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EXTERNAL KNOWLEDGE SOURCING AND FIRM INNOVATION EFFICIENCY 

 

 

Abstract 

This study examines the relationship between external knowledge sourcing and firm 

innovation efficiency. We build on the organizational learning theory to propose that such 

relationship follows an inverted U-shape: as the level of external knowledge sourcing 

increases from low to moderate, firm innovation efficiency increases; as the level of external 

knowledge sourcing increases from moderate to high, firm innovation efficiency declines. 

Further, we explore the moderating role of different contextual factors and contend that this 

inverted U-shaped relationship is flattened in firms that operate in high-tech sectors and in 

firms that face high internal constraints for innovation. Our empirical analysis is based on a 

sample of 3,204 Spanish firms over the period 2004-2015, and our results provide support to 

these contentions. We used Data Envelopment Analysis (DEA) methodology to estimate firm 

innovation efficiency relative to the industry best performers, and truncated 

regression models for panel data with bootstrapped confidence intervals to test our 

hypotheses.  

 

Key words: data envelopment analysis, external knowledge sourcing, innovation efficiency, 

organizational learning 

 

  



Introduction 

Firms are increasingly reaching out to knowledge and ideas from beyond their 

boundaries to invigorate their innovation efforts and boost their innovative performance 

(Grigoriou and Rothaermel, 2017; Laursen and Salter, 2006; Love, Roper, and Vahter, 2014; 

Van de Vrande, 2013). Extant research has traditionally underscored the positive relationship 

between external knowledge sourcing, defined as the firm´s tendency to use knowledge from 

beyond its boundaries through a wide range of external channels (Escribano et al., 2009; 

Faems, De Visser, Andries, and Van Loow, 2010; Laursen and Salter, 2006; Van de Vrande, 

2013),  and firm-level innovative output. This relationship may exhibit diminishing returns or 

be contextually specific (e.g. Hung and Chou, 2013; Laursen and Salter, 2006; Leiponen and 

Helfat, 2010). For example, past empirical work has demonstrated that the innovation-related 

benefits from external knowledge sourcing are contingent on firm internal knowledge 

networks (Grigoriou and Rothaermel, 2017), investment in R&D and firm absorptive 

capacity, among others (Berchicci, 2013; Escribano, Fosfuri, and Tribó, 2009; Garcia 

Martinez, Zouaghi and Sanchez Garcia, 2018).  

Notwithstanding these contributions, such research has focused predominantly on firm 

innovative output (e.g. new or significantly improved products) as a measure of firm 

innovative performance, saying little about how firms can harness the potential of external 

knowledge sourcing to enhance the efficiency of their innovation activities (Fu, 2012), and 

strengthen their competitive position (Zobel, 2017). Whereas a recent study has shown that 

accessing knowledge residing outside the firm boundaries is an important determinant of firm 

innovation efficiency (Fu, 2012), more remains to be understood about the contingent nature 

of this relationship and the underlying mechanisms behind it.  

To fill the afore-mentioned research gap, this paper addresses the following research 

questions: What is the relationship between the level of external knowledge sourcing and firm 



innovation efficiency and what factors shape this relationship? To answer these research 

questions, we draw on the organizational learning theory (Levinthal and March, 1993; March, 

1991) and propose a contingency-based model. In this study, innovation efficiency is defined 

as the firm-specific capability to use fewer R&D resources (inputs) to achieve certain 

innovation objectives (outputs) relative to the industry best performers (Hashimoto and 

Haneda, 2008; Hienerth, von Hippel, and Jensen, 2014), and is closely linked to a firm’s 

competitive position (Chen, Delmas, and Lieberman, 2015).  

Specifically, we argue that the relationship between the level of external knowledge 

sourcing and firm innovation efficiency follows a non-monotonic, inverted U-shaped pattern 

and can be explained by the interplay of two opposing forces—positive and negative— 

inherent in the learning mechanism. We underscore that, at low to medium levels of external 

knowledge sourcing, the exposure to external knowledge, problem-solving approaches, and 

management practices provides ample learning opportunities and will be positively associated 

with firm innovation efficiency. Nevertheless, relying too much on external knowledge 

sourcing will be negatively related to firm innovation efficiency. This is because with rising 

levels of external knowledge sourcing also come escalating diseconomies such as disruptions 

in firm path-dependent learning processes and R&D routines, and beyond a certain point 

those are likely to outweigh the potential learning benefits.  

We further identify important contextual factors that likely moderate the examined 

relationship. Specifically, we conjecture that this inverted U-shaped curve is flattened in high-

tech (cf. non-high-tech) firms and in firms that face high internal resource constraints. We test 

our theoretical predictions on an unbalanced panel of 3,204 firms in Spain over the period 

2004-2015; a total of 12,123 firm-year observations. Our empirical findings provide support 

to these contentions.  



Our study makes both theoretical and empirical contributions to current research in 

innovation management. From a theoretical standpoint, we provide a more nuanced 

understanding of the hidden trade-offs managers face when reaching out for external 

knowledge in attempts to boost firm innovation efficiency. We use insights from the 

organizational learning theory to extend the arguments from previous literature and shed light 

on the contingent nature of this relationship. Our model explains why firms in high-tech 

sectors and in resource constrained (cf. resource abundant) contexts may face different 

challenges in capitalizing on external knowledge sourcing in the pursuit of innovation 

efficiency gains. In doing so, our study further contributes to the ongoing scholarly debate on 

the implications of external knowledge sourcing on firm innovative performance (Berchicci, 

2013; Garcia Martinez et al., 2018; Escribano et al., 2009; Hung and Chou, 2013; Laursen 

and Salter, 2006; Love et al., 2014). 

As an empirical contribution, our work responds to a recent call to adopt production 

frontier methodology to management research (Bozec, Dia and Bozec, 2010; Chen et al., 

2015; Devinney, Yip and Johnson, 2010), and adds to the limited number of studies that 

evaluate firm innovation efficiency using non-parametric approaches (Cruz-Cázares, Bayona-

Sáez, and García-Marco, 2013; Fu, 2012). In doing so, this study advances our understanding 

of how firms can strengthen their competitive position by focusing on the efficiency with 

which firm innovation outcomes are achieved rather than on the introduction of new products 

only. Specifically, following recent research (Bozec et al., 2010; Fu, 2012), we use Data 

Envelopment Analysis (DEA) to account for the multidimensionality of firm performance and 

estimate firm innovation efficiency relative to the best performers in an industry. Whereas 

DEA has been widely used to study the efficiency of science and technology systems at the 

macro level, it is a relatively novel approach to assess innovation efficiency at the firm level 

(e.g. Hashimoto and Haneda, 2008).  



The remainder of the paper is organized as follows. The next section develops a 

conceptual framework and presents our main arguments, leading to our research hypotheses. 

Next, we describe the research methodology and the data used, and present our main findings. 

The paper concludes with a discussion of our main results and the implications of the study 

for theory, practice, and future research.  

 

Theory and hypotheses  

External knowledge sourcing and firm innovation efficiency 

Firms are increasingly tapping into external sources of knowledge in their quest for 

revitalizing their innovation efforts. External knowledge sourcing through the intensive use of 

diverse channels such as universities, customers, suppliers, and competitors provides firms 

with access to different types of knowledge along the value chain (e.g. Van Beers and Zand, 

2014), and ample opportunities to learn (Love et al., 2014). For instance, through university-

industry collaborations firms get access to early stage scientific discoveries and advances in 

basic science (Bercovitz and Feldman, 2007; Stuart, Ozdemir, and Ding, 2007), whereas 

firms usually cooperate with suppliers to improve input quality and production processes, and 

reduce costs (Belderbos, Carree, and Lokshin, 2004). Furthermore, getting feedback from 

customers informs firms about customers’ sensitivity to market trends, their evaluations of 

new product concepts, and their first-hand user experiences (Candi, Roberts, Tucker, and 

Barczak, 2018; Chang and Taylor, 2016; Wang, Chang, and Shen, 2015). Additionally, firms 

can reach out to competitors to benchmark against valuable practices (Vorhies and Morgan, 

2005), create new markets (Wang et al., 2015), or accelerate their market penetration efforts 

(Miotti and Sachwald, 2003). 

 Below we examine the relationship between the level of external knowledge sourcing 

and firm innovation efficiency. Whereas a recent study suggests that the innovation efficiency 



gains from firm openness to external collaborations might be subject to diminishing returns 

(Fu, 2012), little systematic investigation addresses the mechanisms behind these effects, and 

the conditions under which they are stronger or more likely to occur. 

When the level of external knowledge sourcing increases from low to moderate, we 

expect firm innovation efficiency to increase. The exposure to external partners provides 

firms with opportunities to learn from the best practices and remove inefficiencies in their 

current innovation processes. External practices serve as benchmarks against which firms 

evaluate their internal R&D activities and performance levels, and likely trigger firms to exert 

additional effort to catch up (Hamel, Doz, and Prahalad, 1989) or use their in-house resources 

more efficiently (Huang and Rice, 2009).  Also, adopting external knowledge and problem-

solving approaches increases the likelihood that firms can explore novel knowledge 

combinations (Ahuja and Lampert, 2001) and improve their innovation capabilities (Faems et 

al., 2010; Nieto and Santamaria, 2007).  

