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Abstract

This practice-led research contributes to the field of interactive dance and 

spatial sound performance. The document describes a research journey into 

ways that emphasize the sonic spatiality in dance choreography by creating a 

range of ChoreoSonic experiments and compositions that succeed from the 

spatial perspectives of both disciplines.

The project explores an active interrelationship between ambisonic surround 

sound design and contemporary improvised dance through the technological 

areas of wireless electronic tracking systems and computer programming. The 

research process incorporates discussions covering developments in 

interactive art performances including references from the field of spatial 

sound composition, dance, interactive technologies and computer mapping.

Alongside these theoretical investigations, an original Three Dimensional Data 

Interpreting Methodology (3DIM) is presented as an artistic spatial mapping 

strategy in order to achieve an aesthetic conceptualization within the domain 

of visual and auditory interactive performance. The different parameters of 

3DIM are sorted into four main categories: raw movement input data from the 

tracking system, deduced (algorithmic) spatial movement parameters, sonic 

output and sonic spatiality. Each of these categories consists of the relevant 

spatial movement or sonic parameters and is accompanied by a graphic of the 

implementation in the 3DIM software.

The 3DIM has been designed in the visual programming environment 

Max/MSP/Jitter, and has been developed and tested in a range of practical 

interactive 'Sound Skeleton' research experiments and compositions. The 

resulting interactive ChoreoSonic performance environment enables dance 

movements in space to be transformed into real time 3D spatial sound 

composition.

The written thesis also includes video extracts of the 'Sound Skeleton' 

creations and documentation of the 3DIM Max/MSP/Jitter software, with 

accompanying manual and supporting text.



A ckn o w led gem en ts

I am grateful for the continuous support of my Director of Studies Dr Joseph 

Hyde at Bath Spa University who not only continuously reviewed my writings 

but also has been a big support in organizing the practical part of the PhD.

Thanks to my second supervisor Dr Andy Keep at Bath Spa University who 

inspired me to design the graphics of the 3DIM implementation charts, and for 

his general support during the proof-reading of the final writing of this thesis.

I am also very grateful to the dedication of my external advisor Dr Sher 

Doruff in Amsterdam who has always given useful feedback, suggestions and 

the needed positive vibrations for the practical research.

I would in particular like to thank my external advisor Prof. Sarah Rubidge 

from the University of Chichester for being a tremendous support since the 

start of my interactive career, during our collaborative research and work 

enterprises, and for being the advisory guide on the long road of this PhD 

research.

I am much obliged to Dr Cliff Randell, senior fellow at the University of Bristol, 

one of the inventors of the applied Low Cost Indoor Positioning system. I am 

tremendously grateful for his support in supplying and adjusting the system 

and his presence during the long days of the practical research.

Special thanks to Dr Anne Nigten and Marc Boon from V2 lab in the 

Netherlands, and to Paul Gillieron from PGAcoustic and Surround AV in 

London who collaboratively developed and supplied the prototype of the 

Cricket tracking system used at the early stages of my research.

The practical methodology for this research would not have been possible 

without the commitment and collaboration of all dancers involved. I am much 

obliged to the following dancers for the exchange of ideas and participation in 

one or more case studies, practical research experimentations and/or 

presentations: Abi Mortimer, Carrie Whitaker and Guy Adams of Lila Dance 

Company and independent dance artists Esther Lewis-Smith, Sasha Spasic 

and Yuyu Rau.

Additional thanks to the Head of Dance Chris Lewis-Smith and studio 

technician Jon Savage at Bath Spa University for their support and Mark 

Coniglio and Dawn Stoppiello from Troikaranch for their advice.

Last, but not least, I am grateful to my friends and family - especially Ans 

Bergsma and my beloved mother - for their patience throughout this study.

2



Content

Abstract........................................................................................................ 1

Acknowledgements......................................................................................... 2

Content......................................................................................................... 3

List of Fig ures ................................................................................................ 6

List of Tables ................................................................................................. 8

Chapter 1 Introduction ................................................................................. 9

1.1 Background and Motivation................................................................ 10

1.2 Artistic Viewpoint.............................................................................. 12

1.3 Research Aims and Methodology ........................................................13

1.4 Research Questions and Aims ............................................................15

1.5 Structure of this Document................................................................ 15

Chapter 2 Interactivity and Gesture Based Sonic Projects.................................21

2.1 Interactivity: 'Artistic Process' or a 'Tool Exhibition'?.............................22

2.1.1 Early Movement-Based Sound Projects as Live Interactive
Process ................................................................................. 24

2.2 Sonic Gesture Measurements .............................................................25

2.2.1 The Choice for a Controller Device in a Musical Context...............26

2.2.2 Introduction to Mapping ..........................................................28

2.2.3 Object Location in Space .........................................................30

2.2.4 Moving Body Part Tracking ......................................................31

2.2.5 Control versus Discontrol.........................................................33

2.3 Summary 'Interactivity and Gesture Based Sonic Projects'.....................34

Chapter 3 Interactive Movement-Based Projects .............................................36

3.1 Data Measurement Methods for Body Motion........................................37

3.1.1 Full Body Motion and Location Tracking .....................................37

3.1.1.1 Sensitive Dance Floors ................................................38

3.1.1.2 Breaking Beams .........................................................40

3.1.1.3 Camera Tracking ........................................................42

3.1.2 Body Part Motion Capacity and Personal Space Tracking..............47

3.1.2.1 Wired Up ...................................................................47



3.1.2.2 Motion Capturing the Skeleton .....................................49

3.1.2.3 Gesture Detection accessible for Artists .........................51

3.1.3 Summary 'Data Measurement Methods for Body Motion' .............52

3.2 Choreography in Computer Code ........................................................52

3.2.1 Gesture Recognition................................................................ 53

3.2.2 Motion Analysis Algorithms ......................................................54

3.2.3 Choreography as a Composition of Atomic Gestures....................57

3.2.4 Expressive Content................................................................. 58

3.2.5 Gesture Recognition for Artistic Purposes ..................................60

3.2.6 Summary 'Choreography in Computer Code'..............................63

3.3 Summary 'Interactive Movement-Based Projects' .................................64

Chapter 4 Context of the Spatial ChoreoSonic Environment..............................67

4.1 Music and Sound for Dance................................................................67

4.1.1 Improvisation in Dance and Technology Performance..................69

4.1.2 How does a Dancer perceive the Technology? ............................70

4.1.2.1 Embodiment and Virtual Disembodiment .......................72

4.1.2.2 TranSonic' Perception .................................................75

4.1.3 Summary 'Music and Sound for Dance'......................................76

4.2 Bodily Space ....................................................................................77

4.2.1 Human Movement in General Space..........................................77

4.2.2 Spatial Bodily Perception of the Dancer .....................................79

4.2.3 The Body in Geometric Space ..................................................82

4.2.4 Summary 'Bodily Space'..........................................................84

4.3 Auditory Space.................................................................................85

4.3.1 Spatial Sound: A Moving Sonic Architecture? .............................86

4.3.2 Ambisonic Surround Sound ......................................................87

4.3.3 Spatial Perception of Ambisonic Sound ......................................89

4.3.4 Summary 'Auditory Space'.......................................................90

4.4 Audiovisual Spatial Synchronicity, 'Sound as Disembodied Movement'
and 'Dance as Embodied Sound'.........................................................91

4.4.1 Geometry in Spatial Audiovisual Division and Perception .............91

4.4.2 Spatial Body-Sensor Pentagon .................................................93

4



4.4.3 Geometry in a Cubical Form.....................................................95

4.4.4 Summary 'Audiovisual Spatial Synchronicity' .............................97

4.5 Summary 'Context of the Spatial ChoreoSonic Environment' ..................98

Chapter 5 Case Study 1: Preliminary Practical Research, 'Cricket' System
Development .........................................................................................101

5.1 The Cricket System......................................................................... 101

5.1.1 Context of the Cricket System................................................ 103

5.1.2 Technical Operation of the Cricket System............................... 103

5.1.3 Technical Set Up ChoreoSonic Environment............................. 105

5.1.4 Outcome Case Study I: 'Cricket' System Development.............. 106

5.2 System Errors: The Ghost of the Machine'......................................... 108

5.3 A Low Cost Indoor Positioning System (LCIPS)................................... 109

5.4 Summary 'Case Study 1: Preliminary Practical Research'..................... Ill

Chapter 6 Three Dimensional Data Interpreting Methodology ......................... 112

6.1 Raw Movement Input Data .............................................................. 114

6.1.1 Full Body Motion Data ........................................................... 114

6.1.2 Case Study 2 'Scanning the Space'......................................... 116

6.1.3 Kinespheric Movement Data................................................... 119

6.2 Deduced Spatial Movement Parameters............................................. 121

6.2.1 Proximity............................................................................. 121

6.2.2 Speed................................................................................. 122

6.2.3 Circular Movement, Rotation and 'Wave-ing'............................ 123

6.2.4 Direction ............................................................................. 124

6.3 Sonic Output.................................................................................. 125

6.3.1 Additive Synthesizer ............................................................. 126

6.3.2 Samples and Effects ............................................................. 127

6.3.3 Case Study 3: Showing at the University of Chichester (U.C.),
UK (12/01/2007).................................................................. 129

6.4 Sonic Spatiality .............................................................................. 132

6.4.1 Volume & Panning ................................................................ 133

6.4.2 Frequency ........................................................................... 134

6.4.3 Reverb................................................................................ 134



6.4.4 Delay.................................................................................. 135

6.5 Interdependent Spatial ChoreoSonic Relationship ............................... 136

6.5.1 'Beep-Stop' Model ................................................................ 136

6.5.2 'S-E-N-S-I-O' Model.............................................................. 137

6.5.3 'Vector' Model' ..................................................................... 138

6.6 Equipment used ............................................................................. 139

6.7 Summary Three Dimensional Data Interpreting Methodology'.............. 141

Chapter 7 Conclusions and Future Work....................................................... 143

7.1 The TheoreticaI Research................................................................. 143

7.2 The Preliminary Technical Research .................................................. 146

7.3 The Final Artistic Outcome ............................................................... 146

7.4 Evaluation and Future Work............................................................. 148

Appendices................................................................................................. 151

1 Documentation......................................................................................... 151

2 Publications ............................................................................................. 152

3 Presentations, Seminars and Workshops...................................................... 153

4 3DIM Operation Manual............................................................................. 154

5 Software Copyright Clearance .................................................................... 167

Bibliography ............................................................................................... 168

List of Figures

Figure 1 Picture of Stelarc's robotic construction 'Muscle Machine' (CAD model

by John Grimes, UK). ...................................................................... 11

Figure 2 Trisha Brown 'Locus' (in Karpinska 2001). ...................................82

Figure 3 The Division of Space through the Moving Body (Laban in Ullmann

1966:143). ....................................................................................91

Figure 4 Head-related System of Coordinates in Auditory Experiments (Blauert

1997a:14). ....................................................................................92

Figure 5 Compiled picture by the author of the Centre of Spatial Movement-

and Sound Perception......................................................................92

Figure 6 A flat Pentagonal Pose of the Body (Laban 1966:19). ...................93

Figure 7 Space Modules of the Arms and Legs I (Kirstein eta/. 1953:2). .....94

Figure 8 Dynamic sensors representation in Max/MSP software. .................95

Figure 9 'Geometric Kinesphere' Laban (1966:140). .................................96

6



Figure 10 Two cameras viewing the same space intersect to form a box like

area representing the common viewing field (Lovell & Mitchell 1995). . 102 

Figure 11 Cricket Handheld 1 (2006).....................................................104

Figure 12 Cricket Handheld 2 (2007). ................................................... 104

Figure 13 Flexible grid of infrastructure of 5 Cricket beacons on the ceiling.

.................................................................................................. 104

Figure 14 Ideal shape of directional flow of 5 Cricket sensors...................105

Figure 15 Two dimensional sensitive floor of 5 Cricket sensors

(approximately)............................................................................ 105

Figure 16 The speaker system and Cricket receiver grid. ......................... 106

Figure 17 Diagram of the shape of the sensitive space (approximate)....... 107

Figure 18 Sensor pointing upwards to the ceiling.................................... 109

Figure 19 The four receiving LCIPS sensors attached in the corners of a

square grid on the ceiling............................................................... 110

Figure 20 The 5 sensors of the LCIPS.................................................... 110

Figure 21 3DIM implementation chart no.l: the four broad parameter

categories.................................................................................... 114

Figure 22 3DIM implementation chart no.2: raw positioning data of two

(Cricket) sensor units.................................................................... 115

Figure 23 Dancer C. Whitaker from Lila Dance Company with the Cricket

handheld 2006. ............................................................................ 116

Figure 24 diagram of composition strategy 'Scanning the Space'. ............. 118

Figure 25 Dancer S. Spasic with 5 sensors of the LCIPS in a pentagonal

structure...................................................................................... 119

Figure 26 3DIM implementation chart no. 3: raw kinespheric input data.... 121

Figure 27 3DIM implementation chart no. 4: deduced spatial movement

parameters. ................................................................................. 125

Figure 28 3DIM implementation chart no. 5: additive synthesizer parameters.

.................................................................................................. 127

Figure 29 3DIM implementation chart no. 6: samples and effects. ............ 128

Figure 30 The sensitive floor area marked with white tape. From left to right:

S. Wijnans, C. Whitaker, G. Adams, S. Rubidge. ............................... 130

Figure 31 3DIM implementation chart no. 7: Showing at University Chichester.

.................................................................................................. 132

Figure 32 To explain the effect of auditory spaciousness (Blauert 1997b:109).

.................................................................................................. 133

Figure 33 3DIM implementation chart no. 8: sonic spatial structure

parameters. ................................................................................. 136

7



Figure 34 Technical Set Up 2006-2007.................................................. 140

Figure 35 Technical Set Up 2007-2009.................................................. 141

List of Tables

Table 1 Overview of the correlation between technology and artistic outcome. 

....................................................................................................65

Table 2 Mapping layer in the test case by Wanderley et al. (2000a).......... 129

Table 3 3DIM for two dancers and additive synthesizer. .......................... 129

8



Chapter 1 Introduction

Spatiality is an important feature in dance performance and choreographic 

composition, with accompanying sound often seen primarily as a 'time- 

rhythm' medium, leaving sonic space as an unobserved element of the event. 

However, experiments with the spatiality of sound have been undertaken by 

numerous instrumentalists and composers. Historical examples include 

musicians playing their instruments while walking around the concert hall, 

spatial positioning of the orchestra (such as Stockhausen's 'Gruppen' 1955- 

57, Boulez's 'Repons' 1981), and the spatial placement of loudspeakers (such 

as in Cage's ' Williams Mix' 1952, Henry's '/. 'Apocalypse de Jean' 1968, and 

Stockhausen's "Gesang der Junglinge' 1955-56). Therefore, the question 

arises: why has the spatial dimension of sound rarely been incorporated in 

sound compositions made for dance performance 1 ?

This thesis is a research journey into ways to emphasize spatiality in an 

interactive dance and sound performance such that they succeed from both 

choreographic and sonic spatial perspectives. The resulting Three Dimensional 

Data Interpreting Methodology (3DIM 2 ) developed for this project is presented 

as a subjective3 mapping method to achieve an aesthetic conceptualization 

within the visual and auditory interactive performance domain. In Human 

Computer Interaction 4 (HCI) the term 'mapping' is used to describe the 

relationships between the derived input and output data (see Hunt & Kirk 

2000a, Hunt et al. 2000b, Wanderley 2001, Mandoux & Wohlthat 2004). 

