 



6.4.1 Evaluation of our feature extraction method 

  Since the features are expressed in natural language, it is difficult to evaluate the features extracted 

by our method with the truth set automatically. Thus, the comparisons were conducted by three domain 

analysts manually in the experiment.  

Table 5 summarizes the results of experiments. It can be seen that the precision and recall of our 

feature extraction method are 86.15% and 83.45% on average respectively. The values of F-measure in 

all but one class are above 80% (except in ‘Travel’). It indicates that our method can achieve a good 

performance. Moreover, the variation of all evaluation measures is stable, as shown in Fig.7. It verifies 

that our method is suitable for different classes of app description texts. 

Table 5 The performance of feature extraction in our approach 

Class Precision Recall F-measure 

Communication 86.37% 76.37% 81.06% 

Photography 93.75% 78.95% 85.72% 

Sports 84.93% 93.75% 89.12% 

Education 81.79% 86.43% 84.05% 

Game 93.36% 83.34% 88.07% 

Travel 76.67% 81.88% 79.19% 

Average 86.15% 83.45% 84.54% 

 

Fig.7. Variation tendency of the performance of our feature extraction method. 

  Due to the importance of the feature extraction method in our approach, we compared it with 

existing methods to test its performance. The ideal approach would use these methods to handle the 

texts in Dataset_1 for getting the compared results. However, the feature extraction methods always 

take a certain kind of texts as input and there is no research focusing on app descriptions as we 

discussed in Section 2, so these methods cannot achieve good results in our dataset and it is not fair to 

evaluate our method by comparing with such results. Moreover, we extract non-functional features 

which are usually overlooked in many methods. This makes it difficult to compare them with our 

method. To alleviate the above problems, we choose four typical methods that also use precision, recall 

and F-measure as the evaluation measures in their research papers, so that we can quote the results 

directly. Table 6 shows the literatures we used in the comparison. In these methods, S1 and S2 take the 

first type of texts as input, whereas S3 and S4 take the third type of texts as input (introduced in Section 

2). Thus, they can cover the whole research field well. 

The results of comparison are given in Table 7. Because the values of evaluation measures of the 
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compared methods are quoted from their papers, we just give the aggregated results rather than 

showing them on each category as Table 5. It can be seen that our method achieves the best results on 

average. The performance of our method is also better in the worst condition (recall is 78.95% and 

F-measure is 79.19%), which is an important factor affecting the effectiveness of a method. Thus, it 

indicates that our feature extraction with such performance can be used in practice. 

Note that the comparison can validate our method, but it does not mean our method is superior to the 

compared ones. Because the success of our method depends on pre-defined rules, which need extra 

efforts to achieve such a good performance.  

Due to the literatures of the compared methods aim at solving different problems from ours and 

feature extraction is just one step in their approach, we did not use them as the objects in the following 

comparisons. 

Table 6 The compared methods. 

S1 Extracting software functional requirements from free text documents[15]  . 

S2 Decision Support for the Software Product Line Domain Engineering Lifecycle[16]  . 

S3 How Do Users Like This Feature? A Fine Grained Sentiment Analysis of App 

Review[29]  . 

S4 Extracting features from online software reviews to aid requirements reuse[31]  . 

Table 7 The results of comparison  

  Our method S1 S2 S3 S4 

Precision Lowest 76.67% 39.30% 82.00% 33.50% 51.15% 

Highest 93.75% 95.10% 88.00% 91.00% 87.39% 

Average 86.15% 80.27% 85.00% 59.15% 62.63% 

Recall Lowest 78.95% 18.60% 73.00% 32.10% 78.49% 

Highest 93.75% 98.50% 87.00% 73.40% 86.08% 

Average 83.45% 66.19% 78.00% 51.30% 82.17% 

F-measure Lowest 79.19% 28.50% 73.00% 33.40% 62.62% 

Highest 89.12% 96.80% 86.00% 81.30% 82.70% 

Average 84.54% 70.68% 80.00% 54.90% 70.80% 

In our experiments, we find some factors influencing the performance of our method. Firstly, the 