However, as the level of external knowledge sourcing increases beyond a threshold, 

the innovation efficiency gains are likely to be outweighed by the escalating costs and 

complexity inherent in the learning mechanism. First, because organizations typically learn in 

a path-dependent way (Levinthal and March, 1993; Mowery, Oxley, and Silverman, 1996), 

sourcing too many external ideas likely slows down learning by doing, as it diverts firm 

learning processes from their current paths (Bettis, Bradley, and Hamel, 1992). Also, over-

relying on multiple external channels can become very cumbersome as firms likely incur 

additional costs, time and effort to learn how to use the new technology (Kessler, Bierly, and 

Gopalakrishnan, 2000) and develop the necessary routines to efficiently work with these new 

ideas and approaches (Bridoux, Smith, and Grimm, 2013). Moreover, excessive reliance on 

external knowledge can divert a firm´s critical R&D resources away from its core business 

(Colombo, Laursen, Magnusson, and Rossi-Lamastra, 2012) and disrupt current learning 



processes and R&D routines. Thus, further increase in the level of external knowledge 

sourcing beyond a threshold will be eventually negatively associated with the efficiency in 

resource allocation and usage (Ahuja and Katila 2001; Leiponen and Helfat 2010). 

Second, drawing too much on a wide range of external channels induces a high 

degree of complexity and puts an extra strain on firm absorptive capacity (De Leeuw, 

Lokshin, and Duysters, 2014; Duysters and Lokshin, 2011). This is because firms may need 

to undergo substantial partner-specific investments (Laursen and Salter, 2006) and may not 

get full use of all the potential learning opportunities each of these channels provides (Dong, 

McCarthy, and Schoenmakers, 2017). This may be aggravated by information overload 

(Ahuja and Lampert, 2001) and escalating complexity and coordination costs when dealing 

with a variety of external partners (Garcia Martinez, Zouaghi, and Sanchez Garcia, 2017).  

Taken together, the above arguments suggest an inverted U-shaped relationship 

between the level of external knowledge sourcing and firm innovation efficiency.  

 

H1: External knowledge sourcing is related curvilinearly (with an inverted U-shape) to firm 

innovation efficiency.  

 

The moderating role of high-tech sectors 

Prior scholarly work has elucidated that tapping into external knowledge has 

differential effects on firm innovation outputs in high-tech (cf. non-high-tech) industries, the 

rationale being that sectoral technological intensity creates different contexts for knowledge 

creation and sharing (e.g. Sáenz, Aramburu, and Rivera, 2009; Garcia Martinez et al., 2017). 

Following this logic, we examine how the proposed inverted U-shaped relationship between 

external knowledge sourcing and firm innovation efficiency is moderated in high-tech 

sectors.  

On the one hand, we expect the innovation efficiency gains associated with lower 

to moderate levels of external knowledge sourcing to be less pronounced in high-tech (cf. 



non-high-tech) firms. The organizational learning theory suggests that firms need to focus on 

learning by doing and exploitation of existing knowledge in efforts to boost efficiency 

(Levinthal and March, 1993; March, 1991). In turbulent environments, existing knowledge is 

quickly rendered obsolete and knowledge exploitation is less relevant; therefore, high-tech 

firms need to engage in knowledge exploration (Henderson, Miller, and Hambrick, 2006) and 

reach out to external knowledge to continuously innovate and keep competitive in the 

marketplace (Gassmann, 2006; Miotti and Sachwald, 2003). Research suggests that reducing 

variability through learning by doing and knowledge exploitation is less likely to ensure 

competitive advantage for firms in high-tech sectors, as these are characterized by rapid and 

unpredictable changes in the technologies, and constant disruption of the status quo (Jansen, 

Van Den Bosh, and Volberda, 2006; Levinthal and March, 1993; Malerba, Nelson, Orsenigo, 

and Winter, 2008). By contrast, knowledge exploitation is highly rewarded in relatively stable 

environments, where knowledge is typically accumulated in a path-dependent way 

(Henderson et al., 2006). Indeed, low-tech firms often source external knowledge to optimize 

their project development and execution, and boost efficiency (Chesbrough and Crowther, 

2006).  

On the other hand, we expect high-tech firms to better alleviate the potential 

decline in innovation efficiency when the level of external knowledge sourcing is too high. 

First, in high-tech sectors, firm current R&D expertise is quickly rendered obsolete (Ang, 

2008; Bettis and Hitt, 1995; Wu, 2012). To keep their competitive positions, high-tech firms 

need to continuously revitalize their current R&D resources and routines (Escribano et al., 

2009; Helfat and Raubitschek, 2000; Karna, Richter, and Riesenkampff, 2015; Sirmon and 

Hitt, 2003) by integrating knowledge across firm boundaries (Grant, 1996; Sirmon and Hitt, 

2003; Teece, Pisano, and Shuen 1997; Winter, 2003). Therefore, we expect the potential 

distortions of firm learning processes and R&D routines, triggered by firm excessive use of 



external knowledge, to be less detrimental for high-tech (cf. non-high-tech) firms. Indeed, 

research suggests that over-relying on external knowledge is more harmful for low-tech (cf. 

high-tech) firms, as it entails unnecessary risk, exhausts valuable resources, and disrupts firm 

efficient functioning (Wang and Li, 2008). 

Second, in high-tech sectors, firms typically face complex scientific and technical 

challenges that often exceed the expertise of any single organization (Frishammar, Florén, 

and Wincent, 2011; Powell, Koput, and Smith-Doerr, 1996). To address this, high-tech firms 

tend to engage in inter-organizational collaborations as a norm rather than as an exception 

(Liebeskind, Oliver, Zucker, and Brewer, 1996). Because firms can learn from their 

experience in selecting and managing multiple linkages with external partners (Love et al., 

2014), it is reasonable to believe that high-tech (cf. non-high-tech) firms develop routines to 

effectively capitalize on external knowledge flows and are better off at mitigating the extra 

strain put on firm absorptive capacity when the level of external knowledge sourcing is too 

high.  

Taken together, the above arguments give rise to the following hypothesis: 

H2: The inverted U-shaped relationship between external knowledge sourcing and firm 

innovation efficiency will be flattened in high-tech sectors.  

 

The moderating role of firm internal resource constraints 

Prior work has elucidated that firm innovation likely depends on the resource 

constraints firm face (e.g. Van Burg et al., 2012; de Araujo Burcharth et al., 2015; Hoegl et 

al., 2008). Whereas past research has advanced our understanding of the direct effects, the 

question of how firm internal resource constraints moderate the curvilinear relationship 

between external knowledge sourcing and firm innovation efficiency remains largely 

unaddressed.  



We propose that the positive association between lower to medium levels of external 

knowledge sourcing and firm innovation efficiency is less pronounced when firms face high 

internal constraints. Firms with superior in-house R&D resources and capabilities (cf. firms 

facing resource constraints) are usually better off at exploring innovation undertakings of 

uncertain outcome (Brunswicker and Vanhaverbeke, 2015), and capitalizing on external 

knowledge for private innovation-related benefits (Arora and Gambardella, 1994; Berchicci, 

2013; Grimpe and Kaiser, 2010; Hung and Chou, 2013). This is because investments in in-

house R&D allow firms to build sufficient level of absorptive capacity to effectively screen, 

assimilate, and internalize external knowledge (Cohen and Levinthal, 1990; Rosenberg, 

1990). Indeed, research finds that firm slack resources are positively related to both potential 

and realized absorptive capacity (Araujo Burcharth et al., 2015). Therefore, resource-

constrained firms are likely to capitalize on fewer external opportunities to boost their 

innovation efficiency. Moreover, internal resource constraints may prevent firms from fully 

exploiting the potential complementarities between internal and external knowledge 

(Cassiman and Veugelers, 2006; Hagedoorn and Wang, 2012).  

Nevertheless, it is also reasonable to expect that the potential negative relationship 

between excessive use of external knowledge and firm innovation efficiency is less 

pronounced in firms that face high internal constraints. Resource-constrained firms are 

typically attracted to opportunities that are in line with their existing resources (Van Burg, 

Podoynitsyna, Beck, and Lommelen, 2012). Therefore, rather than going through a more 

costly process of searching, they tend to acquire external knowledge that fits existing 

solutions, (Hoegl, Gibbert, and Mazursky, 2008). Resource-constrained firms are not only 

more likely to leverage and stretch their available resources more efficiently (George, 2005), 

but also their managerial attention is more likely to shift toward efforts to improve efficiency 

with familiar technologies and processes (de Araujo Burcharth, Lettl, and Ulhoi, 2015). Since 



resource-constrained firms tend to mobilize external complementary assets in a more focused 

manner and/or within the scope of their existing expertise (Teece, 1986), we expect such 

firms to be better-off at mitigating the costs and complexity associated with excessive 

external knowledge sourcing. 

In light of the above arguments, we suggest the following hypothesis: 

H3: The inverted U-shaped relationship between external knowledge sourcing and firm 

innovation efficiency will be flattened for high levels of internal constraints.  