Computer programmers and electronic engineers continue to search for new

1 An exception of the use of the spatial dimension of sound in dance 
choreography was perhaps the collaboration between David Tudor (with John 
Cage) and choreographer Merce Cunningham in 'RainForest' (1968). In this 
choreography live sounds of small resonant objects were spatially mixed as 
part of the dance performance. Although this electronic sound piece has 
sometimes been recognized as an infamous spatial installation piece (see: 
http://www.emf.org/tudor/Works/rainforest.html [accessed 10.06.08]), it is 
doubtful if the spatial application was really a conscious integration in the 
choreography of the piece considering the collaborative 'chance' concept of 
Cunningham and Cage. (From the 1950s onwards, Cage used the mechanism 
of the Chinese X I Ching' book to determine a compositional structure based on 
chance and random numbers).
2 The italicisation of the character 'D' in 3DIM hints at a third dimension. 
3 The term 'subjective' is used here within the context of artistic intuition and 
sometimes refers to an output from a conscious artistic decision to use a 
coincidental error or a moment of creative inspiration. 
4 See: http://www.siachi.org/ [accessed 29.07.08].



mathematical algorithms and solutions to make technical systems (sensors, 

interfaces, software etc.) more reliable. In this way they aim to improve the 

logic of the human-machine relationship. However, with some exceptions 

(Winkler 1995 & 1997, Camurri eta/. 2004 &. 2005, Rovan eta/. 2001), to my 

knowledge only a few topical descriptions exist of applied subjective artistic 

methods and practice of mapping movement parameters to (spatialized) 

sound. This thesis presents 3DIM as an artistic mapping methodology that has 

been developed and tested during the practical PhD research sessions.

The practical research has been realized with the application of two wireless 

Radio Frequency (RF)/Ultrasonic (US) Indoor Positioning systems (see Ch.5) 

to shape the real time ambisonic surround sound environment in using the 

visual programming environment Max/MSP/Jitter5 . The project coordinates the 

trajectory of the whole body through space and the movements of the 

individual body parts within the mapping strategy. In the thesis, artistic 

strategies for transcending the conventional perception of musical form in 

dance performance into a perception of the sonic environment as an 

interactive 'space-rhythm' dimension will be discussed. Both the individual 

and collective 'living architecture' (see p.81) of the dance performer(s) is 

being used as the starting point for a real-time generation of a spatio- 

temporal musical form. The ideal goal of the project would be to design an 

innovative method to compose spatial sound.

1.1 Background and Motivation

My collaboration as a sound artist and sensor system developer with robotics 

performance artist Stelarc in 2002-2003 6 has profoundly stimulated an 

interest in designing sound by means of real time triggering movements 

(Wijnans 2004). Stelarc's work 'explores and extends the concept of the body 

and its relationship with technology through human-machine interfaces 

incorporating medical imaging, prosthetics, robotics, VR systems and the 

Internet'7 . During the Stelarc collaboration, a six legged moving robot 'Muscle 

Machine' (fig.l) was designed and constructed 8 .

5 See: http://www.cvcling74.com [accessed 06.05.08].
6 See: http://ahds.ac.uk/performingart5/collections/sci-art/about.htm#wiian
[accessed 29.07.08].
7 From: http://www.stelarc.va.com.au/stelarcl.html [accessed 15.03.2007].
8 See: http://www.stelarc.va.com.au/musclemachine/index.html [accessed
06.02.2007].

10



Figure 1 Picture of Stelarc's robotic construction 'Muscle Machine' (CAD model by John 

Grimes, UK).

The goal was that Stelarc's body, standing in the middle of this hybrid human- 

machine system, could actuate and direct the movements of the machine with 

his body movements. The robot's movements were measured by the attached 

sensor system 9 that communicated the data to a computer.

In general, a robot is able to make mainly mono-linear movements, i.e. 

moving the segments of a part of the machine construction in only one spatial 

direction at any one time. A human being is able to make poly-linear 

movements, i.e. moving several parts of a limb simultaneously in different 

spatial directions. In addition to this, movement theorist Rudolf Laban 

(1966:21) points out that 'movements of the body and its limbs do not 

generally make straight lines, but form curves'. Although technology and 

robotic design is still progressing rapidly, simulation of the typical human 

curvilinear motion of the joints with robotic machines has, to my knowledge, 

not yet been achieved 10 . This experience of working with robotic movements

9 The legs of the robot were equipped with pressure-sensors on the feet to 
receive an 'on/off signal when the feet 'stepped' on the floor and four pairs of 
dual-axis micro-accelerometers to track the movement direction and 
acceleration of two pairs of three legs, and of the two arms. The system was 
developed in collaboration with V2lab, Rotterdam, NL. See: 
http://www.v2.nl/section/lab [accessed 09.12.08].
10 It is another discussion (and beyond the scope of this thesis) whether a 
robot (like a computer) might have a mind of its own, but there is as yet no 
evidence of a machine moving with the complex kinematics of a 
human/animal.
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renewed my profound interest in trying to turn the more versatile human 

movement elements into a real time abstract sound generator.

1.2 Artistic Viewpoint

This research explores the different spatial elements involved in choreography 

and sound composition and seeks methods to enable me to relate the 

performed dance movement to the spatial sonic environment. To emphasize 

the sonic spatiality of interactive movement performance two tracking 

systems are used in the research. One derives the spatial movement data 

from the trajectory of the whole body in space, the other also tracks 

movements of the individual body parts (see Ch. 5). Regarding the possible 

mapping relationships of a 'sonification of movement' through the interactive 

movement manipulation of computational systems, Pieter Verstraete remarks:

A dancer is highly skilled and trained, so the sound designer has to 
empirically fine-tune the computer system to accurately Yead' the 
dance idioms and define which sound processing would fit the 
gestures in a specific situation. (Verstraete 2005:200)

Ben Jezekiel et al. (2001) remark that it has been 'established in kinematics 

that actual three-dimensional human movement can be quite complex, where 

different body parts move synchronously to achieve a certain intended [or 

artistic] movement'. On the other side of the mapping process, digital sound 

can be described as a multiplicity of different layers of flexible or stable sonic 

parameters (samples, synthesizer and/or instrumental) in a multidimensional 

environment predefined (primarily) by a sonic artist or composer. Eric Metois 

describes these sonic parametric layers when he refers to Max Matthew's first 

generation of his computer synthesis program 'MUSIC'11 :

The diversity of sound synthesis techniques allowed a set of 
parametric descriptions for subsets of this sonic world. Each synthesis 
algorithm can be seen as a navigational tool that will span a specific 
subset of timbre space by offering a set of controls which could be 
interpreted as a language, defining a model for sound. (Metois 
1996:17)

11 See: http://120vears.net/machines/software/index.html [accessed 
05.12.08].
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It is therefore possible to observe a similarity in dance and sound with respect 

to the multiplicity and freedom of choice of parameters that lead to the final 

artistic interactive expression.

We can postulate that a complex development process is involved when 

creating an interactive dance and sound performance. I list the elements of 

this process here as follows:

  The choice for a suitable sensor system to obtain body 
movement data.

  Computer programming.

  Training of performer(s).

  Choreography or dance improvisation. 

Composition.

  Development of a satisfactory mapping process.

The list is not necessarily in chronological order because it consists of 

interdependent creative elements. As the creator of the particular interactive 

process discussed in this thesis, I regard myself as an 'artist-technologist' who 

is the 'audio-movement data translator' in the spatial movement and sound 

environment. I use this definition to clarify that, as a technologist, I research 

and/or develop the applied sensor technologies (in collaboration) and/or test 

the prototypes/beta versions, and program the interactive software in 

Max/MSP/Jitter to be able to compose the sonic art environment. As an artist, 

I develop the interactive environment subjectively through the creation of a 

mapping process that manipulates the derived movement and sound 

parameters. The interactive experiments and compositions (collectively called 

the 'Sound Skeleton') that are at the centre of this process exist in the 

interactive rhythm-time-space domain. The mapping process and the 'Sound 

Skeleton' creations will be presented in detail in chapter 6.

1.3 Research Aims and Methodology

The aims of the research are:

  The creation of an artistic mapping methodology (3DIM) that 
artists can refer to when creating an interactive stage 
environment that is closely intertwined with the practical design 
and (collaborative) testing of new technologies.

  The development of easily configurable and flexible interactive 
software (in Max/MSP).
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  The presentation of interactive ChoreoSonic12 performance 
experiments and compositions documented in video format and 
captured under the name'Sound Skeleton'.

The results of these investigations have led to a method that will supply a 

dancer with the freedom (within set computer boundaries) to create authentic 

real time sonic and choreographic spatial compositions.

Pentti Routio (2004) has observed that nearly all scientific reports produced in 

the study of art have a purely informative goal, in line with scientific studies 

of art, i.e. the researcher 'tries to describe the object of study objectively and 

avoids generating any changes to it'. He argues that the writings maintain an 

'impartial nature' and therefore a 'disinterested purpose'. To avoid what he 

considers to be a weakness of the writing appearing not to originate from the 

needs of the artist him/herself, Routio proposes the adoption of a 'general 

normative research' and a practical 'normative case study' by research-artists. 

A normative approach differs from informative because research-artists are 

generally not interested in impartial descriptions of works of art, but want to 

create other and better works that originate from evaluations and reflections 

of the existing art works.

This normative approach is the chosen methodology of my research, as its 

intentions align with Routio's list of characteristics summarized below:

  The purpose is to reflect the 'general character of artistic creation 
which is essentially goal-oriented'.

Combining some of the procedures of scientific research and 
artistic creation.

Producing theory for the benefit of other artists.

  The parallel work of art elucidates, exemplifies or complements 
the theoretical findings.

  Presenting the results of the artistic study includes elements from 
both art and science.

Following Routio's proposition, the presentation of this research is divided into 

two parts. Part I, the 'general normative research', initially entails the 

evaluation of theoretical design strategies undertaken by artists and scholars 

in the field. Thereafter, the thesis continues with describing the theoretical 

concept that determined the context of the created interactive ChoreoSonic 

movement and sound environment. Part II, the 'normative case study',

12 A term coined during a research collaboration between Rubidge and myself 
in 2006 (see also Rubidge & Wijnans 2008).
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presents several case studies from the practical research and describes the 

development of 3DIM that is dynamically 13 designed during the research 

process. Through this research, the 3DIM developments systematically test 

the written theory during the 'Sound Skeleton' experiments and compositions. 

This research methodology allows me to fully incorporate the practical 

knowledge in the artistic debate presented in this thesis.

1.4 Research Questions and Aims

The initial research questions have been formulated as follows:

Which technical and artistic elements make it possible to create a 
real time spatial ChoreoSonic performance environment?

  How does one find a satisfactory artistic mapping relationship 
between the spatiality of dance movement and spatial sound 
composition in an interactive context?

Due to the nature of these theoretical and practical artistic investigations, 

research is undertaken in an interdisciplinary context. The research process 

presents theoretical discussions of artistic developments in the field including 

references from the subjects of interactive performance technologies, dance 

movement and spatial sound composition. In addition to these, various ideas 

of the current research on the mapping process in the computer will be 

discussed. Specifically it focuses on an analysis of the spatial dancer- 

technology-sound interaction and refers to other similar interactive dance 

performances.

The research practice and software have been, and will continue to be, 

demonstrated to students, artists and practitioners in seminars, workshops 

and written texts (see appendix 2 and 3).

1.5 Structure of this Document

Part I General Normative Research

Chapter 2 'Interactivity and Gesture Based Sonic Projects' starts the 

thesis by contextualizing the research. After an introduction to the process of 

interactivity in Art & Technology projects, the chapter highlights several 

pioneering digital musical interface designs that have been developed to

13 The word 'dynamically' is used in this context to show that the software 
was developed in an ongoing developmental progress before, during and after 
the practical experiments.
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realize gesturally controlled sonic art projects. The description focuses on 

artistic, engineering and computer science R&D. The designed technologies 

are categorized into two data collection methods:

Object Location in Space.

  Moving Body Part Location Tracking.

It will next be argued that the finger and hand gestures needed to play these 

new musical interfaces can be regarded as a 'dance of hand and fingers'. The 

technologies of these projects can be seen as predecessors of the 

technologies used in later interactive dance performance.

Chapter 3 'Interactive Movement-Based Projects' continues with an 

extensive review of interactive Dance and Music/Sound Projects. It focuses on 

an analysis and evaluation of the eventual correlation between, on the one 

hand, the technology that is applied in interactive performance projects and, 

on the other hand, on the artistic outcomes in movement and (primarily) 

sound projects. The chapter focuses on a wide range of movement-based 

projects, discussing artistic, engineering and computer science research. It 

presents a discussion of the different mapping concepts that have been 

developed by movement and sonic artists, and theoretical researchers with 

the aim of creating a certain movement and sound relationship.

Similar to the former chapter, the invented technologies are categorized into 

two data collection methods:

  Body Motion and Location Tracking techniques.

Body Part Motion Capacity and Personal Space Tracking 
techniques.

It will be shown that these technological methods are related to the two sonic 

gesture measurement methods mentioned in chapter 2.

The chapter progresses with a discussion of the different software design 

methods that have been applied in interactive dance choreography. The 

discussion reviews motion analysis and gesture recognition techniques from 

the perspective of computer programmers and the artists involved. It is 

critically questioned if 'choreographing in computer code' by means of using 

motion analysis and gesture recognition algorithms in the data processing is a 

useful creative method in an artistic performance context.

Chapter 4 'Context of the Spatial ChoreoSonic Environment'

contextualizes the creation of the spatial ChoreoSonic interactive environment

in two sections. The aim is to describe how my ideas behind the relationship
16



of dance movement and spatial sound evolved in the creative research 

process.

The first section of this chapter presents a general discussion of the different 

concepts that were developed with the aim of creating a certain movement 

and sound relationship. It is thereafter outlined that performance 

improvisation in a technological environment is an important feature in the 

interactive audio-visual-movement environment. The section continues with a 

focus on interactive performance and presents the viewpoints from movement 

and sonic artists, and theoretical researchers. The terms 'Embodiment' and 

'Virtual Disembodiment' are reviewed, leading to the proposition of the new 

term 'transonic' perception that complements the latter terms.

The second section of the chapter investigates the spatial elements involved 

in the creation of the ChoreoSonic environment from the various viewpoints of 

dance and ambisonic surround sound. The discussion focuses specifically on 

the human perception of the visual, tactical and auditory space in the digitally 

enhanced performance environment. The end of the chapter proposes a 

ChoreoSonic relationship between the dancer as a 'living architecture' and 

ambisonic surround sound as a 'moving sonic architecture'.

Part II Normative Case Study

Chapter 5 'Case Study 1: Preliminary Practical Research, Cricket 

System Development' presents the development of a prototype wireless 

Radiofrequency (RF)/ Ultrasonic (US) full body motion tracking system. After 

the theoretical investigations in the General Normative Research in part I of 

this thesis, it is concluded that such a system is best suited for measuring the 

spatiality of dancer's movements in the performance space.

In 2003-2006 I had initiated and researched the technical requirements of a 

full body motion tracking system. This research culminated in the 

development of a prototype version of the Cricket system. This system tracks 

the 3D full body position and trajectories of up to two performers in the 

sensitive area. The context and technical operation of the Cricket system is 

described, including preliminary research of the prototype Ambisonic 

(surround sound) programming in Max/MSP/Jitter. The technical constraints 

of this prototype RF/US system are identified at the end of this section.

In the second section a more advanced RF/US system, the 'Low Cost Indoor 

Positioning System' (LCIPS), is described. The LCIPS became available in the
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second part of my research when the development of the 'Cricket' System 

came to a pause, due to financial and logistic reasons. The LCIPS was at the 

time of this research able to track up to 6 RF/US sensors synchronously. The 

'Sound Skeleton' creations, that either helped to develop, test or demonstrate 

the different stages of the 3DIM development, utilize either the 'Cricket 

System' or the 'LCIPS'.

Chapter 6 'Three Dimensional Data Interpreting Methodology (3DIM)'

presents the development of 3DIM in Max/MSP/Jitter as a subjective method 

to map the spatial movement data derived from the RF/US tracking system to 

the interactive spatial sound environment. 3DIM categorizes a method for 

mapping the available spatial parameters of both art forms in an interactive 

ChoreoSonic environment: 'the Body as a Spatial Sound Generating 

Instrument'.