parsing tree gained by Stanford Parser is not correct completely, which is a problem in nature language 

researches. We alleviate this problem by shortening the sentence to be handled and designing more 

feature extraction rules, and more parsing methods and tools will be utilized in our approach. Secondly, 

some description texts with low quality affect the performance. In our feature extraction method, we 

assume that the syntax of app description given by providers is basically correct, but there are some 

texts containing too much mistakes in fact. Since there are no patterns of such mistakes, it is difficult to 

be solved directly in our feature extracting process. Thus, we consider to give quantified assessment 

methods of app descriptions to support the filtering of dataset in our further work. 

6.4.2 Evaluation of O-LDA by comparing with the basic LDA 

  In this comparison, we varied the number of topics (donated as K) and chose the value of K 

according to the results themselves by analysts for each class in Dataset_1 and Dataset_2. In this way, 

totally 7 paired topic modelling results were generated and they were evaluated by 10 graduates. Table 

8 summarizes the results of the comparison. As noted, we used the Wilcoxon signed ranks test (2-tailed 

test) for analyzing the results. We can see that the mean scores of O-LDA are higher than LDA in all 



the 7 classes of app descriptions, especially in ‘Communication’ (8.2 for O-LDA and 5.4 for LDA). 

This difference is significant except in ‘Sports’, resulting in all but one p-values are smaller than 0.05 

(except 0.136 in ‘Sports’). Based on this analysis, we can reject hypothesis H0effectiveness in all the 

classes except ‘Sport’. Thus, we conclude that O-LDA is more effective for our problem than the basic 

LDA. 

We analyze the reasons of phenomena above as follows. The basic LDA does not have process of 

information extraction, so there are redundant words affecting the results of LDA; moreover, we find 

that the kinds of verbs are much fewer than nouns in the descriptions of a particular app domain (about 

1:9 in Datase_2), which means that the frequency of a verb is much higher and causes difficulty to 

using LDA in our problem. In our further work, we will compare O-LDA with other data analysis 

techniques and improve the performance by deeply researching its combination with other techniques. 

Table 8 The comparison of O-LDA with the basic LDA 

 O-LDA  LDA P-Value 

(2-Tailed) Mean Sd  Mean Sd 

Communication 8.2 0.79  5.4 0.84 0.007 

Photography 7.0 1.05  4.3 1.41 0.009 

Sports 6.8 1.48  5.3 1.70 0.136 

Education 7.2 1.03  5.2 1.05 0.005 

Game 6.5 1.08  4.1 0.99 0.008 

Travel 7.1 1.45  5.1 1.10 0.016 

Social 7.8 0.92  6.0 0.66 0.004 

H0effectiveness :There is no difference in effectiveness between the results of O-LDA and the basic 

LDA. 

6.4.3 Evaluation of our feature clustering method 

  In this experiment, each generated cluster of our method and K-Means was matched with the answer 

set cluster with which it shares the most features, and the purities of two methods were calculated for 

the 7 classes of apps. Fig. 8 shows the results of comparison. It is clearly that the purity of our method 

is higher than the value of K-Means in all conditions, and there is about 10 percent improvement on 

average. This comparison indicates that our feature grouping method is more appropriate for our 

problem than K-Means.  

By analyzing the clusters in this experiment, we summarize the reasons for results of this 

comparison: firstly, the description of features in our approach can be divided into two parts providing 

a condition for grouping them, and our method make full use of this condition; secondly, the 

relationship between features are also utilized in our method, while these factors are not considered in 

other clustering methods. 