 

Research methods  

Data and sample  

Our empirical analysis is based on the Spanish Technological Innovation Panel 

(PITEC) database, covering the period 2004-2015. The PITEC database follows the Eurostat 

Community Innovation Survey (CIS) template and is administered by the Spanish National 

Statistics Institute (INE). It contains detailed information about the innovation activities of 

Spanish firms from a wide range of industrial sectors. The CIS database has been widely used 

in empirical scholarly work on open innovation (e.g. Garriga, von Krogh, and Spaeth, 2013; 

Laursen and Salter, 2006; Escribano et al., 2009).  

We constructed our sample by including all firms that met the following criteria 

and methodological restrictions. First, consistent with the methodological requirements of the 

first-stage DEA analysis, only firms with positive innovation inputs and outputs were 

included in the sample. Second, we identified outliers using the detection method proposed by 

Wilson (1993) and, following Fu (2012), we excluded them from our sample. Additionally, in 

the second-stage analysis, we used a one-year lag between our independent variable and our 

dependent variable. This time lag is reasonable in our setting and helps avoid potential 

endogeneity problems caused by simultaneity. Our final sample consists of an unbalanced 

panel of 3,204 firms from 2004 to 2015; a total of 12,123 firm-year observations. 



 

Measures 

First-stage analysis  

Dependent variable. The dependent variable in our study is firm innovation 

efficiency, defined as the firm-specific capability to use fewer R&D resources (inputs) to 

achieve certain innovation objectives (outputs) relative to the best performers in an industry 

(Hashimoto and Haneda, 2008; Hienerth et al., 2014). Consistent with past research (e.g. 

Cruz-Cázares et al., 2013; Fu, 2012), we use the DEA methodology as a non-parametric 

approach to measure firm innovation efficiency. DEA allows handling multiple inputs and 

outputs expressed in different measurement units (Chen et al., 2015).  

Similarly to Fu (2012), the inputs in our models are R&D staff as a percentage of 

total headcount and total R&D expenses as a percentage of sales, whereas the outputs are the 

percentage of sales corresponding to products that are new to the market, and the percentage 

of sales of products that are new to the firm (see Table 1). Moreover, Table 1 shows inputs 

and outputs for high-tech and non-high-tech firms. To calculate firm innovation efficiency, 

we used a one-year lag between the inputs and the outputs.  

 

 

 

 

 

 

 

 



Table 1. Inputs and outputs used in the DEA first-stage analysis: descriptive statistics by type 

of industry. 

Variable Mean Std. Dev. Min Max 

Obs. by 

group 

products new to the company (% sales) t+1 23.09 19.71 0.1 99 

high-tech   

1417 obs. 
products new to the market (% sales) t+1 23.86 22.08 0.1 99.9 

R&D expenses (% sales) 0.17 0.71 0.000830 17.67 

R&D staff (% total labor force) 52.08 28.64 1.1 100 

products new to the company (% sales) t+1 22.21 21.04 0.1 99.9 
non-high-

tech 

15142 

obs. 

products new to the market (% sales) t+1 22.56 22.23 0.1 99.9 

R&D expenses (% sales) 0.24 1.57 0.000028 91.24 

R&D staff (% total labor force) 47.18 30.85 0.4 100 

products new to the company (% sales) t+1 22.28 20.93 0.1 99.9 
full 

sample      

16559 

obs. 

products new to the market (% sales) t+1 22.67 22.22 0.1 99.9 

R&D expenses (% sales) 0.23 1.52 0.000028 91.24 

R&D staff (% total labor force) 47.60 30.69 0.4 100 

 

Since innovation efficiency is industry specific, we estimated it by grouping firms 

in four broad categories, namely: (a) high, medium-high, medium-low and low technology 

manufacturing (b) knowledge intensive and less knowledge intensive services, (c) agriculture 

forestry and mining, and (d) energy and water sewerage and construction. 

DEA is a non-parametric programming approach that allows us to generate the 

efficiency (or best-practice) production frontier from observed multiple inputs and outputs, 

and to determine a firm’s innovation efficiency by its position relative to it (Fu, 2012). We 

use an input-oriented DEA model, which minimizes R&D resources or inputs, while 

innovation objectives or outputs are held constant (Hashimoto and Haneda, 2008; Hienerth et 

al., 2014). The simple mathematical form of an input-oriented DEA model with variable 

returns to scale (VRS) (Banker, Charnes, and Cooper, 1984) is given below: 



 

where firm o represents one of the n firms under evaluation, and xio and yro are the 

ith input and rth output for firm o, respectively (Banker et al., 1984). When θ*=1, the firm is 

on the efficiency frontier, indicating that there is no need to adjust its inputs; by contrast, 

when θ*<1, the firm is less efficient and is encompassed by the frontier. 

However, DEA provides point estimates of firms’ (in)efficiency without 

distributional properties. Bootstrapping allows investigating the sampling properties of 

innovation efficiency estimators providing confidence intervals (Simar and Wilson, 2000). 

Thus, in order to obtain unbiased innovation efficiency estimates we apply the bootstrap 

procedure according to Simar and Wilson (1998, 2000).  

To better understand the methodological approach used to construct the dependent 

variables we provide a simplified example that assumes there are five firms, one fixed output, 

and two inputs (this is solely for illustrative purposes and is not based on mathematical 

calculations). Figure 1 shows different combinations of two inputs in order to produce the 

same amount of output, used by these five firms. While firms 1, 2, 4, and 5 are the most 

efficient ones defining the frontier, firm 3 is far from the frontier. This means firm 3 is less 

efficient, and it may enhance its efficiency by reducing one or more of the inputs while 

achieving the same output. 
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Figure 1. Graphical representation of the input-oriented DEA model 

 

 

 

 

 

 

 

The descriptive statistics of the dependent variable firm innovation efficiency as a 

result of the first-stage DEA analysis are provided in Table 2. Almost 4.40% of the 

observations score above 0.60 in terms of efficiency, and most of the observations score 

below 0.40. Additionally, the overall mean and standard deviation of firm innovation 

efficiency is 0.18 and 0.16 respectively. Table 2 also shows the number of observations 

corresponding to high-tech firms as a percentage of the total observations by range of 

innovation efficiency. The number of observations belonging to high-tech firms with an 

efficiency level below 0.20 is around 21% of the total observations in the respective range up 

to 0.20 while this percentage falls for efficiency scores above 0.20.  

 

Table 2. Descriptive statistics and distribution of the dependent variable (firm innovation 

efficiency 

Firm Innovation Efficiency Obs Mean Std. Dev. Min Max % total 

 

16559 0.18201 0.169 0.0037 0.9847 Overall High-Tech 

<0.10 6,758         40.81% 13.81% 

0.10=<X<0.20 4,803 

    

29.01% 6.75% 

0.20=<X<0.40 3,110 

    

18.78% 3.47% 

0.40=<X<0.60 1156 

    

6.98% 2.34% 

0.60=<X<0.80 675 

    

4.08% 3.56% 

0.80=<X<1 57         0.34% 1.75% 

DMU 1 

DMU 2 

DMU 3 

DMU 5 

DMU 4 

Input 1  

In
p
u

t 
2
  



 

Second-stage analysis  

Independent variable. The main independent variable is external knowledge 

sourcing, defined as a firm’s use of knowledge from a wide range of external channels such 

as universities, customers, suppliers, and competitors (e.g. Escribano, et al., 2009). It is 

measured as an index that captures the importance of different external knowledge sources for 

innovation (Escribano et al., 2009; Fosfuri and Tribó, 2008). In the PITEC database, the 

respondents rate the importance of different sources of knowledge for their innovation 

activities on a four-point scale, from one (not important) to four (very important).  

We use factor analysis to construct an index, based on the ratings for ten external 

knowledge sources: suppliers, clients, competitors, consultants and private institutes, 

universities, public research institutions, technological centers, conferences and exhibitions, 

specialized journals and meetings, professional or industrial associations. To perform the 

factor analysis, we use polychoric correlation matrix, as standard methods of factor analysis 

assume that the variables are continuous and follow a multivariate normal distribution 

(Kolenikov and Angeles, 2004). In the first step, the polychoric correlation of the ten 

aforementioned sources is derived by taking the maximum likelihood estimate of the 

correlation of these variables assuming an underlying normal variate for each of the variables. 

In the second step, we use factor analysis based on the obtained correlation matrix and we use 

orthogonal varimax rotation method to increase interpretability of the resulting factor.  

Moderator variables. The variable high-tech (cf. non-high-tech) sectors is a 

dummy variable and takes a value of 1 if the firm operates in a high-tech sector, and 0 

otherwise. To differentiate between high-tech and non-high-tech sectors, we follow Eurostat 

technology industry classification, which is based on the Statistical Classification of 

Economic Activities in the European Community (NACE Rev.2).  



The variable internal constraints is measured as an index that accounts for different 

organizational obstacles that may hinder a firm’s innovation efforts.  It is constructed using 

polychoric factor analysis (Kolenikov and Angeles, 2004) including the following six 

constraints: lack of available funds, lack of funding sources, high innovation costs, lack of 

information related to technology, lack of information related to markets, and difficulty in 

finding business partners.  The respondents rated the importance of each internal constraint 

on a four-point scale, from one (not important) to four (very important), and we have reversed 

the variables. 

Control variables. Several control variables are included in the empirical analysis. 