It is explained that the development of 3DIM involves a categorization of the 

various degrees of dynamic movement freedom, concentrating on the spatial 

position, rhythm and timing of these elements, and on the sonic parameters 

that influence the spatialization of the sound. These different elements of the 

mapping strategy are categorized in four main sections. The first two sections 

identify the movement input data: the raw movement input data derived from 

the tracking system (X-Y-Z dimension) and the deduced spatial movement 

parameters (proximity, speed, rotation and direction). The last two sections of 

the categorization identify the sonic output categories: the basic sonic result 

(interactive synthesizer, samples and effects) and the parameters that 

influence the sonic spatial structure (volume, frequency, reverb and delay). 

Each of these sections consists of the relevant spatial movement or sonic 

parameters and is accompanied by a graphic visualization of the 

implementation in the 3DIM software. In order to support the choice of these 

spatial movement and sound parameters they are underlined by several 

references from the appropriate field.

It is shown that 3DIM was designed before, during and after the practical 

'Sound Skeleton' creations that were developed as a result of the theoretical 

process that was presented in Part I of this thesis. It is outlined how the 

developments described in this chapter can contribute to the reader's insight 

into finding a balance between the interdependent technological and artistic 

elements that are inherent to interactive art performance.
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The description of the practical 'Sound Skeleton' creations is accompanied by 

documentation that includes video extracts compiled in a Power Point 

presentation (DVD), Max/MSP patches (CDR) and written text.

Chapter 7 'Evaluation and Future Work' evaluates the major outcomes 

and contributions from this research project and suggests various future 

developments in the field of interactive dance and technology performance.
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Chapter 2 Interactivity and Gesture Based Sonic Projects 

Introduction

If it is accepted that the initial intellectual creative process should be 
'ideas-led' rather than 'technology-led', then the scope for using the 

capabilities of software or hardware as a basis for the dramatic or 

artistic impact of any given piece decreases. That having been said, 

knowledge of the up-to-date capabilities of systems may lead to a 

situation where an original idea is enhanced by the possibilities 

offered by technology, so there is a complex relationship between 
these two positions. (Grindley 2007)

Neil Grindley outlines the importance of investigating the different types of 

technological discourses in art environments in which the applied technologies 

relate to and/or might enhance an intended art creation. In line with Grindley, 

the point of departure of the next two chapters is the assumption that 

technology research should not be separated from artistic research when 

realizing practical research in the interactive Art & Technology field.

Art & Technology have always had a close inter-relationship. The Greek word 

'techne' means 'craftmanship', 'craft' or 'art'. 'It is the rational method 

involved in producing an object or accomplishing a goal or objective. The 

means of this method is through art' 14 . Raymond Williams (1976:315) points 

out that 'the term "technology" was used from the seventeenth century 

onwards to describe a systematic study of the arts or the terminology of a 

particular art' (quoted in Wilson 2001). In the nineteenth century the term 

switched to being used as a reference to the 'practical arts'. In addition to 

this, Mick Wilson states that the term 'Art' has been associated with terms 

such as 'creativity' and 'expression' and was related to affective and 

subjective aspects of human experience. Relating to recent times, Wilson 

further notes that 'the emergent modern sense of technology marks the 

priorities of the common-sense practicality of everyday artisanal life as 

represented by tools, instruments, or machines within a discourse of progress' 

(ibid}.

These notifications bring forward a critical dilemma faced by artists working in 

the field of interactive technology today. According to Sher Doruff, a media 

artist working with real time interactive performance technologies, the close

14 From: http://www.encvclo.co.uk/define/techne [accessed 10.12.08],
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inter-relationship between art and technology is on the one hand a seductive 

environment that the contemporary artist can easily be overwhelmed by, on 

the other hand it is an interesting facility provided by the 'sign of our times':

Even as I race to keep pace with evolving hardware, software, 
standards, protocols, bandwidths, not to mention information 
ingestion and correspondence, I find myself longing for a quiet, 
unmediated breath. The vanishing 'still point.' This is a conundrum - 
this disparate agitation between the evolution of enabling tools and 
techniques and a conceptual tentativity towards the 'everything 
always at once' possibilities these tools engender. Yet, as artists, 
theoreticians and observers we are of our time and our time is 
fundamentally facilitated by clever combinations of 1's and O's - the 
pigment and piano wire of our compositions. (Doruff 2001)

Mick Wilson (2001) adds to this view the fact that The discussion of 

technological determinism underlines the need to critically treat assumptions 

that technological innovation is the primary determinant in cultural 

developments'. These citations illustrate the importance for an artist to try to 

find a satisfying equilibrium between the applied technology and the resulting 

art form.

2.1 Interactivity: "Artistic Process' or a "Tool Exhibition'?

Art While traditionally art was focused on the appearance of things 
and their representation, artists now are concerned with processes of 
transformation, construction and emergence. (Ascott 1996a)

Roy Ascott's 'Glossary', a writing in which he constructs a list of definitions 

and terms for interactive technologies, introduces us to the modern way in 

which artists may look at their art creations. This new interpretation is mainly 

due to the technical inventions that can cause an interaction between the user 

and the computer interface, the static form of art transformed into a dynamic 

form of art. However, it should be noted that the shifting attention from a 

static art product to the process of a real time emerging art piece has been 

introduced by several performance artists before the advent of computer 

technology in the arts. Amongst these are artists such as Ulay & Abramovic in 

their performance 'Imponderabilia' 15 in which the audience participation 

created the emerging art event or Cage and Cunningham in the project

15 'Imponderabilia' by Marina Abramovig and Ulay (1977), Galleria Communale 
D'arte Moderna Bologna, video in collection of Montevideo/TBA Amsterdam, 
the Netherlands.
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'Variations V'15 as one of the first technologically enhanced dance and music 

performances.

Considering this new form of interaction with the computer in the arts, Soke 

Dinkla (1994) initially distinguishes 6 implications of interactivity. These 

different categories can be described and illustrated as:

  'Power and Play': interaction caused by movements of the 
audience with sensors in a responsive environment (like a head 
mounted device).

  'Participation versus Interaction': the spectator is operating a 
joystick behind the computer and turns into the director of a 
changing image of the space.

  'Proximity and Manipulation': one or more visitors of the 
interactive environment are able to control image or sound 
whilst at the same time being manipulated by these effects.

'Strategies of Seduction': installations in which desires of the 
audience are acted and reacted upon with a touch screen as 
tactile interface.

  'Nonlinear Narration': an audience member navigates pictures on 
the screen and in this way direct and edits the auditory storyline.

  'Remembering, Forgetting, and Reconstructing': a new form of 
reality arises in a new context. A non-directional, intuitive 
exploration of images and texts is exploited by manipulating a 
touchscreen.

From a more technical point of view, Ascott (1996a) defines the static and 

dynamic forms of interactivity in his 'Glossary' as follows: 'The trivial form is a 

closed system with a finite data set. The non-trivial form has the open-ended 

capacity to accommodate new variables'. In other words, in the trivial form 

the interactive static form is a 'responsive' interactivity, i.e. the computer 

produces a monologue that a person is able to freely activate in various ways. 

The non-trivial form of interactivity is defined as a dialogue in which the 

operator and computer both react to each other. In line with Dinkla, Ascott 

(1990) had at an earlier time also argued that 'the artist's responsibility was 

now toward context rather than content, with meaning emerging from the 

interactions of the viewer and their necessarily unstable relationship'. He puts 

contemporary artists in a newly defined context: art is no longer a static 

representation of the artist's creativity, but much more a representation of 

the dynamic creative processes. However, Ascott (1996b) remarks in another

16 A short video of'Variations V is available on:
http://www.medienkunstnetz.de/works/variations-v/video/l/ [accessed 
17.08.08].
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writing that, although technology might seem to be inherently seductive 

acting as an 'instrument of seduction', as noted above by Dinkla, he stresses 

the reverse is actually true. Artists are in fact seducing the machine to 

embrace the human way of thinking and feeling.

From an artistic point of view David Rokeby (1998), an interactive installation 

pioneer, describes interactivity as a 'constructed experience', a dynamic 

process in which the interface itself is the content that a user can experience 

by freely choosing the paths that have been prepared in the software. It 

should be noted here that when the created art project is an interactive 

performance piece the performer even faces a double task: not only does s/he 

experience the interactive process as the operator, but s/he also has the task 

of communicating this experience to an audience in the role of the 

manipulator of the interactive interface.

2.1.1 Early Movement-Based Sound Projects as Live Interactive 
Process

One of the first movement based sound performances was the use of the 

Theremin' (1919) instrument17 by a classical dancer. The Theremin' was an 

electronic musical instrument that used wireless triggers of body movements 

to create sound in real time. In a review in the Literary Digest in 1927 

(Glinsky 2000) the Theremin' was described as an instrument with which the 

performer could not only conduct the music but also make the sound at the 

same time. Here he was pointing to the necessary movements needed to 

make sound. The acoustic waves were directly sculpted by wave-ings 18 of the 

arms that interfered with the surrounding radio frequency antennas.

The Terpsitone', also invented by Leon Theremin in 1936, was a dance 

platform fitted with space-controlling antennae (Mason 2004). Unfortunately 

this instrument was very hard to control due to the fact that even the smallest 

bodily movement would output a sound produced by an oscillator. This real 

time One-to-One effect was a feature that predicted possible difficulties in the 

future that would arise when working with interactive technologies (see also 

p.48).

17 See: http://www.thereminvox.eom/article/articleview/96/l/24/ [accessed
30.06.08].
18 As suggested by S. Rubidge (personal communication, November 2008),
the term wave-ing is used here to make a distinction from 'waving' as the
image of the 'hello/goodbye' wave.
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A renewed interest in making sound through body movements caught the 

interest of electronic music composers from the 1960s onwards. An early 

example of a full scale dance project applying sound in an interactive way was 

'Variations V by Cage and Cunningham in 1965. Whereas the Theremin' and 

the Terpsitone' could only cover a very small space with the available 

technology, John Cage and Merce Cunningham positioned a system of 

directional photocells on different spots in the stage area to respond to the 

brightness of the stage lights, and at the same time surrounded the space 

with several radio antennas to create a responsive environment. The dancers 

would trigger sounds as soon as they broke the light beams of the stage 

lights, or if they danced in proximity of the antennas. Proximity 

measurements would determine the choice of sound and the amount of 

certain sound parameters (timbre, frequency, duration and amplitude). 

Johannes Birringer (1998:8) states that Cage's "composition as process" 

symbolized "a commitment to the freedom of experimentation'.

The projects cited above are examples of movement based interactive art and 

technology performances that were able to change the fixity of compositional 

forms in every event due to the early technological interaction between 

performer and technology. Performance art emerged as a live interactive 

process.

2.2 Sonic Gesture Measurements

If one were to ask for the name of what's left of a trombone when you 

take away its ability to produce sound you might suspect you were in 

for a round of language philosophy, but it is precisely that which is 

missing from the computer as an instrument. (1991:3)

After a more widely spread availability of the computer, it was quickly 

revealed that the computer, combined with MIDI 19 as the standard 

communication protocol for digital music, gave musicians and composers a 

new range of possibilities. In the first instance controller devices available to 

the artists consisted of a MIDI keyboard, a standard computer mouse, a 2D or 

3D joystick, or a graphical Wacom 20 tablet. Originating from the fact that 

musicians are usually well trained in the coordination of different body parts

19 MIDI stands for Musical Instrument Digital Interface, an industry protocol 
that enables electronic musical instruments, computers and other equipment 
to communicate with each other. 
20 See: http://www.wacom.com/ourbrand/index.html [accessed 20.05.08].
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needed to play their instruments, the artists quickly concluded that the above 

mentioned tools, available as Human Interfaces (HI) to operate the computer, 

did not make use of these trained skills. In this context, Sally Jane Norman et 

al. point out:

Their [artists'] goal is to enhance rather than impoverish gestural 
skills, by devising tools that are just as responsive and expressive as 
conventional instruments, but that truly exploit the "m eta-control" 
features of computerized systems, their exponential and algorithmic 
functions. (Norman et al. 1998)

There was a clear need for a lot of different non-contact and contact 

instruments designed as interfaces for the benefit of musicians and/or sound 

artists. A number of the designed interfaces that tried to fill the early gap in 

the lack of digital instruments and controller devices will be outlined below. In 

particular, the bodily relationship between the used technology that was 

invented for 'Gestural Control of Music'21 and the musical, sonic and/or 

performative outcome is analysed.

2.2.1 The Choice for a Controller Device in a Musical Context

Fernando Lazetta (2000) agrees with Joel Ryan's earlier view that electronic 

and digital sounds in themselves have no gestural relation to the devices that 

produce them. This means a loss in the 'symbolic and meaningful dimension 

that can be present in a musical work' (/£>/d:84). The musical instrument is 

not only the medium for the musical idea, but also part of this idea. 

Therefore, the question arose: how best to turn the computer into a sound 

generating instrument that is responsive to 'blood, sweat and tears', i.e. the 

well coordinated touch, effort, body dynamics etc. of the musical operator? My 

research has outlined that there exist three ways22 to realize this aim in a 

musical environment:

  An existing controller is used and programmed.

As an example of an artist who used an existing controller to suit his chosen 

environment, I refer to Joel Chadabe (2000) whose artistic aim was to 

conduct computer sounds in a conventional manner that was clearly

21 The term 'Gestural Control of Music' points to the act of music being 
produced by the physicality of body movement.
22 Wanderley described this similarly as 'a three-tier classification of existing 
controller designs' (2001:19).
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perceptual for the audience. He succeeds in both these issues by using two 

Theremins and wave-ing his hands in the air. He describes his choice of 

performance device as firstly being dependent on its suitability for a particular 

musical processing situation, and secondly on the wish that the audience 

should be able to perceive a meaningful relationship between a performer's 

gestures and the musical result. Chadabe states that the relationship was 

clear to the audience in so far that the antennas served as a clear distance 

reference point for the changes in voices and tempo. He points out that 

position is easy for an audience to understand as a factor of the interaction.

  The instrument that the musician is accustomed to will be 
modified with technology (a 'hybrid controller').

Other musicians choose to modify and expand the capabilities of their 

instruments, or to build an instrument that resembles their original musical 

instruments and thus fits their skilled coordination. With the help of an 

engineer or a dedicated organization or institution they are able to add 

electronic devices (normally sensors23 ) to the instrument. Ryan (1991) refers 

to several of these artists that developed projects at STEIM 24 (Amsterdam, 

NL). STEIM is one of the major centers for research & development of 

instruments & tools for performers in the electronic performance arts and 

supported artists such as Jon Rose (violin), Michael Barker (contra bass) or 

Nic Collins (conversion of an antique concertina into a sort of digital trumpet). 

Ryan states that 'Each composer was interested in the expansion of their 

instrument through the addition of synthetic or sampled voices, but also in 

using the computer for the elaboration of the control gestures themselves' 

(ibid).

  A custom built ('alternate') interface controller is designed.

Sound artists could also choose specific sensors and design a completely new 

custom built Digital Musical Interface (DMI) 25 to fit their particular needs. The 

MIT lab (USA) 26 and STEIM have been positioned at the forefront of this 

musical interface design. Bert Bongers (2000) describes how control and

23 An overview of several sensor devices can be found at: 
http://www.cvclinq74.com/twiki/bin/view/ResourceGuide/SensorDevicesReso 
urces [accessed 15.05.08].
24 See: http://www.steim.org [accessed 22.06.08].
25 DMI is defined by Marcelo Wanderley as 'used to represent an instrument 
that contains a separate gestural interface (or gestural controller unit) from a 
sound generation unit' (Wanderley 2001:16).
26 See: http://www.media.mit.edu/research/ [accessed 29.07.08].
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feedback, as a two way process of interaction between the user and the 

computer, can be achieved by manipulating the different sensors available at 

the time. His paper shows us that the choice for a particular sensor or 

combination of sensors can depend on:

Ergonomic comfort: e.g. matching artist's (muscular) skills, 
avoiding limitations or obstructions.

  Technical specifications: e.g. accuracy, update rate, distance 
reach and resolution.

Resources: e.g. time scale for the design, availability of 
engineers and financial resources.