 

Fig.8. Comparison of purity for our feature grouping method and K-Means 
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6.5 Analysis of the case study for Q2 

A case study on dataset_2 is conducted and finial DRDM is constructed utilizing our approach to 

evaluate its usability. In order to construct DRDM automatically, five parameters (introduced in Section 

4 and 5) need to be pre-set. However, there is no theory to calculate the values of these parameters, so 

we firstly assignment their initial values based on our pervious experiments; then randomly sample 

date from the results of each step in the whole process and evaluate them manually to modify the 

related parameters until the results are acceptable; and the final values of parameters are set as default 

values in our tool to support the automatic process of more analysis tasks. The concrete values of 

parameters we used have been given when the parameters are defined, and the results of our case study 

are shown and analyzed in this sub-section.  

6.5.1 An example of CDM in our case 

The app descriptions in Dataset_2 are transformed to CDMs automatically by the tool we developed. 

Table 9 gives an example of concerns in one CDM constructed from the description text shown in 

Table 1 based on the results of O-LDA shown Table 3(b). There are total 36 concerns generated from 

the app description, where 17 common-concerns, 10 special-concerns and 9 property-concerns. It can 

be seen that almost all the features in the description text are contained in the concerns. Meanwhile, a 

property-concern is meaningless itself, but we can gain meaningful features when combine it with 

common/special-concerns. For example, combining concern 6 with concern 5, we can get a meaningful 

phase ‘discover accounts from all over the world’ to describe a feature of the app. 

Although the relationship between concerns are not shown in the table, they can be established by 

the process introduced in Section 4.3.2. For example, concern 19 ‘share photos’ and 20 ‘share videos’ 

are extracted from the same sentence ‘Share multiple photos and videos (as many as you want!) to your 

story’, so there is a Common_of relationship between them.  

Table 9 Concerns in one CDM  

type  The descriptions in concerns 

Common 1.capture moments 2.share moments 4.follow family 10.sharing moments 12.post photos 

13.post videos 14.edit photo 15.edit videos 19.share photos 20.share videos 

21.Photo disappear 22.videos disappear 27.discover photos 28.discover videos 29.send messages   

31.send photos 32.send videos    

Special  3.follow friends 5.discover account    7.sharing things 8.join community 17.combine clips 

24.watch stories   25. view stories 26.follow accounts 33.send posts 34.share posts 

Property  6.from all over the world 9.of over 500 million people 11.of your day 

16.with filters and creative tools 18.into one video 30.in the Explore tab 23.after 24 hours 

35.from your feed directly to friends 36.to Facebook, Twitter, Tumblr and other social networks 

6.5.2 Introduction and analysis of the DRDM constructed in our case 

In the DRDM constructed in our case study, there are total 13308 concerns generated from Dataset_2: 

8768 of them are related to functional features, while 4540 are related to non-functional features. After 

data integration (introduced in Section 5.1), we obtain 335 clusters of common-concerns and 553 

clusters of special-concerns.  

Table 10 gives the statistic number of clusters and concerns. The 8768 function related concerns are 

further divided into two types: 2310 of them are common concerns, and 6458 are special. Furthermore, 

the common concerns are related to the topics (shown in Table 3(b)). For example, 487 concerns are 



related to the Photo(T1) and are grouped into 72 clusters, whereas the special concerns are analyzed as 

a whole, and they are grouped into 553 clusters.  

In order to analyze the DRDM more intuitively, we give some examples of each part in DRDM next. 

Table 10 Statistics of DRDM in our case. 

Total: 13308  

Common: 

(2310) 

T1: | 𝐶𝑐𝑡1𝑠𝑒𝑡|=72 ∑ |𝐶𝑐𝑡1|=487 

T2: | 𝐶𝑐𝑡2𝑠𝑒𝑡|=75 ∑ |𝐶𝑐𝑡2|=567 

T3: | 𝐶𝑐𝑡3𝑠𝑒𝑡|=66 ∑ |𝐶𝑐𝑡3|=507 

T4: | 𝐶𝑐𝑡4𝑠𝑒𝑡|=59  ∑ |𝐶𝑐𝑡4|=348 

T5: | 𝐶𝑐𝑡5𝑠𝑒𝑡|=63 ∑ |𝐶𝑐𝑡5|=401 

Special:(6458) | 𝐶𝑐𝑠𝑠𝑒𝑡|=553  

Property:(4540)   