First, we control for firm size, as prior work indicates that firm size affects a firm’s 

involvement in external knowledge sourcing (e.g. Van de Vrande, De Jong, Vanhaverbeke, 

and De Rochemont, 2009; Van de Vrande, Vanhaverbeke, and Gassmann, 2010). We 

measure firm size as the logarithm of the number of employees (e.g. Escribano et al. 2009). 

Furthermore, we control for whether the firm is a start-up by including a dummy variable 

taking the value of 1 when a firm is a start-up and 0 otherwise; this is because being a new 

venture might affect a firm’s incentives to innovate (Escribano et al., 2009). Next, we control 

for a firm’s appropriability strategy, which reflects a firm’s use of legal protection 

mechanisms such as patents, models/designs, trademarks, and copyrights (Gelabert, Fosfuri, 

and Tribó, 2009). Appropriability regimes can affect the degree to which firms can capture 

the profits from their innovation activities (e.g. Xu, Huang, and Gao, 2012). We 

operationalize this variable as an index, using factor analysis on a tetrachoric correlation 

matrix since the aforementioned variables are all binary. In addition, we control for internal 

information flows and external market-related constraints for innovation.  We also control for 

the potential advantage of foreignness in innovation (Un, 2011) by including private 

multinational as a binary variable taking the value of 1 when a firm is private and foreign 



capital participates in its ownership structure, and 0 otherwise. Lastly, we include a dummy 

variable group, which takes the value of 1 if the firm belongs to a group of companies and 0 

otherwise, because previous studies reveal that belonging to a business group offers access to 

resources under better conditions (Khanna and Yafeh, 2007). Finally, we include sector and 

year dummies to control for sectoral and temporal effects. 

Table 3 summarizes the variables in our model, their definition, and 

operationalization. 

 

Table 3. Variables and measures 

Variables and definition Measurement 

Dependent variable: 

 

Innovation efficiency: firm-specific capability 

to use fewer R&D resources (inputs) to achieve 

certain innovation objectives (outputs) relative 

to the best performers in an industry 

 

 

 

Efficiency estimates using Data Envelopment 

analysis in a model with two inputs (R&D staff as % 

of total headcount; R&D expenses as % of sales) 

and two outputs (Sales of products new to the firm 

as % of total sales; Sales of products new to the 

market as % of total sales) 

Independent variable: 

 

External knowledge sourcing: a firm’s use of 

knowledge from a range of external channels 

for innovation 

 

 

 

Index obtained by factor analysis of ratings of the 

relative importance for innovation activities of ten 

external knowledge sources: suppliers, clients, 

competitors, consultants and private institutes, 

universities, public research institutions, 

technological centres, conferences and exhibitions, 

specialized journals and meetings, professional or 

industrial associations. 

Moderators: 

 

High-tech sector: classification of an industry 

as high-tech (vs. non-high-tech) 

 

 

Internal constraints: internal organizational 

obstacles that the firm may encounter in its 

innovation efforts 

 

 

 

 

Dummy variable taking value 1 if the industry 

(defined in terms of its NACE Rev.2 code) a firm 

declares it operates in is classified as high 

technology by Eurostat, and 0 otherwise. 

 

Index constructed using polychoric factor analysis 

on ordinal variables measuring the subjective 

importance of six different internal constraints: lack 

of available funds, lack of funding sources, high 

innovation costs, lack of information related to 

technology, lack of information related to markets, 

and difficulty in finding business partners. 

 

Controls: 

Firm size 

 

Start-up 

 

Logarithm of number of employees 

 

Dummy variable taking value 1 if the firm is a start-



 

 

 

Appropriability: use of intellectual property 

rights to protect innovation outcomes 

 

 

 

 

Private multinational 

 

 

 

Group 

 

 

Industry and year 

up founded in the last two years and 0 otherwise. 

 

Index constructed using tetrachoric factor analysis 

on binary variables taking value 1 if the firm uses 

the following legal protection mechanisms, and 0 

otherwise: patents, models/designs, trademarks, and 

copyrights 

 

Binary variable taking value 1 if a firm is private 

and foreign capital participates in its ownership 

structure 

 

Binary variable taking the value of 1 when the firm 

belongs to a group of companies and 0 otherwise 

 

Binary variables; industry dummies are defined 

according to NACE Rev.2 2-digit codes 

 

 

Statistical methods 

We perform the statistical analysis in two stages (see figure 2). In the first stage, firm 

innovation efficiency is calculated based on the input-oriented VRS modeling approach we 

described above. Efficiency scores vary between 0 and 1: the higher the score, the more 

efficient a firm is. In the second stage, we estimate the effects of external knowledge sourcing 

on firm innovation efficiency. DEA is a deterministic process and methodology, which does 

not provide the distributional properties of the calculated estimates from the first-stage 

analysis. In addition, second-stage regression suffers from the correlation of inputs and 

outputs used in the first-stage analysis with second-stage explanatory variables, and serial 

correlation among DEA estimates. 

 

Figure 2.  Two-stage analysis and methodological approach 

 

 

 

 

First-stage analysis  

Create the dependent variable Firm Innovation 

Efficiency through Data Envelopment Analysis 

(DEA) by applying the bootstrap procedure 

according to Simar and Wilson (1998, 2000), Tables 

1 & 2.  

Inputs: R&D expenses, R&D staff 

Outputs: products new to the company (% of sales), 

products new to the market (% of sales) 

Second-stage analysis  

Hypotheses testing through truncated regression 

for panel data with bootstrapped confidence 

intervals (Simar and Wilson1 2007), Table 4.  

 

Independent variable: External Knowledge 

Sourcing  

Moderating variables: Internal Constraints, High-

Tech   

 



 

Various regression techniques have been used in the literature when exploring the 

impact of environmental variables on the dependent variable constructed via DEA. The 

majority of them use Tobit or OLS methods, but according to Simar and Wilson (2007) these 

techniques yield inconsistent estimators due to the above problems, even though the Tobit 

model has been proposed in the literature as being more appropriate than OLS because of the 

bounded nature of the data from the first-stage analysis. Thus, in the present paper we use a 

truncated regression for panel data with bootstrapped confidence intervals that overcome the 

above problems and allow for valid inference, as suggested by Simar and Wilson (2007). 

Results  

The descriptive statistics and the correlation matrix of the independent and control 

variables appear in Tables 4 and 5. External knowledge sourcing has a mean value of 3.20, 

and around 9.0% of the observations in our sample belong to the high-tech sector. The 

variable internal constraints has a mean value of 3.26 and a standard deviation of 0.76. We 

have conducted VIF and 1/VIF tests and we have not found evidence of multicollinearity 

being a problem in our models. 

 

Table 4. Descriptive statistics by type of industry 

 

 

  Full sample (n-12,123) Non-high-tech (n-11,028) High-tech (n=1,095) 

  

 

Mean Median Std. dev. Min Max Mean Median Std. dev.	 Min Max Mean Median Std. dev. Min Max 

1 External knowledge sourcing 3.2033 3.2000 0.8281 1.3518 5.4072 3.1955 3.2000 0.8312 1.3518 5.4072 3.2826 3.2529 0.7920 1.3518 5.4072 

2 Internal constraints 3.2638 3.2751 0.7625 1.2807 5.1228 3.2579 3.2751 0.7605 1.2807 5.1228 3.3229 3.3258 0.7801 1.2807 5.1228 

3 High-tech 0.0903 0.0000 0.2867 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4 Size (ln) 4.4915 4.3944 1.5771 0.6931 10.6012 4.4968 4.3820 1.5903 0.6931 10.6012 4.4385 4.4188 1.4372 0.6931 7.9306 

5 Appropriability 0.2452 0.1458 0.3133 0.0000 1.1072 0.2446 0.1458 0.3139 0.0000 1.1072 0.2513 0.1458 0.3067 0.0000 1.1072 

6 Start-up firms 0.0379 0.0000 0.1911 0.0000 1.0000 0.0375 0.0000 0.1901 0.0000 1.0000 0.0420 0.0000 0.2007 0.0000 1.0000 

7 Internal information flows  3.6835 4.0000 0.5798 1.0000 4.0000 3.6806 4.0000 0.5826 1.0000 4.0000 3.7128 4.0000 0.5506 1.0000 4.0000 

8 External constraints 1.7812 1.4601 0.6384 1.0878 4.3511 1.7750 1.4601 0.6375 1.0878 4.3511 1.8429 1.5337 0.6447 1.0878 4.3511 

9 Group 0.5014 1.0000 0.5000 0.0000 1.0000 0.4952 0.0000 0.5000 0.0000 1.0000 0.5635 1.0000 0.4962 0.0000 1.0000 

10 Private Multinational  0.1242 0.0000 0.3299 0.0000 1.0000 0.1201 0.0000 0.3250 0.0000 1.0000 0.1662 0.0000 0.3724 0.0000 1.0000 

http://www.sciencedirect.com.strauss.uc3m.es:8080/science/article/pii/S1572308911000593;#bib0305


Table 5. Correlation matrix 

Notes: obs= 12123, p-values in parenthesis 

 