Artists will consequently spend many years training to master a newly 

designed controller. However, this can also lead to the development of new or 

unknown dimensions of the musical concept as will be shown in the next 

sections. There exist multiple writings about DMI design. In order to avoid 

discussing all nuances of musical interface design, which is not the purpose of 

this thesis, I refer the reader to Paradise (1998), Roads (1996:619-658), 

Bongers (2000) and Jensenius eta/. (2005:112), R&D centers and institutions 

such as Ircam 27 or STEIM, or to the New Interfaces for Musical Expression 

(NINE) Conference Proceedings28 for further information.

2.2.2 Introduction to Mapping

In all three cases of the choice of a specific DMI design mentioned above, the 

trajectory of the dataflow requires a specific mapping strategy that will be 

applied to the dataflow between the chosen or available input controller 

device and the computer output. Marcelo Wanderley (2001:17) states that 

The mapping layer refers to the liaison strategies between the outputs of the 

gestural controller and the input controls of the synthesis algorithm' and, later 

in his writing (ibid:66), that 'mapping will be considered as the strategies of 

correspondence among the output variables of the input device and the 

available inputs of the sound generating system'. Before a number of 

interfaces that have been designed for gestural sound composition are 

identified, it is essential to make a distinction between two main perspectives 

that exist regarding the mapping of the generated parameters. Wanderley 

(ibid:66) notes that mapping is either a 'specific feature of the composition' or

27 See: http://www.ircam.fr [accessed 20.05.08].
28 The archive of the NIME conference proceedings can be found at: 
http://portal.acm.orq/toc.cfm?id = SERIES11275&tvpe=series&coll=GUIDE&dl 
= GUIDE&CFID = 76260934&CFTOKEN = 39246692 [accessed 20.05.08].
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an Integral part of the instrument'. He analyses the topic of performer- 

instrument interaction as follows (/b/d:66):

According to the first point of view, the composer decides how best to 
map input devices' variables to synthesis variables independently in 
each composition. Mapping is here part of the aesthetic considerations 
driving the construction of a piece.

The second point of view considers mapping as part of an instrument, 
independently from the compositional use to be made of it.

He concludes that the study of 'general' compositional mapping strategies is 

not a major field of research in his writing due to the fact that every 

composition represents a unique point of view. He therefore continues his 

chapter about mapping from the second point of view, namely that mapping is 

an 'integral part of the instrument'29 .

In contrast to Wanderley, the major field of research in this thesis is the topic 

of compositional mapping strategies, although elements from the second 

point of view (part of the instrument) will be referred to whenever relevant. It 

will be argued in particular that artistic mapping strategies can be dependent 

on the chosen interface strategy and specific data communication methods. 

Thus mapping can be considered from various perspectives because the 

process has to meet several criteria depending on the interface used, the field 

of art it relates to and/or the ultimate aesthetic goal it has to meet. Either a 

similarity between the different elements or a discrepancy between the 

perspectives of available parameters can exist. In other words, in this writing 

artistic mapping strategies will be described as emerging from a specific 

(spatial) data communication.

In the following I will describe some specific pioneering inventions of gestural 

musical interfaces that are relevant to the subject of this writing. These 

interfaces have been designed with the goal of measuring sonic gesture and 

are sometimes referred to as instruments 'conducting the MIDI orchestra' 

(Boulanger 1990:34). It will be shown in chapter 3 that these interface design 

inventions have proven to be relevant to the electronic hardware designs and 

mapping strategies that were later developed in interactive movement-based 

projects.

29 For further reading about mapping as an integral part of the instrument I 
would like to refer the reader to Wanderley (2001) and several of his 
(collaborative) papers (eta/. 1998, eta/. 2000a, 2000b & 2001).
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I propose a classification of these gestural musical interfaces in two data 

collection categories:

Object Location in Space. 

Moving Body Part Tracking.

2.2.3 Object Location in Space

'Object Location in Space' is classified here as a method through which 

position data are derived from an object that is moved in space by the 

performer's hand. One example of an instrument applying this data 

measurement is 'Lightning'30 (1991) created by Don Buchla. It is an optical 

infrared tracker that measured the horizontal and vertical positions of two 

wireless handheld wands within a two-dimensional grid. The 'Radio Drum'31 by 

Max Mathews (1989) is another DMI that uses radio-frequency waves to 

derive data from the performer's mallets or sticks. The gesture sensors used 

measure the location of two batons in three dimensions in relation to a 

rectangular radio receiver using magnetic capacitance, much in the same way 

as the 'Theremin' did. The 'Radio Drum' has been further developed into a 

more precise gesture sensing percussive instrument with a wider sensitive 

area and less latency32 . The world-renowned avant-garde multimedia 

performance artist Laurie Anderson developed 'The Talking Stick' (1999) 33 

especially to enhance the visual performative effect. This six foot long baton 

was played by rubbing one's hand over the shaft and by changing its position 

in space. The instrument responded to speed of operation and to different 

positions, movements and postures of the operator. It was capable of 

manipulating any sound by applying granular synthesis to create new sound 

textures34 .

30 See: http://www.buchla.com/lightninq/descript.html [accessed 29.07.08].
31 See: http://www.fondation-lanqlois.orq/html/e/page.php?NumPaqe=246 
[accessed 29.07.08].
32 See: http://www.ece.uvic.ca/~peter/radiodrum.html [accessed 29.07.08]. 
33 See: http://www.thecitvreview.conn/laurie.html [accessed 29.07.08]. 
34 It should be noted that Anderson had reservations about technology 
concerning the way in which computers and computer programs, in their 
current form, limit creativity. See: http://www.jimdavies.org/laurie- 
anderson/commentary/reviews/performances/mobvdick.html [accessed 
29.07.08].
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2.2.4 Moving Body Part Tracking

The second data collection category 'Moving Body Part Tracking' is classified 

here as a method to derive data from the fine coordination of hands, fingers, 

arms and sometimes feet that are commonly needed to play a musical 

instrument. Michel Waisvisz started to develop The Hands' (1984) in the early 

days of MIDI as a more sensitive and natural musical interface to trigger the 

computer. The Hands' provided a way to play, as it were, little keyboards 

attached to the hands on stage that could translate hand, arm and finger 

movements immediately into digital sounds35 . Waisvisz remarks that he 

'wanted to operate, navigate, compose, mold and play sound in a sensible, 

refined and even sensual and groovy way'35 . From the mid eighties onwards 

various commercial hand gloved 'toys' were marketed as interfaces for the 

computer like the Data Glove37 (VPL Research, Zimmerman & Lanie 1987), 

and the Mattel PowerGlove38 developed for Nintendo (VPL&. Abrahms Gentile 

Entertainment 1989).

Considering the relationship of a musical instrument to the human body, Nick 

Longo notes that the construction of the piano keyboard is clearly a reflection 

of the human hand. 'Like fingers, the keys are arranged in a linear side by 

side manner. Fingers push down in one direction and the keys push back' 

(Longo 1996). In the case of dance, Wanderley (2001:7) notes that 'these 

[body] movements are important per se, i.e., the dancer does not usually 

dance to the interface in order to produce sound, but to the audience'. 

Following these observations, one might also want to look at the moving 

fingers as if they are 'dancing' over the piano keyboard. Upon further 

examination it turns out that just looking at the different possible flexions of 

the fingers already culminates in a complex movement character.

In line with Longo, The Hands' were constructed according to a keyboard 

model with small touch-tones and keypads. Following Waisvisz, several other 

sound artists also started to design their own hand glove instruments between

35 At an historical occasion Lev Theremin, an inspirator for Waisvisz since he 
was sixteen, visited Waisvisz at STEIM Amsterdam (1993), NL and they 
played their instruments (the Theremin and The Hands) together. See: 
http://crackle.orq/Lev%20&%20Michel.htm [accessed 29.07.08].
36 From: http:// www.crackle.org/TheHands.htm [accessed 02.07.08].
37 See: http:7/www.streettech.com/bcp/BCPqraf/StreetTech/VPL.htmI 
[accessed 29.07.08].
38 See: http://www.anqelfire.com/ok2/stepinto/PowerGlovePaqe.html 
[accessed 07.02.09].
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the mid eighties and early nineties. Laetitia Sonami took the development of 

the hand glove DMI a step further and invented the 'Lady Glove'39 . This 

invention embedded additional sensors40 that were responsive to body 

posture, measuring the distance between hand and hand, hand and body or 

hand and feet. The inspiration for this last distance measurement method was 

sign language, a movement based language in which the distance of the hand 

from the body affects the meaning of a word or phrase. Sonami emphasizes 

the importance of gestures: Through gestures, the performance aspect of 

computer music becomes alive, sounds are "embodied", creating a new, 

seductive approach'. In performance, the effect of the hand motion is fluid 

and even sensual 41 . She also states that a very obvious relation between what 

her hand does and the sounds that emanate from the electronics emerged 42 .

Another example of a DMI measuring hand movements is constructed by 

Joseph Rovan, a clarinettist who designed the 'Data Glove'43 (1997), firstly to 

accompany his clarinet playing (as a hybrid controller see p.27), but later on 

as a stand-alone instrument. Two different gloves for the left and the right 

hand were designed. The right hand was prepared with Force-Sensitive- 

Resistors (FSRs) on the fingertips, bend sensors, and an accelerometer to 

sense finger, hand, and arm gesture. The left hand, wearing the second glove 

with reflective material attached, manipulates an infrared controller. In this 

way the left hand was able to control the macro level of the sound settings 

that were fine-tuned by the right hand. In line with Sonami, Rovan also 

presented the audience with the more noticeable musical gestures that were

39 A performance using the Lady Glove entitled 'Mechanization Takes 
Command' was premiered in 1991 at the Ars Electronica Festival (Linz) with 
Paul DeMarinis http://www.sonami.net/ladv glove2.htm [accessed 29.06.08]. 
40 These electronics consisted of bend sensors on the fingers, magnets on the 
fingers in combination with hall effect transducers (a device whose output 
voltage varies according to the applied magnetic field), an acceleromator to 
measure the speed of motion of the hand and an ultrasound sensor to 
measure distance.
41 From: http://www.sonami.net/ladv qlove2.htm [accessed 29.06.08]. 
42 The data from The Hands' and The Lady Glove' communicated with the 
Sensorlab developed by STEIM. The Sensorlab is a device that 'connects the 
real world of physical phenomena and gestures via Midi to personal computers 
and to Midi musical and studio devices' (from: 
http://www.steim.org/steim/sensor.html [accessed 27.06.08]). 
43 See: http://soundidea.org/rovan/projects glove Ol.htm [accessed 
29.06.08].
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needed to play the instrument. The choreography was determined by the 

communicating gestures of the sound composition 44 .

2.2.5 Control versus Discontrol

As a last example of electronic composers and musicians who have designed 

gestural interfaces it is useful at this point to mention the Sensor Band 45 . The 

three members of the Sensor Band, Edwin van der Heide, Zbigniew Karkowski 

and Atau Tanaka, use a multitude of custom built sensor-based gestural 

controllers consisting of ultrasound, infrared, and bioelectric sensors 

measuring data to produce computer music. These instruments fall into both 

data collection categories mentioned above. However, apart from these DMI 

designs, they have also brought an additional important issue to the surface. 

The Sensor Band challenged the term 'Gestural Control of Music' when the 

members created a live performance musical instrument called 'Soundnet' 

(1998) 46 . This instrument can be described as a giant web (HXllm) 

consisting of ropes that the performers had to climb into. By stretching and 

moving the ropes the sensors that triggered the sounds were actuated. 

Bongers observed:

The ropes create a physical network of interdependent connections, so 

that no single sensor can be moved in a predictable way that is 

independent of the others. It is a multi-user instrument where each 

performer is at the mercy of the others' actions. In this way, the 

conflict of control versus uncontrollability becomes a central 

conceptual focus of Soundnet. (Bongers 1998:17)

With the 'Soundnet', the Sensor Band showed us that 'gestural control' in 

electronic music has proven to be a gestural 'discontrol' in certain physical 

circumstances. We will see later (p. 108) that 'discontrol' is a useful creative 

element in interactive performance.

44 Several other devices that measure hand and finger movements have been 
designed for example 'SoniMime', a system for the sonification of hand motion 
(Fox eta/. 2005). Data glove interface developments have also recently been 
commercially marketed as tools for Virtual Reality applications. See websites 
such as: http://www.vrloqic.com/html/dataqloves.html [accessed 12.07.08] 
or http://www.vrealities.com/qlove.html [accessed 12.07.08].
45 See: http://www.sensorband.com [accessed 03.07.08].
45 See: http://www.sensorband.com/soundnet/ [accessed 03.07.08].
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2.3 Summary 'Interactivity and Gesture Based Sonic Projects'

Before the technological age, innovations in material design influenced the 

development of art, such as new materials that could be applied for painting, 

new tools for sculpture, new musical instruments for sound creation etc. 

Every instrument and every material in itself created unlimited artistic 

possibilities. The invention of the computer caused an even bigger cultural 

shift and opened up an even wider array of artistic possibilities.

This chapter has outlined that Art & Technology projects as 'Art as Process' 

have an interdependent relationship in which both movement and sound 

elements influence each other's developments. It was shown that interactive 

art has been the beginning of a new dialogue between the two ideologically 

separated sections of Art & Technology. The new way of looking at art 

creation in the computer age has given rise to a new definition of 'Art as 

Process'. In this chapter, two different forms of interactivity have been 

observed regarding 'Interactivity as an Artistic Process' or as a Tool 

Exhibition':

  The dynamic behaviour of interactive computer processes (non- 
trivial form).

The static behaviour of the responsive computer processes 
(trivial form).

Several early types of gestural music (dis)controller interfaces designed by 

electronic music artists were described because of their relevance to 

movement based interactive projects and thus relevant to the interactive 

movement and sound research undertaken in this thesis. In order to study the 

different technical contexts, I have proposed a categorization of these sonic 

gesture based devices into two different methods of data measurements:

Object Location in Space.

  Moving Body Part Tracking.

Within these two categories, it was shown that sonic artists had various 

reasons to develop new digital musical interfaces:

  The insight that a computer provided new methods for 
composition.

  The wish to be able to use trained bodily coordination skills.

  The aim of being capable of musical control and/or discontrol.

  The wish to add a visual/choreographic effect to their 
performance.
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The pioneers that invented these new DMIs for 'Bonification and Control' 

mentioned here, added a visual performative element to the design of 

electronic musical instruments by measuring the gestures needed to influence 

the digital sound. Movement, choreography, and physical activity were related 

to real time interactive sound creation. Waisvisz developed The Hands' 

because 'he wished to be able to "touch sound", freely walk around, move and 

dance, translating hand, arm and finger movements into sounds'47 . Sonami 

choreographs her unique hand-dance creations. Her 'Lady Glove' allowed the 

performer to move around freely without any spatial reference to the stage 

and in this way play with her movements that only related to her own 

personal body space (see also 'Bodily Space' 4.2). Rovan also speaks of a 

choreography of the motions that were required to initiate and control the 

sound. Finally the Sensor Band showed us an element of musical 'Gestural 

Discontrol' in certain physical circumstances48 .

The DMI investigations in this chapter have evidenced the relationship 

between gesture and music as interdependent to a sonic artist/ musician from 

a musical as well as a performative and choreographic perspective. This 

statement of interdependency directs us to the next chapter, where a detailed 

technical and artistic analysis of 'Interactive Movement-Based Projects' is 

explored. Here we will see that the technologies of sonic DMI inventions 

became the predecessors of the technologies later applied in interactive dance 

performances.