  Table 11 shows part of elements in CcTset, which is the results of data integration of common 

concerns. The titles in Table 10 are as same as the topics in Table 3(b). For a top ti, we give five 

examples of elements in 𝐶𝑐𝑡𝑖𝑠𝑒𝑡. For example, in 𝐶𝑐𝑡1𝑠𝑒𝑡 which is related to Photo(T1), the first 

element is 𝐶𝑐1
𝑡1={‘Take photo’, ‘Select photo’, ‘Choose photo’, ‘Get photo’, ‘Bring photo’,…}, where 

‘Take photo’ is taken as the Name of 𝐶𝑐1
𝑡1 for its high priority (determined by the method introduced 

in 5.2), and the verbs is the set of 𝐶. 𝐷𝑒𝑠𝑣𝑒𝑟𝑏  clustered in our method. In addition, after classifying 

and clustering the concerns related to T1, we have gained two kinds of clusters related to ‘Photo’ and 

‘Picture’ separately, but at the merging step of data integration, they are merged to form a kind of 

clusters for the intense relationship between the concerns in them. Thus, the concerns—such as ‘Take 

picture’, ‘select picture ‘— are also contained in 𝐶𝑐1
𝑡1. From Table 10, we can see that each cluster in 

𝐶𝑐𝑡𝑖𝑠𝑒𝑡 is meaningful and describes a kind of function features under one topic, so it can help 

developers discover common knowledge to a particular domain quickly. 

Table 11 Part of CcTset  

Photo(T1) Video(T2) People(T3) Text(T4) Love(T5) 

Name verbs Name verbs Name verbs Name verbs Name verbs 
Take  
(photo, 

picture) 

Select  Make 
(video) 

Take Chat 
(people) 

Talk Send 
(text, 

message) 

Post Want 
(love) 

wish 

Choose Get Communicate Deliver care 

Get Add Invite Throw make 

Bring Need interact Convey Deserve 

Share 

(photo, 
picture) 

Send Watch 

(video) 

Enjoy Find 

(people) 

Discover Reply 

(text, 
message) 

Receive Fall 

(love) 

Receive 

Post Tag See Add Get 

Download Follow Hear Generate Find 

Tag  Use  Learn Get Start 

Find  

(photo, 

picture) 

Discover Send⑥ 

(video) 

Post View 

(people) 

Look Search 

(text, 

message) 

Find Express 

(love) 

Present 

Look Broadcast Want See Show 

See Install Like Know Tell 

Poke Record expect Love allow 

Edit 
(photo, 

picture) 

Publish Save  

(video) 

Download Connect 

(people) 

Join Manage 

(text, 

message) 

Show Share  

(love) 

Send 

Quote Keep Meet Set Flirt 

Save Support Let Define Spread 

add  Help Install  Do Write 

  𝐶𝑐𝑠𝑠𝑒𝑡 in DRDM.F is constructed by data integration of special concerns. The elements in 𝐶𝑐𝑠𝑠𝑒𝑡 

are clusters of concerns. Each cluster expresses a function that is extraordinary in the domain. Table 12 

gives some examples of elements 𝐶𝑐𝑖
𝑠 in 𝐶𝑐𝑠𝑠𝑒𝑡, where each cell in it shows a cluster of concerns. 

We can see that some of clusters can be easily understood (such as ① in Table 9), whereas others are 

not (such as ② in Table 9) and need to be further analyzed. Meanwhile, some of them may not be 

discovered in a simple domain analysis (such as ③ in Table 9), (but) these information may be helpful 

for generating creative ideas. Overall, we find that the information in 𝐶𝑐𝑠𝑠𝑒𝑡 is not as obvious as the 

one in 𝐶𝑐𝑡𝑖𝑠𝑒𝑡 in our case study. The reason is that: there is more detailed information in 𝐶𝑐𝑠𝑠𝑒𝑡 



(such as ④ in Table 9), and these features need be combined with other features together to express 

domain knowledge completely. 