The results of the second-stage regression are presented in Table 6. Model 1 is the 

base model and includes only the control variables. Model 2 introduces the main effects of 

internal constraints and high-tech variables. Model 3 is used to test the first hypothesis, 

predicting an inverted U-shaped relationship between external knowledge sourcing and firm 

innovation efficiency. The coefficient of external knowledge sourcing is positive and 

significant (0.1053, p = 0.0000), while the coefficient for external knowledge sourcing 

squared is negative and equally significant (-0.0192, p = 0.0000), which confirms our first 

hypothesis. Graphically, the relationship between external knowledge sourcing and 

innovation efficiency is presented in Figure 3. The curve reaches its maximum at a level of 

external knowledge sourcing equal to 2.73, with just one third (33.35%) of the observations 

located to the left of this point. We further evaluate the existence of the inverted U 

 

	

    1 2 3	 4 5 6 7 8 9 

1 External knowledge sourcing 1.0000 
        

           2 Internal constraints 0.1574 1.0000 

       

  

(0.0000) 

        3 High-tech 0.0302 0.0244 1.0000 

      

  
(0.0009) (0.0072) 

       4 Size (ln) 0.1594 -0.1593 -0.0106 1.0000 

     

  

(0.0000) (0.0000) (0.2439) 

      5 Appropriability 0.1147 0.0074 0.0061 0.1334 1.0000 
    

  
(0.0000) (0.4162) (0.5048) (0.0000) 

     6 Start-up firms 0.0003 0.0118 0.0067 -0.0087 0.0019 1.0000 
   

  

(0.9739) (0.1949) (0.4605) (0.3361) (0.8350) 

    7 Internal information flows  0.1195 -0.0194 0.0159 0.0677 0.0433 -0.0025 1.0000 

  

  

(0.0000) (0.0325) (0.0796) (0.0000) (0.0000) (0.7873) 

   8 External constraints 0.0169 0.2592 0.0305 -0.0343 -0.0203 0.0048 -0.0890 1.0000 

 

  
(0.0634) (0.0000) (0.0008) (0.0002) (0.0256) (0.5971) (0.0000) 

  9 Group 0.0941 -0.1341 0.0391 0.5017 0.0302 0.1549 0.0731 -0.0408 1.0000 

  

(0.0000) (0.0000) (0.0000) (0.0000) (0.0009) (0.0000) (0.0000) (0.0000) 

 10 Private Multinational  -0.0372 -0.1002 0.0401 0.2391 -0.0286 -0.0696 0.0266 -0.0171 0.3006 

    (0.0000) (0.0000) (0.0000) (0.0000) (0.0016) (0.0000) (0.0034) (0.0599) (0.0000) 



relationship between external knowledge sourcing and firm innovation efficiency by splitting 

the sample at the curve’s turning point and estimating the slopes separately for both 

subsamples (Haans, Pieters, and He, 2016).  The results (available upon request) confirm a 

positive and significant relationship between external knowledge sourcing and firm 

innovation efficiency to the left of the turning point, and a negative and significant one to the 

right turning point. In sum, these results provide support for Hypothesis 1.  

 

Table 6. Econometric results from truncated regression models for panel data 

  Model 1 Model 2 Model 3 Model 4 

Size (ln) 0.0350 0.0331 0.0350 0.0350 

 

(0.0000) (0.0000) (0.0000) (0.0000) 

Appropriability -0.0346 -0.0325 -0.0291 -0.0324 

 

(0.0000) (0.0000) (0.0000) (0.0000) 

Start-up firms 0.0659 0.0654 0.0516 0.0424 

 

(0.0000) (0.0000) (0.0000) (0.0001) 

Internal information flows  -0.0069 -0.0070 -0.0059 -0.0028 

 

(0.0535) (0.0488) (0.0961) (0.4247) 

External constraints 0.0176 0.0179 0.0184 0.0168 

 

(0.0000) (0.0000) (0.0000) (0.0000) 

Group 0.0138 0.0138 0.0151 0.0143 

 (0.0061) (0.0055) (0.0023) (0.0037) 

Private multinational -0.0111 -0.0052 -0.0081 -0.0041 

 

(0.1054) (0.4444) (0.2339) (0.5415) 

Internal constraints 

 

-0.0006 0.0025 0.1211 

  

(0.8421) (0.3736) (0.0000) 

High-tech 

 

-0.1646 -0.1653 0.1114 

  

(0.0000) (0.0000) (0.2224) 

External knowledge sourcing 

  

0.1053 0.3980 

   

(0.0000) (0.0000) 

External knowledge sourcing
2
 

  

-0.0192 -0.0679 

   

(0.0000) (0.0000) 

External knowledge sourcing x Internal 

constraints 

   

-0.0844 

    

(0.0000) 

External knowledge sourcing
2
x Internal 

constraints 

   

0.0140 

    

(0.0000) 

External knowledge sourcing x High tech 

   

-0.1827 

    

(0.0010) 

External knowledge sourcing
2
x High tech 

   

0.0286 



    

(0.0006) 

Year dummies Yes Yes Yes Yes 

Sector dummies Yes Yes Yes Yes 

Intercept -0.0599 0.0877 -0.0633) -0.4566 

 

(0.0014) (0.0005) (0.0605 (0.0000) 

logSigma -1.5175 -1.5268 -1.5367 -1.5444 

  (0.0000) (0.0000) (0.0000) (0.0000) 

Notes: dependent variable: Innovation efficiencyt+1, obs: 12123, Estimation of the models is based on Simar and 

Wilson (2007) using 2000 bootstrap replications for the confidence intervals of the estimated coefficients.,p-

values in parenthesis 

 

 

Figure 3. External knowledge sourcing and firm innovation efficiency 

 

 

Notes: The figure shows the inverted U relationship between external knowledge sourcing and firm innovation 

efficiency. The range of external knowledge sourcing is calculated based on its mean value plus (minus) two 

standard deviations. We use the coefficients from model 3 of table 6 with zero values for all dummy variables 

and mean values for the continuous variables.       

 

As far as the second and the third hypotheses are concerned, Model 4 includes the 

relevant interaction terms.  In Hypothesis 2 we predict that the inverted U- 

shaped relationship between external knowledge sourcing and firm innovation efficiency will 

be flattened in high-tech sectors. Testing for flattening is equivalent to testing whether the 

External knowledge sourcing 
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coefficient estimate of the interaction term between external knowledge sourcing squared and 

high tech is positive and significant (Haans et al., 2016). The coefficient estimates in Model 4 

show that the interaction term of external knowledge sourcing and high tech is negative and 

significant (-0.1827, p = 0.001) and the interaction term with the squared knowledge sourcing 

is positive and significant (0.0286, p = 0.0006). 

We further examine the results by determining whether a shape-flip occurs because 

this has important theoretical implications. The level of the moderating variable at which the 

shape flip occurs (where the relationship between external knowledge sourcing and firm 

innovation efficiency becomes linear) is determined by calculating the ratio of the coefficient 

of the squared main independent variable over the coefficient of the interaction between the 

moderator and the squared independent variable. Thus, in our case this ratio is equal to 0.77 

(assuming internal constraints equal to its mean value)
1
. At this level, which theoretically is 

not important because high-tech sectors is a dummy variable, the shape flip occurs. When the 

value of the moderating variable is 1 the relationship between external knowledge sourcing 

and firm innovation efficiency becomes flattened. Figure 4 shows this relationship for high-

tech (4b) and non-high-tech sectors (4a) when external knowledge sourcing takes values 

between minus and plus two standard deviations from its mean. This suggests that in high-

tech sectors the positive (negative) latent mechanisms through which external knowledge 

sourcing influences firm innovation efficiency weaken. 

Hypothesis 3 predicts that the inverted U-shaped relationship between external 

knowledge sourcing and firm innovation efficiency will be flattened in firms with high 

internal constraints. The coefficient estimates in Model 4 show that the interaction term of 

external knowledge sourcing and internal constraints is negative and significant (-0.0844, p = 

0.0000) and the interaction term with the squared knowledge sourcing is positive and 

                                                           
1
 From model 4 in table 6, the ratio of the coefficients equals -(3.26*0.014 – 0.067) / (0.028) = 0.77 



significant (0.0140, p = 0.0000). Thus, we can argue that a flattering of the curve occurs 

confirming our third hypothesis. We observe that a shape flip occurs when the moderator 

variable reaches 4.78 (assuming binary variable high tech is equal to zero)
2
. We plot the 

results in Figure 4 which shows the relationship of external knowledge sourcing (minus/plus 

2 s.d.) and firm innovation efficiency for high and low levels of the moderating variables 

internal constraints (minus/plus 2 s.d.). The shape flip occurs marginally within the data range 

of the moderating variable internal constraints (mean plus two standard deviations). Thus, we 

cannot argue that a shape flip occurs well within our data range. The results for the third 

hypothesis suggest that for medium to high levels of internal constraints and medium to high 

levels (low) of external knowledge sourcing, weakens the negative (positive) latent 

mechanisms through which external knowledge sourcing influences firm innovation 

efficiency (figure 5). 

 

Figure 4. External knowledge sourcing and firm innovation efficiency: the moderating effect 

of high-tech vs. non-high-tech industries 

  

 

Notes: The figures show the moderating effect of high-tech in the relationship between external knowledge 

sourcing and firm innovation efficiency. The range of external knowledge sourcing is calculated based on its 

mean value plus (minus) two standard deviations. We use the coefficients from model 4 of table 6 with zero 

values for all dummy variables and mean values for the continuous variables. 