47 From: http://www.crackle.org/TheHands.htm [accessed 02.07.08].
48 Please note that only pioneer inventions are mentioned here. Other gestural 
interfaces have been designed by for example Marrin & Paradiso (1997) who 
developed a digital baton that had infra red leds attached to the tip or Sawada 
eta/. (1995) who developed sensor gloves and concentrated on exploring 
different mapping methodologies for mapping hand gestures to musical 
parameters defined as 'Bonification and Control' methods.
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Chapter 3 Interactive Movement-Based Projects

As Gilpin suggests, we need not wait for digital technology or think of 

it as a device for body representation but should empower ourselves 

as informers for technological interface design. (Birringer 1998:120)

In the late 1990s Birringer, a performance and media choreographer, refers 

to Gilpin who, during a lecture-demonstration at the 'Connecting Bodies' 

conference (1996 Amsterdam, NL), suggests the need for dance and 

performance practitioners to start to take control over the computer. This will 

enable them to express artistic choices in an interaction 'that can actually deal 

in articulate ways with movement and dynamism of any kind, not just moving 

bodies' (ibid}. In line with Birringer, Techla Schiphorst (1997), an interactive 

media artist, computer designer and choreographer, notes that 

choreographers need to start writing computer code with the very highest 

technical knowledge and experience that they already possess of the 

'language of embodiment': the anatomy and movement of the body. Sanjoy 

Roy (2002) also notes the possibility for choreographers, who are skilled in 

thinking abstractly about processes and composition, to use existing software 

as a rehearsal tool to investigate a 'creative stimulus in computers'. These 

remarks point us to a major difference between the interests of sound and 

dance artists. In the electronic music field, there was an almost immediate 

affinity with the artistic possibilities that the computer offered.

In the section 'Sonic Gesture Measurements' (2.2) I referred to several 

musicians and sound artists who measured the musical gestures that were 

needed to play their instruments. The complexity of the two modes of 

'expression' in interactive movement and sound projects are different in such 

a way that I aim to clarify the technological choices which had to be made to 

be able to realize the interactive ChoreoSonic 'Sound Skeleton' experiments 

and compositions. In particular, the following questions will be asked:

What is the reason behind the choice for specific technologies? 

  Can we analyse an Art & Technology correlation?

What to do with the derived movement data to achieve the goal 
of (spatial) sound creation by means of interactive dance?
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In this chapter, the eventual correlation between the applied technology and 

the artistic outcomes49 is analyzed in every movement-based project 

reviewed, and the final conclusions are later used as a starting point for the 

conceptualization of the 'Sound Skeleton' creations50 .

3.1 Data Measurement Methods for Body Motion

As noted above, dancers and choreographers did not initially see the creative 

attraction of the computer due to the fact that their visual output (dance 

movement) emerged from moving bodies rather than some sort of digital 

technology. They were used to an immediate movement result and not 

accustomed to the necessary programming and calibration time required by 

the computer. However, in the following sections two similar electronic data 

measurement techniques that ultimately evolved to measure body 

movements in the dance and technology field will be discussed. I classify 

these techniques as:

Full Body Motion and Location Tracking techniques.

  Body Part Motion Capacity and Personal Space Tracking 
techniques.

Please note that the list of cited electronic systems and performances is by no 

means meant to be comprehensive51 . However, it is aimed that a technical 

and/or artistic context is provided for the practical case studies and 'Sound 

Skeleton' creations that have originated from these investigations.

3.1.1 Full Body Motion and Location Tracking

Following the outcome of the musical interface design investigation 'Object 

Location in Space' (2.2.3), this section introduces similar techniques that 

measure 'Body Motion and Location Tracking' in movement-based projects. 

These techniques measure the data of the full body movement path and

49 For the continuation of this writing, the artistic outcomes concentrate on 
movement based interactive sound and music composition as other art 
disciplines like video images, animations, sonic compositions, theatre lights 
and text fall beyond the scope of this publication. However, these art forms 
will be mentioned whenever it feels appropriate.
50 Please note that the effort to describe an Art & Technology relation is not 
claiming to be a complete, objective analysis of a particular work, but 
observes the main Art & Technology relationships of the piece. 
51 A general overview of systems can be found in the resources 'Controllers 
and Systems' on the DVD-ROM 'Trends in Gestural Control of Music' (Ircam, 
2000), pp. 736-763. Dance and interactive systems overviews can be found in 
Torre eta/. (2007).
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position of (in this case) the dancers in a predefined sensitive performance 

area. The techniques 52 discussed are classified as:

  Sensitive Dance Floors.

  Breaking Beams.

  Camera Tracking.

3.1.1.1 Sensitive Dance Floors

Gravity affects the movement of dancing bodies. Jumps for example consist of 

interdependent movement parameters that can be executed with more or less 

pressure to the feet, body velocity and force. The arms are used for spins and 

balance to defy gravity etc. Whereas these are all obvious facts, how has this 

knowledge been applied in body measurement technology?

Several sensitive floor surfaces have been designed using the transmission of 

electric signals that provided position coordinates, velocity, and pressure 

information of a person's feet in the form of standard MIDI messages. Eric 

Johnstone (1991) developed a small sensitive floor, the 'Podoboard', on which 

a person had to wear shoes filled with metal contacts to complete an electrical 

circuit that was sent in MIDI format to the computer. The platform was built 

as an alternative MIDI instrument that had to be played by moving feet. 

Johnstone himself was a guitarist who played the floor while sitting on a chair.

In a prototype version of the 'Lifefoot'53 floor, Russell Pinkston et al. (1994 

and 1995) attached force-sensing resistors to a plastic sheet covered with 

polyethylene foam to build a touch sensitive MIDI dance floor. The floor 

detected contact, impact force, and location of dancers' feet. In this way it 

was not necessary anymore to wear special shoes. Pinkston et al. state that 

they built this floor to help the dancers to keep 'in time' with the music and to 

synchronize the stage lights to their performance. It is interesting to note 

here that the floor was initially designed out of logistic concerns and not to be 

able to add another element to the artistic concept.

52 A Global Positioning System (GPS) is a worldwide radio-navigation system 
that is also able to measure body position. However, a detailed description of 
this system is beyond the scope of this thesis because it only functions 
outdoors due to the fact that the communication with the satellites is usually 
obstructed when used indoors. For more information about GPS see for 
example: http://www.trimble.com/qps/whatQps.shtml [accessed 07.02.09].
53 See: http://www.newscientist.com/article/mgl4419540.700-when-the- 
dance-floor-rocks-and-rolls.html [accessed 29.07.08].
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The Magic Carpet is like a playground for the audience, 'a truly "immersive", 

tetherless musical environment, where any kind of body motion would be 

directly and immediately converted into expressive sound' (Paradiso et al. 

1997a). This floor was not initially constructed as a device for dancers but 

was built for manipulation by the public. It used a pressure-sensing floor 

(piezoelectric wires running across the carpet) that could accurately 

distinguish between soft foot motion and hard impacts. It also incorporated a 

radar system that sent Doppler-shifted reflections from a performer moving 

within the beam to measure movement direction and upper-body kinematics. 

Joseph Paradiso et al. (ibid) state: This system has been used in an audio 

installation, where users launch and modify complex musical sounds and 

sequences as they wander about the carpet'. The soundscape comprised a low 

voice triggered by stepping on the carpet, a middle voice (a harmonising fifth) 

determined by the position of the person and a high voice whose speed, pitch, 

panning, timbre and structure were controlled by the detected motion. The 

direction of movement controlled the notes of the chord.

With The Magic Carpet' a clear shift from practical needs to the aim of an 

artistic musical outcome is observed. The cited mapping procedure brings 

forward a musical concept that is directed by motion, a 'Gestural Control of 

Music' in a full body movement context. However, the system was not yet 

really suitable for dancers54 due to the coarse grid of the wires (every 

100mm), the noisiness of the wires (amplified by the radar), and the 

capability to measure only one foot. The second version of the 'Lifefoot' floor55 

used proximity sensors to track the motion and proximity to the floor of a 

dancer's foot by locating its contact with the floor. Mikael Fernstrom &. Niall 

Griffith describe the floor as a musical instrument for a dancer:

[...] the idea that a dancer's or performer's feet can be used to play a 

musical instrument in the way that, for example, a pianist's hands are 
used to play the piano, is relatively new, and largely unexplored. 

However, the tapping of a dancer's steps can be an important 

rhythmic component as well as a controlling element in a dance 

performance. (Fernstrom & Griffith 1998a:475)

54 Dance research experiments with the Magic Carpet have taken place in the 
MIT Media Lab. See:
http://web.media.mit.edu/~ioep/SpectrumWeb/captions/Carpet.html 
[accessed 10.07.08].
55 See: http://www.ul.ie/%7Epal/litefoot/ [accessed 13.07.08].
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A clear reference to the aforementioned 'Moving Body Part Tracking' of the 

'Lady's Glove' (p.32) and The Data Glove' (p.32) is observed here: instead of 

measuring movements of the hands and fingers, force sensors were also 

applied to measure different parameters of the moving feet. In the project 

described by Fernstrom & Griffith, the relationship between the movement 

parameters on the two dimensional coordinate grid and the emerging sound 

field was defined as follows: the X-direction was mapped to musical scales, 

the Y-direction to sets of timbres, and the Z-direction (the impact force) to 

loudness. Considering the relationship of the early artistic interaction between 

movement and sound, Fernstrom & Griffith (1998b:3) concluded that a dance 

teacher was now able to say to a dance student: "do as you hear me doing" 

as well as "do as you see me doing", and that a dancer can produce their own 

scores in which even subtle and small movements are being made audible 

and visible.

Another reference to the section 'Moving Body Part Tracking' is made in the 

'Smart Wall' project by Paradise & Sparacino (1997b) in which scanning laser 

rangers were initially used to measure hand trajectories. The researchers 

state that it would also be possible to turn this wall 90 degrees to a floor 

position to enable measurements of dance movements of the feet.

3.1.1.2 Breaking Beams

An additional variation to the implementation of electronic sensors was 

discussed when describing the 'Magic Carpet' that used the beams of motion 

sensing radars to locate the upper body kinematics. Related to this 

measurement method are several other 'breaking beam' detecting systems 

that have been designed to measure 'Body Motion and Location Tracking'.

Troika Ranch 56, a leading international dance and technology company 

founded and directed by composer/media artist Mark Coniglio and dancer/ 

choreographer Dawn Stoppiello, developed The Laserweb'57 (2000). It detects 

movements that break the beams of up to eight laser lights 58 which shine 

over the stage area into light sensitive sensors. The system is able to produce 

music or, in conjunction with the software program 'Interactor LPT'59 (also 

developed by Coniglio) to operate a variety of media devices. On their website

56 See: http://www.Troika Ranch.org/ [accessed 12.07.08]. 
57 See: http://www.Troika Ranch.org/laserweb.html [accessed 12.07.08]. 
58 Laser light is defined as coherent light oscillating electromagnetic radiation, 
59 See: http://www.Troika Ranch.org/interactor.html [accessed 12.07.08].
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it is stated that the LaserWeb is used in one section of the performance The 

Chemical Wedding of Christian Rosenkreutz'60 (Troika Ranch 2000) as a cue 

for the lights to change intensity and for the music to change volume.

The ultrasonic system The Soundbeam'61 (1989) consists of four cone shaped 

beams that are sensitive for up to six meters. It communicates with an 

interface box that converts the ultrasonic data into MIDI data. A number of 

performance groups62 have developed projects with this system. I premiered 

an interactive dance and music performance called 'Frozen White'63 using the 

Soundbeam system in 2002. In this piece the dancers influenced the acoustic 

music made by three improvising jazz musicians real time. The dancers' 

movements in the sensitive path of the Soundbeam added a digital dataflow 

that influenced the live music in Max/MSP. The dancers were not 'controlling' 

the sound, but were merely inspiring or even confusing the instrumentalists 

who had to react instantly to the effects that the movements of the dancers 

brought on their sounds. The Soundbeam can be regarded as a very long 

piano keyboard consisting of a sensitive beam that is divided in equal playable 

parts that the dancer could 'switch on' by breaking the beam: the dancers 

acted as 'members of the band'.

The systems described above all have a binding sensitive area, either a 

rectangular matrix form on the dance floors or a triangular cone shaped area 

'shining' from the beams. Whereas dancers become very quickly adapted to 

these reactive geometries, due to their highly developed spatial awareness 

(for an in depth analysis of this subject see 4.2), this fact also implies that 

these geometric areas can influence and/or limit the possibilities for the 

movement choreography.

Whereas the Soundbeam system sends ultrasonic signals into space through 

sensors that are attached to fixed poles (hence creating an obligatory 

sensitive area), a dancer might prefer to attach one or several of these 

sensors to the body to be able to trigger effects in a more spatially free way. 

Antonio Camurri, founder of'Infomus lab'54 , describes such a system (Camurri

60 See: http://www.troikaranch.orq/qallervChem/q-chem.html [accessed
18.01.09].
61 See: http://www.soundbeam.co.uk/ [accessed 10.12.08].
62 See: http://www.soundbeam.co.uk/dance/imaqe-qallerv.html [accessed
12.07.08].
63 See: http://www.mudanx.nl/Frozen.WhiteFlash.html [accessed 12.07.08],
64 See: http://www.infomus.org/ [accessed 12.07.08].
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et al. 1995). The 'V-scope' system 65 is an infrared/ultrasound system used in 

the HARP (Hybrid Action Representation and Planning) application for human 

movement tracking (see also p.59). It is able to recognize several simple 

gesture features (like raising or lowering the body, one or both hands, 

opening and closing of the hands, distance between hands etc.) by acquisition 

of the position of ultrasonic markers on the body.

Cliff Randell & Henk Muller (2001) discuss dynamic measurements with 

another RF/US system for precise localization in space. This Low Cost Indoor 

Positioning System (LCIPS) system was originally designed for mobile and 

wearable computers for ubiquitous computing 66 and to complement an 

external positioning system that used GPS. In the art installation The Walk in 

the Wired Woods' (2002) 67 visitors were equipped with headphones and this 

RF/US wearable device to be able to hear a location-sensitive digital 

soundscape (Hull et al. 2002). This system is used for the practical research 

project described in this thesis (see Ch.5 and 6) and will be explored 

practically in the artistic context of this writing 68 .

3.1.1.3 Camera Tracking

In the previous sections it was observed that 'Object Location in Space' in 

Sonic Art performance and 'Body Motion and Location Tracking' in dance 

performance show elements of the same gesture sensing developments. 

However, a third completely different method to measure full body motion 

tracking, called 'Camera Tracking', was developed by several artists and 

computer engineers around the same time.

In 1982 installation artist David Rokeby started to show an interest in turning 

the moving body into a sound generating instrument. In an artistic, almost 

philosophical, writing at the beginning of his interactive career, he (1985:20) 

stated that he dreamt of a 'composition [that] is transformed into music 

through physical exploration of the space'. His work consists of a large list of

65 See: http://www.infomus.org/Research/Vscope.html [accessed 10.12.08].
66 A wireless method for PDAs or laptops that a person can carry around in a 
space to define the position of that person in a building or to activate different 
elements in a room for example websites or lighting (see writings such as 
Hightower & Boriello 2001).
67 See: www.mobilebristol.com/PDF/MobileBristol-2003-03.pdf [accessed 
14/10/09].
68 Many other ultrasonic systems have been (technically) described in the 
literature such as Auer et al. 1996, Flety 2000, McCarthy & Muller 2003.

42



installations69 but he is probably most renowned for his interactive 

environment and installations called The Very Nervous System'. The VNS 

evolved during a period of over a decade from 1982 onwards, using firstly 

various hardware technologies such as 'video cameras, logic chips for image 

processing, computers, synthesizers, and a sound system to create a space in 

which the movements of one's body create sound and/or music'70 . Rokeby's 

dream is realized in this version of the VNS when he states:

With my computers, cameras, and synthesizers, I present a synthetic 
reality which can be physically explored. The phenomena through 
which the underlying principles of this 'reality 1 are articulated are the 
sound events. The phenomena are instigated by and related to 
various aspects of the dynamics of the movements of the 'explorer'. 
(Rokeby 1985/86)

In 1999 he developed the real time motion tracking software 'SoftVNS'71 as 

toolbox for Max/MSP to process video in real time using a video camera as the 

data input device. Like the interactive dance floors mentioned earlier, the 

SoftVNS software, when used in a dance context, can represent the floor as a 

square on the computer screen (or, by drawing lines in the software, an 

irregularly shaped grid), by hanging the camera on the ceiling. The area seen 

by the camera lens becomes the 'active' area. Or, by putting the camera in 

front of the stage, a cone shaped horizontal or diagonal sensitive area is 

formed (see fig. 10 on p.102) much in the same way as the beams discussed 

earlier. Through changes of light condition, caused by moving body parts, the 

software analyses the amount and/or presence of motion by splitting these 

camera areas into different freely assignable regions.