Table 12 Examples of elements in 𝐶𝑐𝑠𝑠𝑒𝑡 

Find film        ① 

Discover name  
Detect menu 

Describe move 

Show ticket 

… 

Meet neighborhood② 

Choose group 
Take dinner 

Choose collection 

Consume power 
… 

Share tag        ⑤ 

Chat sticker  
Use symbol 

Look arrow 

Use trademark 
… 

Feed kid         ③ 

Bring baby 
Play child 

Work adult 

Meet boy 
… 

Read feedback 

Show smile 
Express dislike 

Understand talk 

Usher sign 
… 

 

Help husband 

Facilitate boyfriend 
Assist player 

Serve lover 

Attend companion 
… 

Create hotspot 

Make combination 
Create institution 

Build team 

Clear junto 
… 

Enjoy question 

Match problem 
Touch hair 

Apply beta 

Love problem 
… 

Listen audience 

Attend universe 
Come campus 

Manage environment 

Attend class 
… 

Save option 

Write idea 
Support choice 

Keep knowledge 

Maintain layout 
… 

Leave partner 

Allow driver 
Offer employee 

Provide stranger 

Benefit visitor 
… 

Develop craft 

Grow path 
Go business 

Become development 

Manage site 
… 

connect friend 

Direct developer 
Send viewers 

Send employee 

Transmit messenger 
… 

Check rooms 

Catch card 
Watch key 

View list 

See position 
… 

Hit clip       ④ 

Remove keyboard 
Choose button 

Remove memory 

Remove window 
… 

  The set of relationship R between the clusters of concerns is established to construct DRDM. This 

step relies on the sentences that contain different types of concerns (common-concerns and 

special-concerns). For example, in the sentence ‘The app has features such as to send video and enjoy 

to chat with anime sticker.’, there are two features ‘send video’ and ‘chat with anime sticker’, which 

belong to the common type and the special type respectively. Specially, ‘sent video’ is an element in 

𝐶𝑐3
𝑡3 (⑥ shown in Table 10) and ‘chat with anime sticker’ is an element in cluster ⑤ shown in Table 

11, so the Common_Special (defined in Section 3.1) relationship between the two concerns is part of 

Rf-f.rel between the two clusters above. By calculating the percentage of such relationship in ⑥ and 

⑤, the Rf-f.degree is identified as High. We review ⑥ and ⑤ manually, and find that ⑤ is a feature 

which supports the better realization of feature ⑥. 

  Based on the DRDM constructed in the case study, a report is generated. Its framework is shown in 

Fig.6 and its usefulness is evaluated in our surveys. 

6.6 Results and Analysis of the surveys for Q2 

  The surveys in the experiments for Q2 were based on the report generated in our case study and took 

place separately during the lesson hours of a software engineering course. To ensure the participants 

have high motivation, they were promised to get extra scores in the course. At the same time, they 

could quit the experiment without any negative effect. Before experiment, we gave a detailed 

introduction about the tasks and the basic notations of features. Moreover, before Survey_2 ( the survey 

on the usefulness of report), the three groups were isolated from each other and given additional 

introductions on the material given to them(raw app descriptions, DRDM, or FM-8). Then, the 

participants were asked to complete the tasks in the survey, and they could change their answers at any 

time before closing the surveys. The analysis of results is given in this sub-section. 

6.6.1 Survey for evaluating the determination of priority 

  The Survey_1 evaluated the determination of priority in our DRDM by 7 pairs of comparisons. We 

applying the Student’s t-test (2-Tailed) when the samples distributed normally, and the results are 

shown in Table 13. The first column is the type of the features in each comparison and the second 

column is the concrete keywords corresponding to the features. From Table 13, we can get to 

observations as follow. 



  Firstly, the average precisions for all keywords are higher than 70%, whether for Top 10 concerns or 

for Top 11-20 concerns (except one condition). This means the concerns with high priorities are 

valuable for domain analysis. 