 

 

                                                           
2
 From model 4 in table 6, the ratio of the coefficients equals -(-0.067) / (0.014) = 4.78 
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Figure 5. External knowledge sourcing and firm innovation efficiency: the moderating effect 

of internal constraints 

 

 

Notes: The plot shows the moderating effect of internal constraints in the relationship between external 

knowledge sourcing and firm innovation efficiency. The ranges of external knowledge sourcing and internal 

constraints are calculated based on their mean values plus (minus) two standard deviations. We use the 

coefficients from model 4 of table 6 with zero values for all dummy variables and mean values for the 

continuous variables. 

 

With respect to the control variables, firm size has a positive and significant 

coefficient across all the regression models, indicating that large firms on average outperform 

smaller ones in terms of innovation efficiency. Appropriability strategy has a negative and 

significant coefficient across all the specifications, showing that formal protection 

mechanisms are associated to lower efficiency. The coefficient for internal information flows 

is negative and insignificant in the full model while is significant in the other specifications. 

The variable external constraints shows a positive and significant effect on innovation 

efficiency, suggesting that, in the face of external constraints, firms tend to engage in more 

focused R&D projects with defined short-term efficiency gains. Lastly, the variable group is 

positive and significant, revealing that belonging to a group of companies is positively 

associated to firm innovation efficiency maybe due to increased availability of relevant 

resources. 
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Discussion  

Theoretical Implications 

In this paper, we use the lens of the organizational learning theory and delineate a 

non-linear and contingency-based model to better understand the relationship between the 

level of external knowledge sourcing and firm innovation efficiency. Our study theoretically 

hypothesizes and empirically finds evidence that such relationship follows of an inverted U-

shaped pattern. Our findings are consistent with past work suggesting that over-engaging with 

external partners might have detrimental consequences on firm innovation (e.g. Garcia 

Martinez et al., 2018; Laursen and Salter, 2006). Further, by focusing on firm innovation 

efficiency as a performance measure, our study extends an influential body of research on the 

performance-related benefits from in-bound open innovation (Chesbrough, 2003). Whereas 

past  work  has traditionally focused on innovation outcomes such as sales from new or 

improved products (Chen, Chen, and Vanhaverbeke, 2011; Laursen and Salter, 2006), 

number of new products (Bianchi, Cavaliere, Chiaroni, Frattini, and Chiesa, 2011; Greco, 

Grimaldi, and Cricelli, 2015), and patents (Caputo, Lamberti, Cammarano, and Michelino, 

2016; Chen et al., 2011; Hagedoorn and Cloodt, 2003), our study sheds new light into how 

efficiently those innovation outcomes are achieved. 

Our contingency-based model further elucidates that firms in high-tech sectors and in 

resource constrained (cf. resource abundant) contexts face different challenges in capitalizing 

on external knowledge sourcing. Whereas previous research has highlighted that high-tech 

firms can benefit from opening their innovation processes to external knowledge in order to 

cope with increasing demands for continuous innovation (Chesbrough, Vanhaverbeke, and 

West, 2006), the results of this study show that this comes at a cost, and high-tech (cf. non-

high-tech) firms can better mitigate the potential drawbacks associated with excessive 

external knowledge sourcing. We thus contribute to an on-going debate regarding the role 



external knowledge flows play in industries with different levels of technological intensity 

(e.g. Gassmann, Enkel, and Chesbrough, 2010; Hung and Chou, 2013; Sáenz et al., 2009; 

Zouaghi, Sánchez, and García Martínez, 2018). Next, our results demonstrate that the 

inverted U-shaped relationship between external knowledge sourcing and firm innovation 

efficiency is moderated by the internal constraints firms face. In doing so, we contribute to 

prior scholarly work that examines how organizational slack and internal constraints create 

different contexts for firm innovativeness (e.g. Van Burg et al., 2012; de Araujo Burcharth et 

al., 2015; Hoegl et al., 2008). 

Managerial implications 

As success stories are widely shared and celebrated (e.g. Gassmann et al., 2010), 

firms have often been urged to join the “global trend” for open innovation (e.g. Lucas, 2012) 

and draw on external knowledge to boost their innovativeness (Chesbrough, 2003; von 

Hippel, 2005). This study has important implications for managers, as it contributes to a more 

nuanced understanding of the hidden trade-offs managers face when reaching out for external 

knowledge in attempts to strengthen firm competitive position. On the one hand, sourcing 

external knowledge is indeed positively linked to the efficiency of firm innovation activities, 

as firms can learn from benchmarking, external ideas, knowledge, and problem-solving 

approaches, and identify opportunities for innovation. On the other hand, managers must be 

aware that relying heavily on external knowledge may have a negative association with firm 

innovation efficiency because of the potential disruptions of firm R&D routines and learning 

by doing. Therefore, managers face a difficult task to strike the right balance for their 

organizations. Our findings do not negate the potential benefits that inbound knowledge flows 

may have on long-term innovativeness but suggest that they may be accompanied by some 

organizational costs and trade-offs in terms of efficiency.  In addition, our study informs 

managers about the conditions under which firms can be more successful in capitalizing on 



external knowledge sourcing in the pursuit of innovation efficiency gains.  Our results 

indicate that the examined relationship is shaped in high-tech sectors and in resource 

constrained (cf. resource abundant) contexts. Awareness of this can facilitate decision making 

and can help firms capture greater benefits from sourcing external knowledge.  

Limitations and future research 

This study has several limitations that can encourage future research. First, we 

highlight some important contingent factors—technological intensity and internal 

constraints—that moderate the relationship between external knowledge sourcing and firm 

innovation efficiency. Future research, however, can further disentangle the contingent nature 

of the examined relationship by exploring additional contextual factors and firm attributes. 

Second, whereas the use of a large-scale secondary dataset has advantages in terms of 

external validity, it does not allow us to directly observe the theoretical mechanisms that 

underlie our hypotheses. Moreover, although we followed standard research practice to 

address potential endogeneity and reverse causality concerns in our study (e.g. using time 

lag), caution about inferring causality should be observed. This prompts researchers to use 

alternative methodological approaches to delve deeper into how firms use external knowledge 

in order to deploy their R&D capital more efficiently and shed new light into the mechanisms 

underlying the observed relationships. Third, our measure of external knowledge sourcing is 

based on an aggregate subjective measure of the importance of knowledge inflows for 

innovation. However, knowledge sourcing is a complex phenomenon that comprises a variety 

of practices (Spithoven, Vanhaverbeke, and Roijakkers, 2013) and involves different 

challenges (Van de Vrande et al., 2009). Further research may extend this work by providing 

a fine-grained depiction of the processes of knowledge acquisition, and their effects on 

innovation efficiency. 



Conclusion  

This study attempts to enhance our understanding of the contingent nature of the 

relationship between external knowledge sourcing and firm innovation efficiency, and to 

clarify the underlying mechanisms behind it. Drawing on insights from the organizational 

learning theory, we suggest that this relationship is non-monotonic, exhibits an inverted U 

shape, and is further moderated in high tech (cf. non-high-tech) firms and in firms that face 

internal constraints. Our findings unveil specific contextual factors—namely the industry 

technological intensity and internal organizational constraints for innovation—that pose 

different challenges for firms in their efforts to capitalize on external knowledge sourcing in 

the pursuit of innovation efficiency gains. Our empirical analysis is based on a sample of 

3,204 Spanish firms over the period 2004-2015, and our results provide support to these 

contentions.  

  



References  

Ahuja G, Katila R. 2001. Technological acquisitions and the innovation performance of 

acquiring firms: a longitudinal study. Strategic Management Journal 22 (3): 197-220. 

Ahuja G, Lampert C.M. 2001. Entrepreneurship in the large corporation: A longitudinal study 

of how established firms create breakthrough inventions. Strategic Management 

Journal 22(6-7): 521-543. 

Ang SH. 2008. Competitive intensity and collaboration: impact on firm growth across 

technological environments. Strategic Management Journal 29 (10): 1057–1075 

Arora, A., Gambardella,A. 1994. Evaluating technological information and utilizing it: 

Scientific knowledge, technological capability, and external linkages in biotechnology. 

Journal of Economic Behavior and Organization 24(1): 91-114. 

Banker RD, Charnes A, Cooper WW. 1984. Some models for estimating technical and scale 

inefficiencies in data envelopment analysis. Management Science 30 (9): 1078-1092. 

Belderbos, R., Carree, M., Lokshin, B. 2004. Cooperative R&D and firm performance. 

Research Policy 33(10): 1477-1492. 

Berchicci L. 2013. Towards an open R&D system: Internal R&D investment, external 

knowledge acquisition and innovative performance. Research Policy 42 (1): 117-127. 

Bercovitz, J.E.L., Feldman, M.P., 2007 Fishing upstream: Firm innovation strategy and 

university research alliances. Research Policy 36(7): 930-948. 

Bettis RA, Bradley SP, Hamel, G. 1992. Outsourcing and industrial decline. The Executive 6 

(1): 7-22. 

Bettis RA, Hitt MA. 1995. The new competitive landscape. Strategic Management Journal 

16(S1): 7-19. 