SoftVNS also was not originally developed for dancers. Rokeby (1985/86) 

notes that the relationship between movement and sound is obscured by the 

complexity of the system and therefore Yesists absolute analytical 

comprehension'. He is also of the opinion that it is very hard to repeat a 

movement in exactly the same way, an observation that could deny the

69 See: http://homepaqe.mac.com/davidrokebv/installations.html [accessed
25.07.08].
70 From: http://homepaqe.mac.com/davidrokebv/vns.html [accessed
25.07.08].
71 See: http://homepaqe.mac.com/davidrokebv/softVNS.html [accessed
25.07.08], Note: SoftVNS was originally downloadable as VNS, VNSII and
VNSIII. See: http://www3.svmpatico.ca/drokebv/vnsllsoft.html [accessed
03.06.09].
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SoftVNS as a choreographic tool. However, Tod Winkler, a composer and 

multimedia artist, did soon recognize the wide array of possibilities that 

camera tracking offered for an investigation of how musical material could be 

shaped and structured by body movement. Whereas Rokeby (1985/86) stated 

'I present a synthetic reality which can be physically explored [by the 

viewer]', Winkler (1997:2) puts this in a performative context as: 'Rather 

than approach the project with a preconceived notion of a type of music that 

the dancer would "play," we began with several months of improvisation so 

that our artistic decisions would naturally evolve out of a spontaneous, 

physical understanding of the system'.

These citations show evidence of a new research question evolving: how can 

the interactive relationship between movement and sound become an action 

that can be understood by an ease of execution, and how do new technologies 

influence or inspire new collaborative and artistic concepts?

Winkler (1995, 1998a and b) shows us an attempt to analyse the relationship 

between movement and sound relating to the fact that the technology as well 

as the body have limitations and constraints in the same way as a musical 

instrument. In a musical instrument timbral characteristics will not only be 

formed by specific playing techniques, but also by the applied material, 

weight, pressure, speed and range. The effort and energy that is needed to 

play a musical instrument is reflected in the sound. Winkler investigated 

similarities to this musical hypothesis in an effort to turn the moving body into 

a musical instrument. He identified physical properties, for example body 

actions that can be characterized 'by ease of execution, accuracy, 

repeatability, fatigue, and response' (Winkler 1995:2), and external properties 

like the limited sensitized stage space that restricts speed and direction of 

movement (see also 6.2). Winkler identified and categorized a wide range of 

'logically' felt possibilities in the mapping of movement to sound and explored 

many different mapping processes. However he also stated that 'By being 

aware of these laws [of physics], it is possible to alter them for provocative 

and intriguing artistic effects, creating models of response unique to the 

computer' (ibid:3).

Early video tracking software such as VIMS was generally able to detect the 

following movement parameters: presence or absence of motion, movement 

dynamics, body position in the sensitive area and path of travel in 2D. In 

'Dark Around the Edges', Winkler, in collaboration with performance artist 

Walter Ferrero, used 'precise robotic and repetitive movements creating
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rhythms with machine and percussive sounds and slow, fluid movements 

producing thick evolving sounds continuously altered by speed' (Winkler 

1998a:471). In 'Songs for the Body Electric', a collaboration with 

choreographer/dancer Gerry Girouard and designer Stephen Rueff, lighting 

and video cues triggered the SoftVNS software that is very sensitive to light 

changes (ibid).

Richard Povall used the software package 'Big Eye', developed by STEIM 

(ML) 72 , in his work in the mid-1990s. It translated the incoming movement 

data from the video camera into MIDI for further processing in Max. 'Big Eye' 

was not only able to track the camera image wholly or partly, but also able to 

process color tracking. Like softVNS, this software could split the stage into 

subdivisions. Povall collaborated in a number of movement-based camera 

tracking projects such as The Secret Project'73 (1999-2001) 74 and The Last 

Garden' (1993) 75 in which real time interactive video images, sound, and texts 

were created.

In the software package 'Eyecon'76 , developed by the company 'Palindrome'77 , 

a path of travel in 3D, proximity of multiple dancers to one another (using 

colour recognition), degree of symmetry in the body on the horizontal plane, 

and degree of expansion or contraction in the body were added to the 

detection of the movement parameters. Palindrome was particularly focused 

on some form of clearly observable interaction between movement and sound 

for the audience. Frieder WeiB et al. (2000) from Palindrome put forward the 

following statement: 'While too strict a coherence is banal, clearly too subtle a 

correlation fails to be truly interactive, and the audience is left out of any 

genuine experience of interactivity'. Here we observe a clear 

acknowledgement of the effect that the performed interactivity might have on 

the audience. In Palindrome's 'Seine hohle Form' (2000), a 'musical synthesis

72 See: http://www.steim.org/steim/biqeve.html [accessed 26.09.08].
73 See:

http://ahds.ac.uk/ahdscollections/docroot/dpa/callabauthorsdetails.do7pro1ect 
= 30&author=42&5trinq = SPovall [accessed 25/0-7/09].
74 See:

http://ahds.ac.uk/ahdscollections/docroot/dpa/callabauthorsdetails.do7proiect 
= 30&author=42&strinq=SPovall [accessed 25/0-7/09].
75 The camera tracking software was developed by Lovell & Mitchell 1995 (see 
also pp.73 and 96).
76 See: http://www.frieder-weiss.de/eyecon/equipment.html [accessed
23.07.08].
77 See: http://www.palindrome.de/pps.htm [accessed 23.07.08].
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environment that provides many control parameters, addressing a number of 

custom-built DSP modules that include granular sampling/synthesis, additive 

synthesis, spectral filtering, etc.' was built (Rovan et al. 2001:47). In this 

piece several scenes were performed in which spatial extensions of the body 

triggered appropriate (according to the collaborators) sounds. For example, a 

wide movement triggered loud, aggressive granular synthesized sounds, or 

small movements triggered quieter sounds. The height of the dancer was 

used to control a spectral filter producing a thinner and more continuous 

musical texture. A clear correlation between the technology used and the 

choice for the spatial artistic input can be observed. However, relating to the 

sound output, Palindrome still concluded:

[...] our current process for gestural mapping could be improved by 
creating a clearer hierarchy among the parameters that govern 
relationship between the video-tracking system (EyeCon) and the 

sound synthesis software (Max/MSP). In particular, we are working to 
segregate more clearly the tasks that are assigned to each component 
of the system. (Rovan et al. 2001:48)

Several other motion tracking camera systems have been developed, such as 

'Cyclops'78 , 'Eyes'79 (see p.81) or 'Pfinder'80 , offering additional mapping 

options. For example, in the 'Dance Space Environment81 ' using 'Pfinder' by 

Paradiso & Sparacino (1997b), the body is transformed into a musician's 

combo with the hands and feet playing different musical instruments. The 

height of the body parts was assigned to pitch control, whereas the head was 

assigned to volume control.

Some of these camera tracking systems are very popular amongst artists 

because they are cheap and only need a (simple wide angled) camera and a 

programming environment like Max, Pure Data (Pd)82 , Supercollider83 , Open 

Sound World (OSW) 84 or Isadora 85 . Unfortunately camera tracking systems

78 See: http://ericsinqer.com/cvclopsmax.html [accessed 13.07.08]. 
79 See: http://www.sauishedeveball.com/ [accessed 07.07.08].
80 See: http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490- 
95to96/sadahiro/cs490rpt.html#pfinder [accessed 10.12.08].
81 For more information on the 'Dance Space' environment and 'Pfinder' see 
http://www.research.ibm.com/iournal/si/393/partl/sparacino.html.
82 See: http://wwwcrca.ucsd.edu/~msp/software.html [accessed 26.09.08].
83 See: www.audiosvnth.com [accessed 26.09.08].
84 See: http://osw.sourceforqe.net/ [accessed 26.09.08].
85 Isadora is a realtime media manipulation software package, invented by
Coniglio from Troika Ranch, and is an important motion tracking application in
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can suffer from occlusion, need special lighting conditions (except when an 

infrared camera is used) if the tracking is to maintain consistency, require a 

lot of time to set up, and put severe limits on the size of the data-sensing 

space that is dependent on the position of the camera.

3.1.2 Body Part Motion Capacity and Personal Space Tracking

Following the outcome of the 'Moving Body Part Tracking' investigation on 

musical interface design (2.2.4), this section introduces the second parallel 

line of measurement techniques used in movement based projects: 'Body Part 

Motion Capacity and Personal Space Tracking'. This technique defines 

measuring the body movement capacity of different body parts within the 

personal space of the body, i.e. the space that the body can cover when 

outreaching the limbs and that is bound to the motion of the whole body in 

general space (see 4.2.2 for an in depth analysis of the 'personal space').

The discussed techniques are classified as:

  Wired Up

  Motion Capturing the Skeleton

  Gesture Detection accessible for Artists

3.1.2.1 Wired Up

In the early 1990s, several artist collectives developed body part motion 

sensing systems. Troika Ranch was mentioned earlier (p.40) when discussing 

The Laser Web', a body motion and location tracking system. However, the 

very first system that the company developed was a wireless device called 

'the MidiDancer'86 (1994). This electrical bodysuit had to be attached to one 

or more dancer/s and consisted of up to eight plastic fibers that measured the 

flexion and extension of the major joints on the body. Body shape was 

analyzed by measuring the angles of arm, leg, and hip joints. The derived 

data signals were broadcast wirelessly by Radio Frequency signals to a 

computer and transformed into computer code that controlled theatrical 

equipment like video cameras or digital sound devices. Troika Ranch stated 

that they hoped to enrich the dance performance environment by providing

dance and technology performance. See:
http://www.troikatronix.com/isadora.html [accessed 20.07.07].
86 See: http://www.Troika Ranch.org/mididancer.html [accessed 20.07.08].
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the dancer with a real time interactive opportunity to influence computer 

media.

In the first project using 'the Midi Dancer', called 'In Plane' (1994), the 

performer controlled 'the generation of music, the recall of video images, the 

theatrical lighting, and the movements of a robotically controlled video 

projector'87 . In this piece the virtual element 'disembodiment' (see also 

4.1.2.1) was observed when the dancer was dancing with a real time 

transformed image of herself on the video screen. Troika Ranch refers to this 

effect as an emphasis on 'the limitations of both entities: the human 

performer, bound by time and gravity, and her video doppleganger, limited by 

its inability to enter the corporeal world'88 . In retrospect Stoppiello & Coniglio 

(2003) concluded that the synchronous 'One-to-One mapping'89 procedure 

(they called this technique the 'bleep-blop' method) did not really add to the 

complexity and subtlety that they had envisaged. They refer to the complexity 

of the mapping procedure that arose at the early stages of their 

experimentations, and that still continues to challenge contemporary artists 

trying to find a satisfying equilibrium between Art & Technology.

A subsequent electronic system, the 'Digital Dance System' developed at 

DIEM 90 (1999), also communicated wirelessly through Radio Frequency and 

implemented up to 14 bending sensors that also measured the angles of the 

dancer's limbs (the distance range of the system is not specified). In 

'Movement Study II' (1997-2001) by DIEM, changes in angles of the ankles, 

knees, elbows and wrists of the dancer influenced the volume and frequency 

spectrum (brightness) of various tonal and rhythmic sounds produced by the 

computer. The dancer was also able to determine the speed of a prepared 

computer composition when a certain number of bends were accomplished. In 

this piece a clear compositional structure is observed, however, the relational 

concept between the bending of certain limb and the choice for a certain 

sound effect is undetermined. Wayne Siegel, director of DIEM, concluded that 

the dancer possesses v a certain amount of freedom of movement as well as

87 From: http://www.Troika Ranch.orq/wrk/inplane.html [accessed 20.07.08],
88 From: http://www.Troika Ranch.orq/wrk/inplane2.html [accessed
20.07.08].
89 A single control device corresponding to a single musical (synthesis)
parameter (Hunt eta/. 2000b).
90 See: http://hiem.qet2net.dk/diem/Droducts.html [accessed 20.07.08].
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expressive control of the music without requiring excessive concentration on 

instrumental performance'91 .

In the projects directed by Troika Ranch and DIEM the dancer and 

choreographer were one and the same person because, in the companies' 

opinion, it transpired that the best artistic results could be achieved by the 

person who had experienced the movement experimentations him/herself. 

Siegel states that 'the dancer is placed in an entirely new situation, with the 

responsibility of interpreting both musical and choreographic ideas and 

integrating them into a single work'92 . However, in 'Sisters' (1998), another 

project by DIEM, the choreography was developed first before a collaborative 

process started in which sound and choreography developed together.

A later system called 'PAIR and WISEAR' (Topper & Swendsen 2005) is a 

Linux based sensor system array. In contrast to earlier systems it is focused 

on tracking the local distance interaction of two or more dancers, measuring 

touch, proximity and what they call 'focus', i.e. when the dancers are 

separated by a large distance. They attach force sensing resistors (FSRs), 

Infrared sensors and accelerometers to hands, body or head. The technical 

disadvantage of 'PAIR and WISEAR' is that proximity tracking over the 

distance range for dance performance, mainly the maximum or minimal range 

of the stage, is not fully solved with the system. Unfortunately I have not 

been able to find any writings about the artistic use of this system.

By citing these electronic sensor systems I aim to show that in interactive 

music/sound and dance performance moving body part tracking was initially 

treated in much the same way: the measurement of the hands and fingers of 

a musician who plays his/her musical interface or measurements or the 

activity in the limbs of a dancer to trigger digital sounds in the computer.

3.1.2.2 Motion Capturing the Skeleton

Since the early 1980s93 Motion Capture (MoCap) 94 systems have been 

developed primarily to design computer character animations for the film

91 From: http://hiem.qet2net.dk/diem/notes-mvst.html [accessed 20.07.08].
92 From: http://hjem.get2net.dk/diem/notes-mvst.html [accessed 20.07.08].
93 For some history writings about Motion Capture see sites such as 
aph.orq/education/materials/HvperGraph/animation/character animation/mot 
ion capture/historvl.htm and http://www.measurand.com/motion-capture- 
resources/motion-capture-historv.htm [all websites accessed 26.07.08].
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industry or bio-mechanic research 95 . MoCap systems can measure the 

kinetics, acceleration, speed, rotation, and relative displacement of different 

body parts with high precision and a very fast update rate95 . However, it is 

very costly to deviate from the initial intentions of MoCap systems: limited 

access, the time that's needed for calibration and the extensive software 

programming can slow down the research progress and consequently raise 

the costs. Therefore, access to MoCap systems is in general very hard to 

achieve for artists. Apart from this, the systems suffer from occlusion and 

need a specialized (expensive) engineer to operate the system, correct the 

multiple generated errors for which MoCap system are notorious, and 

interpret the dataflow. A single sensor misreading might cause the computer 

to believe that the actor's arm was pointed straight up into the air for a 

fraction of a second, for example, when it was not. On top of this the sensitive 

range of MoCap is very limited (normally 3X3m) and the system can be highly 

sensitive to walls and obstructions. Therefore, a broad artistic analysis of the 

use of Motion Capture systems is missing in the available documentation that 

widely concentrates on historical and technical facts.

One of the few occasions that artists had access to a MoCap system (the 

Gypsy97 ) was in a Motion Capture Art-Tech Laboratory called 'Real Time and 

Networked: Sharing the Body' (2002) in which several dance and animation 

artists joined with a technical engineering crew. Scott deLahunta (2003) 

states in the report about this workshop that a clear distinction between 

artistic and commercial or scientific research exists. This was shown during 

the laboratory when 'in more than one instance accidental data was being 

explored through, for example, the conscious occlusion of some of the

94 MoCap systems are either magnetic or optical and passive or active. See
systems such as Vicon http://www.vicon.com/products/systems.html. Eagle &
Hawk http://www.omeqasvstems.cl/nota ver.asp?id = 79
Reactor http://www.ascension-tech.com/products/reactor.php#specs.
Flock of Birds http://www.evl.uic.edu/core.php?mod=4&tvpe=l&indi = 179 or
Liberty, Patriot and Fasttrack http://www.polhemus.com [all websites
accessed 26.07.08].
95 The predecessor of Motion Capture was 'Rotoscoping' a movement
measurement application used by Walt Disney in the film 'Snow White'.
Rotoscoping was invented in 1914 by Max Fleischer. See for example:
http://www.lazvmovie.com/rotoscopinq-saqa.html [accessed 12.07.08].
96 An explanation of MoCap data and suggestive ways to use these systems
can be found at Geroch 2004.
97 See: http://www.metamotion.com/qvpsv/qypsv-motion-capture-
svstem.htm [accessed 27.07.08].
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reflectors for the optical system and the proposal to use an alternative 

calibration for the Gypsy' (/M/:2). These are not trivial strategies but 'the 

conditions from which unexpected creative forms are going to emerge [...]' 