  Secondly, the precisions of Top-10 concerns are higher than the ones of Top 11-20 in all keywords, 

and this differences is significant except in ‘Love’ and ‘Hotel’, resulting in the p-values are smaller 

than 0.05. Moreover, this observation is much clearer when we take all samples as a whole 

(p-value<0.001 totally). It indicates the top-10 concerns are more important than the top 11-20 ones. 

  Based on these analysis, we can reject hypothesis H0priority and conclude that the determination of 

priority in our method is reasonable.  

Table 13 The statistic results of Survey_1 

type Keyword Average precision  

of Top-10 

Average precision 

of Top 11-20 

p-value (2-Tailed) 

Common Photo 79.7% 72.0% 0.001 

Video 78.1% 71.8% 0.010 

People 77.8% 74.0% 0.028 

Text 80.8% 74.2% 0.004 

Love 71.5% 70.2% 0.507 

Special Film 77.5% 75.0% 0.185 

Hotel 73.5% 58.2% <0.001 

Total  77.0% 70.8% <0.001 

H0priority: there are no difference in precision between two groups. 

6.6.2 Survey for evaluating the usefulness of our report 

  To evaluate the report of DRDM, we compared it with raw app descriptions and FM-8 based on four 

variables collected from each questionnaire in Survey_2. The analysis is given next. 

6.6.2.1 Comparing DRDM with raw app descriptions 

  Table 14 summarizes the results regarding the differences between raw app descriptions and DRDM 

in helping answer the questionnaire. We used the Mann-Whitney U test (2-tailed) for all the hypotheses 

(H0
1
score/ H0

1
time / H0

1
diff / H0

1
con). We get the following observations: 

Firstly, the mean score is higher when the participants answering the questionnaire using DRDM 

than using raw app descriptions (75.8 for DRDM and 72.3 for descriptions), but this difference is not 

significant due to the p-value is 0.393; 

Secondly, the participants based on DRDM spent significantly shorter time on completing the tasks 

than the ones based on raw app descriptions (110.15 versus 153.15 on the mean and p-value is less than 

0.001); 

Finally, from the point of subjective feelings, the participants felt more confident and less difficult in 

answering the questionnaire when using DRDM than using raw app descriptions (4.05 and 2.7 for 

DRDM versus 3.30 and 3.4 for raw app descriptions, respectively). This difference is significant (the 

values of p-value are 0.033 and 0.010).  

Based on the analysis above, hypotheses H0
1
time, H0

1
diff and H0

1
con can be rejected, whereas 

hypothesis H0
1

score should be kept. 

Table 14 Results of Comparison (Raw app descriptions versus DRDM) 

 Raw App Descriptions  DRDM P-Value 

(2-Tailed) Mean Sd  Mean Sd 



Score 72.3 13.22  75.8 11.79 0.393 

Time 153.15 21.19  110.15 11.13 <0.001 

Confidence 3.30 1.12  4.05 0.82 0.033 

Difficulty 3.4 0.88  2.7 0.65 0.010 

 

6.6.2.2 Comparing DRDM with FM-8 

  Table 15 summarizes the results on the differences between FM-8 and DRDM, applying 

Mann-Whitney U test (2-tailed) to analyze the data for all the hypotheses (H0
2

score/ H0
2
time / H0

2
diff / 

H0
2
con). It can be seen that the participants answering the questionnaires based on DRDM got slightly 

higher scores than the ones based on FM-8 (75.8 for DRDM and 73.3 for FM-8), and they responded a 

higher confidence and a lower difficulty (4.05 versus 3.95 and 2.7 versus 2.9, respectively). However, 

these differences are insignificant in statistics (p-value are 0.626, 0.659 and 0.390 respectively).With 

respect to time to complete the tasks, the participants using FM-8 needed a significant longer time than 

using DRDM (p-value is 0.026) for answering questionnaire. Thus, we can only reject the hypothesis 

H0
2
time. 