Bianchi MA, Cavaliere A, Chiaroni D, Frattini F, Chiesa V. 2011. Organisational modes for 

Open Innovation in the bio-pharmaceutical industry: An exploratory 

analysis. Technovation, 31(1): 22-33. 

Bozec, R., Dia, M. , Bozec,Y.  2010. Governance–Performance Relationship: A Re-

examination Using Technical Efficiency Measure. British Journal of Management  

21:684-700. 

Bridoux F, Smith KG, Grimm CM. 2013. The management of resources. Temporal effects of 

different types of actions on performance. Journal of Management 39 (4): 928-257. 

Brunswicker S, Vanhaverbeke W. 2015. Open innovation in small and medium‐ sized 

enterprises (SMEs): External knowledge sourcing strategies and internal organizational 

facilitators. Journal of Small Business Management 53(4): 1241-1263. 

Candi M, Roberts DL, Tucker M, Barczak G. 2018. Social strategy as a means to gain 

knowledge for innovation. British Journal of Management:1-19. 

Caputo M, Lamberti E, Cammarano A, Michelino F. 2016. Exploring the impact of open 

innovation on firm performances. Management Decision, 54(7): 1788-1812. 

Cassiman B, Veugelers R. 2006. In search of complementarity in innovation strategy: Internal 

R&D and external knowledge acquisition. Management Science 52 (1): 68-82. 

Chang, W., Taylor, S.A. 2016 The effectiveness of customer participation in new product 

development: A meta-analysis. Journal of Marketing 80(1): 47-64. 

http://onlinelibrary.wiley.com/doi/10.1002/smj.176/full
http://onlinelibrary.wiley.com/doi/10.1002/smj.176/full
https://www.sciencedirect.com/science/journal/01672681
https://www.sciencedirect.com/science/article/pii/S004873330700073X
https://www.sciencedirect.com/science/article/pii/S004873330700073X
http://onlinelibrary.wiley.com/doi/10.1111/jsbm.12120/full
http://onlinelibrary.wiley.com/doi/10.1111/jsbm.12120/full
http://onlinelibrary.wiley.com/doi/10.1111/jsbm.12120/full
http://eprints.nottingham.ac.uk/48841/
http://eprints.nottingham.ac.uk/48841/


Chen J, Chen, Y, Vanhaverbeke W. 2011. The influence of scope, depth, and orientation of 

external technology sources on the innovative performance of Chinese 

firms. Technovation, 31(8): 362-373. 

Chen CM, Delmas MA, Lieberman MB. 2015. Production frontier methodologies and 

efficiency as a performance measure in strategic management research. Strategic 

Management Journal 36 (1): 19-36. 

Chesbrough H. 2003. Open Innovation. The New Imperative for Creating and Profiting from 

Technology. Boston, MA: Harvard Business School Publishing. 

Chesbrough H, Crowther AK. 2006. Beyond high tech: early adopters of open innovation in 

other industries. R&D Management 36 (3): 229-236. 

Chesbrough H, Vanhaverbeke W, West J. 2006. Open Innovation: Researching a New 

Paradigm. Oxford University Press: Oxford. 

Cohen WM, Levinthal DA. 1990. Absorptive capacity: A new perspective on learning and 

innovation. Administrative Science Quarterly 35 (1): 128-152. 

Colombo M, Laursen K. Magnusson M, Rossi-Lamastra C. 2012. Small Business and 

Networked Innovation: Organizational and Managerial Challenges. Journal of Small 

Business Management 50 (2): 181-190. 

Cruz-Cázares C, Bayona-Sáez C, García-Marco T. 2013. You can’t manage right what you 

can’t measure well: Technological innovation efficiency. Research Policy 42 (6): 1239-

1250. 

De Araujo Burcharth, A. L.L., Lettl, C., Ulhoi,J.P. 2015. Extending organizational 

antecedents of absorptive capacity: Organizational characteristics that encourage 

experimentation. Technological Forecasting and Social Change 90: 269-284. 

De Leeuw, T. Lokshin, B., Duysters, G. 2014. Returns to alliance portfolio diversity: The 

relative effects of partner diversity on firm's innovative performance and productivity. 

Journal of Business Research 67(9): 1839-1849. 

Devinney, T. M. Yip, G.S., Johnson, G. 2010.Using Frontier Analysis to Evaluate Company 

Performance. British Journal of Management 21: 921-938. 

Dong, J.Q., McCarthy, K.J., Schoenmakers, W.W.M.E. 2017. How central is too central? 

Organizing interorganizational collaboration networks for breakthrough innovation. 

Journal of Product Innovation Management 34(4):526-542. 

Duysters, G., Lokshin,B. 2011. Determinants of alliance portfolio complexity and its effect 

on innovative performance of companies. Journal of Product Innovation Management 

28(4): 570-585. 

Escribano A, Fosfuri A, Tribó, JA. 2009. Managing external knowledge flows: The 

moderating role of absorptive capacity. Research Policy 38 (1): 96-105. 

Faems, D., De Visser, M., Andries, P., Van Looy, B. 2010. Technology Alliance Portfolios 

and Financial Performance: Value‐ Enhancing and Cost‐ Increasing Effects of Open 

Innovation. Journal of Product Innovation Management 27(6): 785-796. 

Fosfuri A, Tribó, JA. 2008. Exploring the antecedents of potential absorptive capacity and its 

impact on innovation performance. Omega 36 (2): 173-187. 

https://www.sciencedirect.com/science/article/pii/S0148296313004396
https://www.sciencedirect.com/science/article/pii/S0148296313004396


Frishammar J, Florén H, Wincent J. 2011. Beyond managing uncertainty: Insights from 

studying equivocality in the fuzzy front end of product and process innovation projects. 

IEEE Transactions on Engineering Management 58 (3): 551-563. 

Fu X. 2012. How does openness affect the importance of incentives for innovation? Research 

Policy 41 (3): 512-523. 

Garcia Martinez, M., Zouaghi, F., Sanchez Garcia, M. 2017. Capturing value from alliance 

portfolio diversity: The mediating role of R&D human capital in high and low tech 

industries. Technovation 59: 55-67. 

Garcia Martinez, M., Zouaghi, F., Sanchez Garcia, M. 2018. Casting a Wide Net for 

Innovation: Mediating Effect of R&D Human and Social Capital to Unlock the Value 

from Alliance Portfolio Diversity. British Journal of Management (00): 1-22. 

Garriga H, von Krogh G, Spaeth S. 2013. How constraints and knowledge mediate open 

innovation. Strategic Management Journal 34 (9): 1134-1144. 

Gassmann O. 2006. Opening up the innovation process: Towards an agenda. R&D 

Management 36 (3): 223-228. 

Gassmann O, Enkel E, Chesbrough H. 2010. The future of open innovation. R&D 

Management, 40(3): 213-221. 

Gelabert L, Fosfuri A, Tribó JA. 2009. Does the effect of public support for R&D depend on 

the degree of appropriability? The Journal of Industrial Economics 57 (4): 736-767. 

George, G. 2005. Slack resources and the performance of privately held firms. Academy of 

Management Journal 48(4): 661-676. 

Grant RM. 1996. Towards a knowledge-based theory of the firm. Strategic Management 

Journal 17 (S2): 109-122. 

Greco M, Grimaldi M, Cricelli L. 2015. Open innovation actions and innovation 

performance: a literature review of European empirical evidence. European Journal of 

Innovation Management, 18(2): 150-171. 

Grigoriou K, Rothaermel F. 2017. Organizing for knowledge creation: Internal knowledge 

networks and the contingent effect of external knowledge sourcing. Strategic 

Management Journal 38(2):395-414. 

Grimpe C, Kaiser U. 2010. Balancing Internal and External Knowledge Acquisition: The 

Gains and Pains from R&D Outsourcing. Journal of Management Studies 47(8): 1483–

1509 

Haans RF, Pieters C, He ZL. 2016. Thinking about U: Theorizing and testing U- and inverted 

U-shaped relationships in strategy research. Strategic Management Journal, 37(7): 

1177-1195. 

Hagedoorn J, Cloodt M., 2003. Measuring innovative performance: is there an advantage in 

using multiple indicators?. Research Policy, 32(8):1365-1379. 

Hagedoorn J, Wang N. 2012. Is there complementarity or substitutability between internal 

and external R&D strategies? Research Policy 41(6): 1072-1083. 

Hamel, G., Doz, Y.L., Prahalad, C.K. 1989. Collaborate with your competitors and win. 

Harvard Business Review (January-February): 133-139. 

Hashimoto A, Haneda S. 2008. Measuring the change in R&D efficiency of the Japanese 

pharmaceutical industry. Research Policy 37(10): 1829-1836. 

http://www.sciencedirect.com/science/article/pii/S0048733312000558
http://www.sciencedirect.com/science/article/pii/S0048733312000558


Helfat CE, Raubitschek RS. 2000. Product sequencing: Co-evolution of knowledge, 

capabilities, and products. Strategic Management Journal 21(10-11): 961-979. 

Henderson, A.D., Miller, D., Hambrick, D.C. 2006. How quickly do CEOs become obsolete? 