(/M/:2) 98 . In a more general Art & Technology context this view is shared by 

Joke Brouwer et a/.:

Artists generally prefer to use technologies of which standardized, 

commercial versions exist, but they also investigate how these 

technologies can be used, distorted and shifted in original ways in 

order to further artistic research. (Brouwer et al. 2005:6)

Several artistic projects using MoCap systems will be described later when 

discussing the software programming involved (3.2).

3.1.2.3 Gesture Detection accessible for Artists

Whereas the previously mentioned camera based systems (3.1.1.3) were 

applied for full body motion recognition, Camurri et al. (1997) developed 

freely downloadable software for the video capturing camera called 

'EyesWeb'99 (PC only) at the InfoMuslab that resembled the capturing 

possibilities of Motion Capture system. The 'EyesWeb' platform was developed 

not only for real time full body motion measurements but also for gesture 

detection within the personal space of the dancer's body. In EyesWeb a 12- 

point 2D virtual skeleton is imposed onto the body as seen by the camera. 

The software is based on a number of stereotypical and coarse posture 

recognitions that are programmed by different feature extraction algorithms 

that register the velocity peaks of a gesture. Several of these predefined 

posture classifications are categorized and sent to a self-organising neural 

network (see also 'Gesture Recognition' 3.2.1). Neural networks are based on 

the memory abstraction and processing of human information (Smith 2001). 

Used in interactive systems the computer is in this way able to adjust and 

react to the gathered information in the software programming, adding 

another layer to the human-computer interactivity: the non-trivial form of

98 Such errors were used to great extend when the ReActor MoCap system 
caused hilarious effects during a childrens' workshop tutored by the author at 
Essex Dance, Chelmsford, UK in 2004. See: 
http://www.essexdance.co.uk/paqes/dtech.htm [accessed 28.07.08].
99 See: htto://www.infomus.org/EvwMain.html [accessed 25.07.07] and 
http://www.audiovisualizers.com/toolshak/viDrgpix/EvesWeb/EvesWeb.htm 
[accessed 25.07.07].
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interactivity as defined by Ascott (see p.23). 'Art as Process' was enhanced 

with truly interactive computer processes that were easily available to artists.

3.1.3 Summary 'Data Measurement Methods for Body Motion'

In the previous section an overview of interactive technologies and 

movement-based performance projects has been described from an artistic, 

engineering, and computer scientific perspective. It was outlined that the use 

of these technologies had a major impact on the possibilities for artistic 

development due to the following elements:

  Technical specifications and shortcomings such as the sensitive 
range and dimension of the system, the data resolution, speed of 
the data transfer, particular lightning conditions and occlusion.

  Access and availability.

Financial implications like renting studio space and the needed 
operational expertise.

  The limited available research time due to set up time, computer 
programming, testing and calibrating and, last but not least, 
training of the involved performers.

These body motion measurement methods are related to the two formerly 

mentioned sonic gesture data measurements. The invented body motion 

measurement technologies were categorized into two data collection 

methods:

Body Motion and Location Tracking techniques.

  Body Part Motion Capacity and Personal Space Tracking 
techniques.

Apart from the review of these technologies, a wide range of interactive body 

motion research projects have been described with their accompanying 

mapping methodologies. It was shown that a multitude of choices have to be 

made to realize the wide range of possible artistic outcomes. Therefore, in the 

next section a closer look is taken at a more specific data mapping 

methodology with the aim of trying to analyse a closer correlation between 

body movement and sound.

3.2 Choreography in Computer Code

As shown in the previous sections (3.1.1.3, 3.1.2.2 and 3.1.2.3), creating 

software code for interactive movement purposes gradually became more 

prominent than the need for the invention of new hardware devices. 

Computer programmers and electronic engineers try to find new

mathematical formulas and technical solutions to improve the technology that
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is able to digitize human movements. These can be applied in interactive 

dance and music performance when using a MoCap or a camera based 

tracking system such as the previously mentioned 'EyesWeb' system. This 

suggests a certain abstract relationship between interactive movement and 

digital sound.

The next section observes the developments of a number of engineering and 

mathematical concepts in the gesture recognition and motion analysis field 

that can be applied for the creation of new software for the mapping process 

of dance movements to digital sound. These developments are 

conceptualized within the artistic context of this thesis by including the views 

of several artists with regard to how these mathematical ideas can be useful 

for the development of interactive dance performances.

3.2.1 Gesture Recognition

The research topic of gesture recognition in computer science has the goal of 

interpreting human gestures via mathematical motion analysis algorithms. In 

order to discuss the term 'gesture recognition' it is essential to first make 

clear that the term 'gesture' can have different values and meanings 

depending on context.

In general terms a gesture can be considered as any time variant change in 

the state of a part of the body with the intention to emphasize speech 100 . In 

line with this view, Wilson (2000:10) states that a 'gesture' in human 

movement is commonly defined as a meaningful 'communicative human 

movement' such as pointing your finger at somebody, making a peace sign or 

the typical use in sign language. In a musical context, Wanderley (2001:23- 

38) classifies gestures as based on either the function that a gesture presents 

in a certain context or on the physical property of the performed gesture. He 

states that composers, musicians, conductors and electronic musicians all 

have different ideas on the term gesture ranging from (figuratively speaking) 

'a movement of thought', a functional or ancillary movement to play an 

instrument or an isolated movement that relates to a specific physical 

performance to activate different sensors of an interface. In dance a gesture 

is often considered to be 'an action confined to a part or several parts of the

100 For a general definition of a gesture see: http://www.allwords.com/word- 
gesture.html [accessed 13.08.08] or 
http://www.thefreedictionary.com/qesture [accessed 13.08.08].
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body 1 (Maletic 1987:165). In an interactive movement-based sound 

environment, Rovan eta/. (2001) define the term 'choreographic gesture' as a 

control component for the music composition/performance. In the same way, 

gesture recognition 101 can be approached from various angles and viewpoints 

such as artificial intelligence, robotics, music, dance, computer animation, or 

as commands in a game controller.

The initial aim of research into gesture recognition was to improve the digital 

representation of human movement in the computer. Badler & Smoliar (1979) 

present three different early animation models of the human body. I 

summarize these as follows:

Stick figures display the body as a network of body segments 
with the joints articulating the body. This model is a very 'stiff 
and primitive abstraction that displays the body with a few 
longitudinal axis.

  Surface models display a planar composition of the surface of the 
body. This model visualizes a more accurate abstraction model 
that makes it possible to display rotations and provide the proper 
occlusion and depth effects. However, this model has a very high 
computational cost and is unable to adjust the individual volumes 
of the moving body parts that move synchronously.

  Volume models decompose the body in several primitive volumes 
such as cylinders, ellipsoids or spheres. This model represents 
the body as a 'spherical decomposition' that generally results in a 
'bumpy' texture on the edges of the image.

In order to avoid discussing all nuances of the developments of computer 

animation (which is beyond the scope of this thesis), I will concentrate on the 

fact that these early models introduce us to several motion analysis models 

that have been applied for gesture recognition in the interactive dance and 

music field.

3.2.2 Motion Analysis Algorithms

In the motion analysis field, computer scientists Ming-Yang Wu et al. (2004) 

present algorithms based on the indexing of skeletal segments of full body 

posture features. These are matched to comparing recorded clips to be able to 

compile a motion collection in the created 'content-based human motion 

retrieval system' (ibid}. The physical constraints of a human being are 

explored in a sequence of skeleton data that move from one frame to the

101 For general information on the topic gesture recognition see: 
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/COHEN/qesture 
overview.html [accessed 20.08.08].
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next. The testing uses a MoCap system that de-fragments Tai Chi Chuan 

movements. They point out the different procedures and choices they 

incorporate in their computer programming to enable them to test the 

algorithmic ideas. This 'de-fragmentation' process consists of setting 

thresholds and boundaries of the data measurement method, decomposing 

the spaces of the skeleton into smaller parts, and making a choice out of the 

derived data (color, texture, shape and motion). The researchers state that 

the results of this investigation can be used in many applications such as 

visual surveillance, diagnosis and therapy for rehabilitation, athletic training, 

person identification, and animation generation.

In a musical context, Paul Modler et al. (2003:149) describe a gesture 

recognition process that was developed for the recognition of the expression 

of hand gestures to control musical parameters in real time. A Time Delay 

Neural network (TDNN) architecture, that was originally developed to 

recognize phonemes, learns a set of hand gestures that are captured by a 

video camera. The motion analysis of the gesture recognition in this artistic 

context was realized with setting several thresholds and applying filtering to 

the captured images, much in the same way as in the above mentioned 

scientific research framework by Wu et al. As a result, different audio samples 

were triggered in jMax 102 .

Erin Manning (2006) states that, to be able to realize a mapping process 

using a motion analysis methodology as described above, most practitioners 

of dance and technology specify a gesture as having a beginning and an end. 

In line with this view, Coniglio presented in his talk at the 'Motion Bound' 

Symposium (Chelmsford, UK, 2005) his view that the body points generated 

in the 'EyesWeb' software (see p.51) generate a particle system consisting of 

little 'objects'. These 'objects' create a kind of organic analogy between the 

body and the computer. He imagines that looking at and memorizing how a 

point moves in space and how it moves in units in time, defines a point of 

departure and a point of arrival. This categorical movement form can be used 

as the starting point for the design of a computer algorithm for gesture 

analysis. Continuing from these ideas, Wilson describes the use of this 

concept for gesture recognition by the computer:

102 jMAX is a visual programming environment for building interactive real- 
time music and multimedia applications. See:
http://freesoftware.ircam.fr/rubrique.php37id rubrique=14 [accessed 
02.06.09].
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The condensation algorithm [exploiting particle filtering] is attractive 
for its simplicity: it requires only a likelihood function which evaluates 
a point in model parameter space and a propagation method which 
updates each point to the next iteration. (Wilson 2000:100)

To be able to span the range of human gesture, Benbasat & Paradiso (2002) 

add to this view a description of a categorization of human movement into 

'atomic gestures'. These are gestures 'that cannot be further decomposed, 

and which can be combined to create larger composite gestures' (ibid:88). 

Atomic gestures are defined by looking at the contained peaks of the 

movement and 'thereafter, any gesture of interest can be synthesized from its 

atoms' (ibid:88). This analytic approach was taken to make their algorithms 

efficient in measuring rotation and acceleration within the proposed gesture 

recognition process. Algorithmic models that can be used are 'direct data 

stream analysis' that processes the data after the parameters for gesture 

recognition have been chosen, or a 'Hidden Markov Model' that is defined as a 

'framework for the automatic learning of gestures for later recognition and 

which use a multi-step search using expectation-maximization of gestures'

A similar neural networking learning method was described above (p. 55) 

when referring to Modler's hand recognition research project. However, 

Benbasat & Paradiso (ibid:86) note that several time based limitations are 

important to observe if the described system is to be used in a dance 

environment. I recapitulate these as follows:

The lack of an absolute reference frame to be able to track body 
orientation relative to a fixed frame for longer than 
approximately five seconds.

  The system cannot track multi-dimensional gestures, except for 
those that are separable in space and time.

Constraints imposed by the algorithms used for body motion 
analysis and gesture recognition.

Tian-Shu Wang et al. (2001) from the Artificial Intelligence and Robotics Lab 

and Microsoft research centre in China present a similar method for 

automatically indexing a continuous sequence of gestures. The researchers 

make two assumptions about the definitions of a gesture. Firstly, they take 

the position that a gesture can be identified by a categorization of the 

presented repetitive body movements. They identify these repetitions by 

using Hidden Markov Models that divide the sequence of movements into 

'atomic gestures', i.e. a dynamic segmentation or 'splitting up' process of the
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recorded gestures. Secondly, they presume that the velocity of a movement 

changes when the type of gesture is changed, generally in an abrupt fashion. 

These two features of a gesture are stored and labeled in the computer and 

compared with new gestures to digitally identify the presented gesture. 

Finally, the researchers carried out a test on recognizing musical conducting 

gestures and allocated words to distinct gestures. It was shown that their 

algorithms could successfully segment and label continuous human gestures. 

However, they admit to the limitations of the system that is not able to 

extract a definite lexicon from the sequences of human motion.

3.2.3 Choreography as a Composition of Atomic Gestures

When the gesture recognition models described above (indexing of posture 

features of skeletal segments, defragmentation, particle division, likelihood 

function, dynamics categorization and atomic gestures) are transferred to 

dance performance, Kris Hollands eta/. (2004:1) state that the kinematics of 

the movement patterns 'exhibit a great deal of subject- and context- 

dependent variability that are not easily analysed using conventional event 

identification techniques'. They describe a kinematic dance research with the 

Vicon Motion Capture system in which they apply a 'Principal Components 

Analysis' (PCA) algorithm commonly used for gate analysis to try to identify 

the kinematics of a contemporary dance movement pattern. PCA categorizes 

a small number of movement elements in an attempt to sufficiently describe 

the original variables in a movement pattern. The testing of their motion 

analysis method involved a dancer who had to choose three reference points 

in space that were meant to be touched during a self-created dance phrase. 

This phrase incorporated whole body translations such as rotations and 

twisting of the body, hands, and arms that were required to reach the three 

chosen points. As a comparison a second dancer had to repeat this movement 

phrase. Hollands et al. concluded that, to a certain degree, it is possible to 

reduce dance movements to a small number of components by using the PCA 

algorithm. However, they also state that the value of reducing the 

dimensionality of complex movement patterns remains to be seen because 

dance patterns are not always easy to interpret. In agreement with this view, 

Manning (2006) also states that: ' "Mapping" gesture risks breaking 

movement into bits of assimilable data, of replicating the very conformity the 

computer software is seeking to get beyond'. Manning 'seeks to explore the 

technogenetic potential of the wholeness of movement, including its 

"unmappable" virtually' because a body is an interconnected living being, the
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whole system resonates when one part is moved (ibid). She also stresses the 

importance of including the pre-acceleration of a movement (or the tendency 

to move) in a gesture 103 .

It could be seen that a similarity to this phenomena in sound can be 

recognized in the act of playing musical instruments, where 'shadow notes' 

create the flux, timing, or the rhythmic flow of the notes that are truly being 

played, and also in 'ancillary gestures' of a musician that do not necessarily 

produce sound (see Wanderley 2001:93-134). However, it would be very 

complicated to find an interactive artistic relationship between these two 

shadow issues due to the fact that a very precise tracking system is needed to 

record these extremely subtle body movements and that the system should 

be able to communicate these data real time at a very high speed to the 

digital sound format.

In the following section, it is investigated how to avoid losing the exact flow, 

timing and rhythm of the artistic expression when dividing dance movements 

into measurable sequences of gesture for the benefit of the data 

communication to the computer.

3.2.4 Expressive Content

Don Herbison-Evans (2003) describes the use of the computer in dance as 

mainly administrative, that is, for dance notation (such as Benesh 1955 104 and 

Laban 1928 105 ) or stage lightning cues. However, he briefly touches upon an 

interesting artistic question concerning the digitalization of human dance 

movement:

103 This element of a gesture was researched in the Dance and Technology 
field in 2004 by Armando Menicacci eta/. They were named 'shadow forms' in 
a demonstration at the conclusion of the workshop 'Extending Perception 
TECH LAB' that I visited at the Monaco Dance Forum in 2004. In the 
preliminary research undertaken in this workshop, dancer Stoppiello from 
Troika Ranch (see p.39) was wearing sensors attached to her spine on the 
spots from whence her movements were presumed to be initiated from and 
which were thought to be necessary to make the intended movement.
104 More information about Benesh dance notation can be found at the Benesh 
Institute in London: http://www.benesh.org/BNBNE Whatisbne.html 
[accessed 02.087.08].
105 An impression what the notation looks like and how the notation analyses 
movement can be found at: http://user.uni- 
frankfurt.de/~qriesbec/LABANE.HTML [accessed 02.08.08].
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There is a long way to go before we understand movement well 

enough to synthesize computer graphic dancing figures with any 

aesthetic value, (ibid)

Indeed, several questions remain, such as how the system can distinguish 

between various styles of dance, sense the quality of movement in the 

computer, define a gesture, how long it is, what the expressive content of a 

gesture, of movement is etc.