Table 15 Results of Comparison (FM-8 versus DRDM) 

 FM-8  DRDM P-Value 

(2-Tailed) Mean Sd  Mean Sd 

Score 73.3 14.63  75.8 11.79 0.626 

Time 121.15 15.04  110.15 11.13 0.026 

Confidence 3.95 0.60  4.05 0.82 0.659 

Difficulty 2.9 0.72  2.7 0.65 0.390 

In order to further study the differences between DRDM and FM-8, we analyzed the scores of the 

second and third parts in the questionnaires separately, and the results are presented in Table 16. With 

respect to the second part of questionnaire, it was the questions that the answers could be obtained from 

the material (FM-8 or DRDM) directly. It can be seen that the mean score of this part is slightly higher 

when the participants using DRDM than using FM-8 (39.3 versus 38.1 where full score is 50), although 

the difference is insignificant (p-value of 0.095). With respect to the third part of questionnaire, it was a 

totally open task. Since the participants were asked to classify the features in their answers into basic 

and creative ones, we also evaluated the responds from these two aspects: for the basic features, the 

answers based on FM-8 obtained slightly higher scores than the ones based on DRDM (30.3 versus 29.4 

where full score is 40); while for the creative features, the answers based on DRDM obtained higher 

scores than the ones based on FM-8 (7.1 versus 4.9 where full score is 10) and this difference is 

significant(p-value of 0.001). This means DRDM is better in supporting the generation of creative 

ideas. 

Table 16 Comparison FM-8 and DRDM from different parts of questionnaire. 

  FM-8  DRDM P-Value 

(2-Tailed)  Mean Sd  Mean Sd 

Second part  38.1 6.97  39.3 5.85 0.095 

Third part Basic 30.3 7.35  29.4 6.23 0.469 

 Creative 4.9 2.10  7.10 1.52 0.001 

 

6.6.2.3 Discussion 

From the analysis above, the usefulness of raw app descriptions and DRDM is significant different. 

When using DRDM, participants could complete the tasks more easily within shorter time, and their 



confidence is higher. We believe that is because DRDM organizes the domain knowledge in a tree-like 

form and the features in it are specified explicitly, so it is faster for the users to obtain the information 

they need. With the insignificant differences in scores, we analyze the reasons from two points: one is 

that DRDM stems from the raw app descriptions, so it contains the same domain knowledge as raw app 

descriptions; the other is that the number of app description is still small, so the participants could 

search the whole dataset for completing the tasks although this needed more time. However, when there 

are a huge number of app description texts, such ‘searching strategy’ may become very difficult to 

conduct. Our further research on a larger set of app descriptions will investigate this hypothesis. 

However, when comparing DRDM with FM-8, the differences are not so significant as above. The 

main difference is that the time for answering the questionnaire required was shorter when using 

DRDM than when using FM-8. The phenomenon may be caused by different ways of using the two 

models: when obtaining information, the participants used the DRDM in a top-down way, which 

searches for features from the abstract to the concrete; while they interacted with FM-8 by providing 

feedback on candidate features for acquiring information. This difference makes FM-8 and DRDM 

adapt to the questions with different conditions. When the question contained explicit and concrete 

initial information about the task, the participants could use this information as the inputs of FM-8 to 

obtain the answers; but if the question was open, the participants needed to give the initial information 

themselves firstly for using FM-8, which may cost much time for the participants with limited 

background knowledge. This problem became more serious when answering the third part (a totally 

open task) of the questionnaire. Whereas our DRDM could alleviate this problem because it provides 

the information in a way of choices, so that the participants only need to choose the related one, step by 

step based on their understanding.  

In addition, we also found significant differences between the usefulness of FM-8 and DRDM with 

respect to creative tasks. To analyze the reason of this difference, we further investigated the response 

based on DRDM and found that most of creative features given by the participants came from the 

supplement part of the report (the presentation of DRDM). Due to the incomplete nature of app 

descriptions, some features extracted from them are useful but the relationship between them and 

others are not gave clearly in descriptions. This causes difficulty to discovering such features from 

FM-8, which recommends the information based on relationship; Whereas DRDM provides a more 

open way for information searching by giving a supplement part in the report. 