Industry dynamism, CEO tenure, and company performance Strategic Management 

Journal 27(5): 447-460. 

Hienerth C, von Hippel E, Jensen MB. 2014. User community vs. producer innovation 

development efficiency: A first empirical study. Research Policy 43 (1): 190-201. 

Hoegl, M., Gibbert, M., Mazursky, D. 2008. Financial constraints in innovation projects: 

When less is more? Research Policy 37: 1382-1391. 

Huang F, Rice J. 2009. The role of absorptive capacity in facilitating "Open innovation" 

outcomes: A study of Australian SMEs in the manufacturing sector. International 

Journal of Innovation Management, 13(2): 201-220. 

Hung KP, Chou C. 2013. The impact of open innovation on firm performance: The 

moderating effects of internal R&D and environmental turbulence. Technovation, 33 

(10): 368-380. 

Jansen, J.J.P., Van Den Bosch, F.A.J., Volberda, H.W. 2006 Exploratory Innovation, 

Exploitative Innovation, and Performance: Effects of Organizational Antecedents and 

Environmental Moderators. Management Science 52(11):1661-1674 

Karna A, Richter A, Riesenkampff E. 2015. Revisiting the role of the environment in the 

capabilities–financial performance relationship: A meta-analysis. Strategic 

Management Journal 37(6): 1154-1173.  

Kessler EH, Bierly PE, Gopalakrishnan S. 2000. Internal vs. external learning in new product 

development: effects on speed, costs and competitive advantage. R&D Management 30 

(3): 213-224. 

Khanna, T. and Yafeh, Y. 2007. Business groups in emerging markets: Paragons or parasites? 

Journal of Economic Literature 45(2): 331–372. 

Kolenikov S, Angeles G. 2004. The use of discrete data in PCA: Theory, simulations, and 

applications to socioeconomic indices. Chapel Hill: Carolina Population Center, 

University of North Carolina, 1-59. 

 Laursen K, Salter A. 2006. Open for innovation: the role of openness in explaining 

innovation performance among UK manufacturing firms. Strategic Management 

Journal 27(2): 131-150. 

Leiponen A, Helfat CE. 2010. Innovation objectives, knowledge sources, and the benefits of 

breadth. Strategic Management Journal 31(2): 224–236.  

Levinthal, D.A., March, J.G. 1993. The myopia of learning. Strategic Management Journal 

14 (S2): 95-112. 

Liebeskind JP, Oliver AL, Zucker L, Brewer M. 1996. Social networks, learning, and 

flexibility: Sourcing scientific knowledge in new biotechnology firms. Organization 

Science 7 (4): 428-443. 

Love JH, Roper S, Vahter P. 2014. Learning from openness: The dynamics of breadth in 

external innovation linkages. Strategic Management Journal 35 (11): 1703-1716. 

Lucas L. 2012, October. Big companies look to ‘open innovation’. Financial Times. 

Retrieved from https://www.ft.com/content/14b72abc-12f7-11e2-ac28-00144feabdc0 



Malerba F, Nelson R, Orsenigo L, Winter, S. 2008. Vertical integration and disintegration of 

computer firms: A history-friendly model of the coevolution of the computer and 

semiconductor industries. Industrial and Corporate Change 17 (2): 197-231. 

March JG. 1991. Exploration and exploitation in organizational learning. Organization 

Science 2 (1): 71-87. 

March JG. 2006. Rationality, foolishness, and adaptive intelligence. Strategic Management 

Journal, 27(3): 201-214. 

Miotti, L., Sachwald, F. 2003 Co-operative R&D: why and with whom? An integrated 

framework of analysis. Research Policy 32(8): 1481-1499. 

Mowery, D.C., Oxley, J.E., Silverman, B.S. 1996. Strategic alliances and interfirm 

knowledge transfer. Strategic Management Journal 17: 77-91. 

Nieto, M.J., Santamaria,L. 2007. The importance of diverse collaborative networks for the 

novelty of product innovation. Technovation 27(6-7): 367-377. 

Powell WW, Koput WK, Smith-Doerr L. 1996. Interorganizational collaboration and the 

locus of innovation: Networks of learning in biotechnology, Administrative Science 

Quarterly 41 (1): 116-145. 

Rosenberg N. 1990. Why do firm do basic research (with their own money)? Research Policy 

19 (2): 165-174.  

Sáenz J, Aramburu N, Rivera O. 2009. Knowledge sharing and innovation performance: A 

comparison between high-tech and low-tech companies. Journal of Intellectual 

Capital, 10(1): 22-36. 

Simar L, Wilson PW. 1998. Sensitivity analysis of efficiency scores: How to bootstrap in 

nonparametric frontier models. Management Science, 44(1): 49-61. 

Simar L, Wilson PW. 2000. Statistical inference in nonparametric frontier models: the 

state of the art. Journal of Productivity Analysis 13 (1): 49–78.  

Simar L, Wilson PW. 2007. Estimation and inference in two-stage, semi-parametric models 

of production processes. Journal of Econometrics, 136(1): 31-64. 

Sirmon DG, Hitt AM. 2003. Managing resources: Linking unique resources, management, 

and wealth creation in family firms. Entrepreneurship: Theory and Practice 27 (4): 

339-358. 

Spithoven A, Vanhaverbeke W, Roijakkers N. 2013. Open innovation practices in SMEs and 

large enterprises. Small Business Economics, 41(3): 537-562. 

Stuart, T.E., Ozdemir, S.Z., Ding, W.W. 2007. Vertical alliance networks: The case of 

university–biotechnology–pharmaceutical alliance chains. Research Policy 36(4): 477-

498. 

Teece DJ. 1986. Profiting from technological innovation: Implications for integration, 

collaboration, licensing and public policy. Research Policy 15 (6): 285-305. 

Teece DJ, Pisano G, Shuen, A. 1997. Dynamic capabilities and strategic management. 

Strategic Management Journal 18 (7): 509-533. 

Un, C. A. 2011. The advantage of foreignness in innovation. Strategic Management Journal, 

32(11): 1232-1242. 

https://www.sciencedirect.com/science/article/pii/S0166497206001064
https://www.sciencedirect.com/science/article/pii/S0166497206001064
http://onlinelibrary.wiley.com/doi/10.1111/1540-8520.t01-1-00013/full
http://onlinelibrary.wiley.com/doi/10.1111/1540-8520.t01-1-00013/full


Van Beers, C., Zand, F. 2014. R&D Cooperation, partner diversity, and innovation 

performance: An empirical analysis. Journal of Product Innovation Management 31(2): 

292-312. 

Van Burg, E., Podoynitsyna, K., Beck, L., Lommelen, T. 2012. Directive Deficiencies: How 

Resource Constraints Direct Opportunity Identification in SMEs. Journal of Product 

Innovation Management 29(6):1000–1011. 

Van de Vrande V, De Jong JPG, Vanhaverbeke W, De Rochemont M. 2009. Open innovation 

in SMEs: Trends, motives and management challenges. Technovation 29 (6-7): 423-

437. 

Van de Vrande, V., Vanhaverbeke, W., Gassmann, O. 2010. Broadening the scope of open 

innovation:  past research, current state and future directions. International Journal of 

Technology Management 52 (3/4): 221-235. 

Van de Vrande, V. 2013. Balancing your technology-sourcing portfolio: How sourcing mode 

diversity enhances innovative performance. Strategic Management Journal 34:610-621. 

Von Hippel E. 2005. Democratizing innovation. Cambridge, MA: MIT press. 

Vorhies, D.W., Morgan, N.A. 2005. Benchmarking Marketing Capabilities for Sustainable 

Competitive Advantage. Journal of Marketing 69: 80-94. 

Wang H, Li J. 2008. Untangling the effects of overexploration and overexploitation on 

organizational performance: The moderating role of environmental dynamism. Journal 

of Management 34 (5): 925-951. 

Wang, C.-H.,Chang, C.-H., Shen, G.C. 2015. The effects of inbound open innovation on firm 

performance: Evidence from high-tech industry. Technological Forecasting and Social 

Change 99: 222-230. 

Wilson PW. 1993. Detecting outliers in deterministic nonparametric frontier models with 

multiple outputs. Journal of Business and Economic Statistics, 11(3): 319-323. 

Winter SG. 2003. Understanding dynamic capabilities. Strategic Management Journal 24 

(10): 991–995. 

Wu J. 2012. Technological collaboration in product innovation: The role of market 

competition and sectoral technological intensity. Research Policy 41 (2): 489-496. 

Xu, K.,  Huang, K.-F., Gao, S. 2012. Technology sourcing, appropriability regimes, and new 

product development.  Journal of Engineering and Technology Management 29: 265-

280. 

Zobel, A.K. 2017. Benefiting from open innovation: A multidimensional model of absorptive 

capacity. Journal of Product Innovation Management 34(3): 269-288. 

Zouaghi F, Sánchez M, Martínez MG. (2018). Did the global financial crisis impact firms' 

innovation performance? The role of internal and external knowledge capabilities in 

high and low tech industries. Technological Forecasting and Social Change, 132: 92-

104. 

 

http://www.sciencedirect.com/science/article/pii/S0166497208001314
http://www.sciencedirect.com/science/article/pii/S0166497208001314

	Article coversheet Wiley
	External knowledge