In summary, it seems that DRDM is more useful for overall analyzing the domain in the start-up 

stage of software development, when the idea of app is not mature. And the flexibility of DRDM seems 

to be beneficial for generating creative ideas. 

6.7 Threats to Validity 

  Although the results were good in our experiments, the validity of our study suffers several threats. 

We analyze these threats and give the actions taken to alleviate them from two aspects. 

6.7.1 Threats to the validity of methods in our approach 

  There are two threats in this aspect concerning the limitations of methods themselves in our 

approach.  

  Firstly, the authors have limited experience of app developments, so the feature extraction rules 

defined in this paper may be not adapt to all the app descriptions. Therefore, we evaluated the rules in 

different kinds of app descriptions as much as possible for completing them. Additionally, the 



extendibility of rules can also alleviate this threat. We define the expressions of rules and give their 

classifications and priorities, this provides the basis for generating new rules to make our method 

adaptive to various conditions. 

  Secondly, the market attributes used in our quantified method are limited. We now use two attributes 

(Rating and Downloads) for determining the priority of domain knowledge, but there are more 

attributes (such as ‘Price’, ‘Time’) in real app markets. The changing of our formulas is uncertain when 

these attributes are introduced. However, since the rating and downloads are two common and 

important attributes which determine the vitality of an app directly, the formulas based on them can 

reflect the actual value of the product to some extent. This have been proved in our survey. Moreover, 

we have given a more general formula for extending our method to incorporate other attributes.  

6.7.2 Threats to the validity of experiments 

  The threats from this aspect concern the factors affecting the validity of our experiments, especially 

the surveys. We analyze these threats as follow. 

  The first threat stems from the participants, whose knowledge and skills in domain analysis might 

impact the results. Hence, we choose the participants with similar background, that is they are from the 

same major and the same grade, and they got similar scores in their previous classes. We also 

guaranteed the participants were distributed among three groups uniformly. To further mitigate this 

threat, we deigned the first part in the questionnaire to ensure the participants comprehended the basic 

notations of domain analysis. 

  The second threat is about the data used in the experiments. As two datasets are created based on 

Google Play, it is unclear whether our work can achieve similar results when being applied to other app 

marketplaces. Due to the complexity of our experiments, we could not evaluate our approach with 

additional datasets in a short time. But we find app descriptions are similar in different app markets by 

reviewing them manually, so we believe that our approach can also be suitable for them. In the future, 

we wish to extend our experiments to large-scale datasets in different domains of app to generalize the 

results. 

  The third threat focuses on the analysis of outcomes in experiments. We analyzed the outcomes 

using a T-test for paired samples which has normal distribution; while we adopted the Mann-Whitney 

U test for independent samples and the Wilcoxon signed ranks test for dependent samples when the 

outcomes was not distributed normally[41]  [42]  . These tests are well suited for small samples and 

are robust. They guarantee the effectiveness of our conclusions in experiments. 

7.  Conclusion and Future Work 

A key issue in domain analysis is to extract features automatically from related product artifacts. In 

this paper, we take app descriptions as inputs and propose an approach utilizing data technologies to 

mine domain knowledge from them automatically. In our approach, we establish CDM to describe the 

information of features in a single app description based on predefined feature extraction rules and a 

modified LDA process (O-LDA). We also construct DRDM to formalize the overall knowledge in the 

domain based on our data integration process, including classifying, clustering and merging. In addition, 

the priorities of obtained knowledge are determined by our quantified method. The results of 

experiments shows that the performance of automatic construction of CDM is good: F-measure is 

above 0.8 and its variation tendency is stable. We expect that the results from our approach can be 

applied to the feature extractions in other domain analysis. Meanwhile, the surveys show that DRDM 



can support for domain analysis effectively, especially for overall analyzing the whole domain and 

generating creative ideas. 
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