The ongoing research of the developers at InfoMus lab (see p.41 and p.51) 

concentrates on this analysis of the emotional expressive content in human 

gestures, as a non-verbal communication method related to feelings, moods, 

affect and intensity of emotional experience. The research combines x a 

scientific perspective (i.e. a deeper understanding of non-verbal 

communication channels), an engineering perspective (i.e. building enhanced 

and effective interactive systems for several application domains), and an 

artistic perspective (i.e. exploiting the means technology provides in order to 

enrich language and to pioneer novel art forms)'106 . The main goal is the 

integration of movement, music, and visual languages in order to design 

novel paradigms of interaction, mapping strategies, and multimedia interfaces 

grounded on the real-time multimodal analysis and synthesis of expressive 

content in music, gesture, and visual languages. The artistic perspective 

focuses on studies and tests of computational models of expressive gesture 107 

mainly in dance and music performance. It is stated that this artistic form in 

particular uses non-verbal communication mechanisms to convey expressive 

content.

The lab develops projects like:

  HARP (Hybrid Action Representation and Planning) that 
introduces the idea of developing Multi Modal Interactive 
Systems (MISs) in environments in which the user can 
communicate audiovisual materials interactively to either other 
people that are participating in the event or to other external 
spectators. The sensors are chosen according to the type of 
information that is needed (Camurri eta/. 1995).

  KANSEI that introduces the idea of involving the Space and Time

106 From: http://www.infomus.dist.unige.it/EvwDefault.html [accessed
01.09.08]. Note: firstly click the link 'Research' and secondly 'Expressive
Gesture'.
107 See: http://www.infomus.org/Research/ExpressiveGesture.html [accessed
02.08.08].
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theories of Laban that relate to movement 108 in order to estimate 
human movement for real time analysis (Camurri et al. 1997 & 
1999).

  MEGA 109 (Musical Expressive Gesture Applications) that 
concentrates on gestural control to be able to interact with the 
sound processing engine that is integrated in EyesWeb (Camurri 
eta/. 2004).

InFomus Lab has realized a wide array of (collaborative) artistic ideas in 

numerous interactive installations, performances, demonstrations, music 

theatre productions, robot interaction performances, and games using the 

'EyesWeb' platform 110 . However, the disadvantages that apply to camera 

tracking systems (see p.46-47) have unfortunately not yet been solved with 

the 'EyesWeb' platform.

3.2.5 Gesture Recognition for Artistic Purposes

A Motion Capture system can provide the artists with a significant means to 

enhance the choreography of performers. It was previously remarked (p.50) 

that it is unfortunate that a broad cultural analysis of the use of Motion 

Capture systems has not been carried out, and therefore any descriptions of 

the artistic practice of gesture recognition algorithms are widely lacking. 

However, some projects have been realized by artists who did recognize the 

benefits of choreographing in digital space, such as the possibility to be able 

to design movement phrases taking place in difficult body positions and from 

impossible perspectives. These projects involved recording the MoCap data 

(real time processing was not possible at the time) and processing these data 

in software packages like 'BIPED'111 a version of Character Studio 112 (in 

'BIPED' by Cunningham 1999) or 'Life Forms' 113 (in Trackers' by Cunningham

108 The movement theories of Laban will be discussed in relationship to spatial 
sound mapping later in this writing (sections 4.2-4.4).
109 See: http://www.meqaproiect.org/ [accessed 15.08.08].
110 See: http://www.infomus.dist.uniqe.it/EvwDefault.html [accessed
16.08.08]. Note: click the link 'Events and Activities'.
111 See: http://merce.org/thecompany r-biped.html [accessed 26.07.08].
112 See: http://www.the3dstudio.com/product details.aspx?id product=3637
[accessed 13.08.08].
113 Life Forms 'Studio Animation' and 'DanceForms Choreography' are
commercial software packages with tools for editing motion captured data.
The first package is able to design 3D character animations and the second to
visualize and notate entire dance scores, complete with music integration for
choreographers. deLahunta (2002) describes this practice of creating artform
with the computer as coding as creative practice.
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1990). The MoCap data were used to design the choreography of animated 

dancing figures that accompanied the performance on a video screen.

Choreographer Myriam Courfink 114 (in collaboration with performing art 

researcher Remy Muller) presented her interactive project This is my House' 

during the 'Choreographic Computations' conference 115 (deLahunta & 

Bevilacqua 2007). The choreography consisted of a predetermined score that 

was displayed on computer screens above the dancers' heads. The order of 

this score was interactively determined by using the MoCap data derived by 

moments of gesture recognition of the dance movements.

It is beyond the scope of this writing to fully describe the choreographic 

projects that evolved from the use of MoCap data and I therefore refer the 

reader to several writings of Scott deLahunta (2001, 2002 & 2003). However, 

one of the few experiments that investigated gestural control of sound using a 

MoCap 116system is described in several papers by Frederic Bevilacqua et al. 

(2001, 2002, 2003 a, b & c) and Christopher Dobrian & Bevilacqua (2003). In 

their work, Motion Capture data were processed in an early version of MnM 117 

(Motion Capture Music), a toolbox for Max/MSP for use with the Vicon MoCap 

system. MnM uses the previously mentioned PCA algorithm (p.57) to make it 

possible to map gesture to sound. The software tools are based on vector 

manipulation in defined matrices and use PCA to reduce the dimensions of the 

performance space to simplify the mapping procedure (Bevilacqua et al. 

2005). MnM is dedicated to computer learning methods and more specifically 

to mapping motion data to any sound parameter in MIDI format118 . Body data 

were captured by tracking up to 33 points on the dancer's body (generating 

99 parameters in 3D) and used for sound generation. Bevilacqua et al. show

114 Courfink investigates computer choreography exploring micro-movements 
and challenging conventional notions of dance. See: http://www.mvriam- 
qourfink.com/ [accessed 13.08.08].
115 See: http://recherche.ircam.fr/equipes/temps-reel/nime06/workshops.htm
[accessed 13.08.08]. Courfink's presentation is documented in audio format
on: http://www.du.ahk.nl/nimeworkshop/MvriamRemv.mp3 [accessed
14.08.08].
116 The project used a Vicon Motion Capture System see:
http://www.vicon.com [accessed 25.07.08].
117 MCMMax is the MnM version developed for the Macintosh. See:
http://music.arts.uci.edu/dobrian/motioncapture/mcmmax.htm [accessed
09.08.08].
118 MnM would have been useful for my research, however, the developments
of the toolbox came unfortunately to a halt for reasons unknown to the author
and have not been made available to the public.
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several example videos 119 in which the distance from different body parts 

(hands, feet, shoulder) of a dancer to the floor and to each other is captured. 

These measurements generate changes in pitch, timbre and frequency 

modulation of synthesis sound, and apply filtering to pre-recorded sounds. 

The results show the beginning stages of the work, presenting a simple 'One- 

to-One mapping' layer (see p.48) to demonstrate an evident relationship 

between gestures and sound. It was decided early on to capture only some of 

the 33 markers on the body as a first approach. Although Bevilacqua et al. 

recognized the unique power and potential of a MoCap system as being able 

to devise strategies for mapping many degrees of freedom (DOF) 120 into a 

meaningful artistic expression, this research also demonstrated the 

aforementioned difficulties and slow progress of using motion capture data 

(see p.50).

Another example of sound generation using gesture recognition algorithms is 

the piece '16 Revolutions' (2006) by Troika Ranch, in which a single video 

camera on stage is connected to EyesWeb (see p.51) tracking the movement 

of the torso and the limbs for gesture recognition. EyesWeb was networked

using Open Sound Control (OSC) 121 to Isadora. Isadora generates imagery

and aspects of the sonic score in real time response to the movement of the 

freely allocated points of the skeleton 122 . Gesture recognition is applied in 

subjective terms of 'simple, complex, jittery, angular or less obvious' body 

gestures. Troika Ranch's latest project at the time of this writing, called 'Loop 

Diver' 123 (2008), is built around 'interwoven loops of movement, text, music

119 See: http://music.arts.uci.edu/dobrian/motioncapture/examples.htm 
[accessed 29.07.08].
120 'Degrees of Freedom' (DOF) is a term meaning a single coordinate used in 
Kinematics to describe the relative motion between two bodies. Such a 
coordinate is free only if it can respond without constraint or imposed motion 
to externally applied forces or torques. A DoF is either a linear coordinate 
along a single direction (comparable to the six movement planes in Laban 
movement analysis (see p.80) for translational motion or an angular 
coordinate for rotational motion.
121 Open Sound Control (OSC) is a protocol for communication among 
computers, sound synthesizers, and other multimedia devices that is 
optimized for modern networking technology. See: 
http://www.cnmat.berkelev.edu/QpenSoundControl/ [accessed 20.12.2007].
122 A video section of'16 Revolutions' can be viewed on:
http://www.voutube.com/watch?v=Rbv7nOZqA98&NO. = l [accessed
14.08.08.07].
123 See: http://www.Troika Ranch.Qrq/performances.html [accessed
20.07.07].
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and interactive visuals'. In this interactive multimedia piece they apply the 

computer as a 'dictator' that is disturbed by improvisational provocations of 

the performers. Stoppiello and Coniglio stated during the NINE 2006 

conference 124 that the interest of Troika Ranch is not in exactly replicating the 

input that is sent to the computer, but in having a connection of some kind 

that can be used artistically. An important interactive element for Troika 

Ranch is having 'no succession', i.e. the performance will be different every 

time caused by the movement improvisation (see 4.1.1). This notion takes us 

back to the beginning of chapter 2 in which interactivity was recognized as 

'artistic process' (2.1).

3.2.6 Summary 'Choreography in Computer Code'

In the previous section, various software design methods that can be applied 

in interactive dance choreography have been described. The discussion 

reviewed motion analysis and gesture recognition techniques from the 

perspective of computer programmers and artists involved. Gesture 

recognition has been approached by either a trajectory-based concept in 

which curves are considered to be the main recognizable element, or by a 

dynamic model based concept using Hidden Markov Models. We can conclude 

that for digital algorithmic purposes the movement of the body is processed 

as a 'multi sensing' apparatus in the constantly changing environment of 

separate differences that can be accumulated and added as the total sums of 

derived numbers. It was shown that a lot of decisions need to be made to be 

able to test a mathematical concept for motion analysis. Therefore, it is 

concluded that 'limitation' is a prominent feature of the application of the 

technology used in interactive art. These limitations were best described in 

the example of the choices that Bevilacqua et al. had to make to simplify the 

mapping process (see p.62). This example showed that if the artistic context 

is accompanied by a scientific research context, a lot of mathematical actions 

have to take place on top of the artistic decisions before it might be possible 

to map human motion to sound.

However, it was noted earlier (Winkler p.44) that a certain unavoidable 

limitation is not necessarily counterproductive but opens up other avenues of 

creative exploration. Rokeby (1998) confirms this view poetically when stating

124 Troika Ranch's presentation during NIME 2006 at Ircam can be listened to 
on: http://www.du.ahk.nl/nimeworkshop/MarkDawn.mp3 [accessed 
14.08.08].
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that the process of programming (in his own higher-level language) is like 

creating pathways in a landscape with high mountains and deep valleys:

The interface defines a sort of landscape, creating valleys into which 
users tend to gather, like rainwater falling on a watershed. Other 
areas are separated by forbidding mountain ranges, and are much 
less traveled'. (ibid:S)

Inevitably these pathways would direct his decisions to which interactive 

elements would be implemented in the software and which would be denied.

Although restrictive or challenging, the results of the investigation 

'Choreography in Computer Code' introduced the concept that gesture 

recognition still has a broad potential for new artistic ideas if the artists are 

willing to go beyond the software code or the limitations of an 'interactive 

segmented data body'. However, in line with Hollands and Manning (p.57), I 

wonder if it may be artistically satisfying to see human (dance) movements in 

terms of an 'anatomic entity' reduced to 'atomic gestures' for the purpose of 

computer recognition when undertaking projects of this nature. Considering 

the fact that I was confronted with the limitations that beset robotic 

movements (see p.11), I am of the opinion that it is arguable whether it is 

productive artistically to have to implement a set of reductive mathematical 

rules to a human body to be able to digitally process the unique expressive 

qualities of the highly skilled movement artist.

3.3 Summary "Interactive Movement-Based Projects'

In this chapter, a more or less chronological sequence of the development and 

strategies for measuring body movement in interactive movement-based 

projects has been charted. It becomes clear from the reviews and discussions 

that numerous artistic possibilities arise. The characteristics and limitations of 

these different technological designs can great/ly vary, and therefore so can 

the level of interaction between the movement artist and the sonic result.

In chapter 2, I described the early beginnings of the measurement of gestural 

movement of musical instrumentalists. These artists used similar electronic 

technologies as those developed for interactive movement-based projects. An 

analogy was observed between the sonic data measurement methods used in 

'Object Location in Space' and 'Moving Body Part Tracking', and the 

movement data measurement methods in 'Full Body Motion Capacity' and 

'Personal Space Tracking techniques'. The invention of above mentioned
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dance measurement technologies brought forward new possibilities to deepen 

the artistic relationship between body movement and sound.

Existing technological systems for use in interactive movement-based projects 

have been analyzed in order to evaluate their strengths and weaknesses. 

Additionally, a range of projects that emerged from these systems has been 

reviewed with references to the chosen relationships between movement and 

sound. The overview in table 1 shows that the correlation between the 

discussed technology (left) and the artistic outcome (right) is determined by 

the capabilities of the measuring device, i.e. if the data measurements are 

versatile and precise more possibilities arise for the mapping relationship.

Flex sensors (MidiDancer, Digital Dance 
System)

  Extension and flexion of 
joints

Generation of music, video images,
lighting, control of projector, volume,

frequency spectrum, various computer
sounds

Metal Contacts (Podoboard)
Position coordinates, 
velocity

Foot movements making music

Pressure / Force Sensing (Magic Carpet, 
Lifefoot I)

  contact, impact force, 
location, direction

Pitches of voices, panning, timbre, 
soundscape

Radar System (Magic Carpet)
movement direction, upper 
body kinematics

Speed, pitch, panning, timbre, 
soundscape

Proximity Sensors (Lifefoot II) 
  Motion, proximity

Musical scales, timbre, loudness
Llogistic reasons e.g.

Dancers keeping in time with the music,
_____synchronize stage lights_______

Combination of different sensors (PAIR 
and WISEAR)

  Distance, touch, proximity

Undefined

Laser (Laserweb, Smart Wall)
  Movement detection

Music, loudness, light intensity

UltraSonic Beams (Soundbeam) 
  proximity

Manipulating live music

Wearable UltraSound sensor units (V- 
scope, LCIPS)

position location, distance

Soundscape

Camera Tracking (VNS, Eyes, Big Eye, 
Eyecon, Cyclops, Pfinder, Eyesweb)

Presence of motion, 
position, movement 
dynamics, path of travel, 
color tracking

Rhythms, different machine and
percussive sounds, lighting and video

cues, granular sampling/synthesis,
additive synthesis, spectral filtering,

loudness, pitch

Motion Capture (Gypsy, Vicon, Eagle &
Hawk, Reactor, Flock of Birds)

kinetics, acceleration, 
speed, rotation and 
relative displacement

Animation, video recordings, pitch, 
timbre and frequency modulation of 

synthesis sound, filtering to pre­ 
recorded sounds

Table 1 Overview of the correlation between technology and artistic outcome.
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It was outlined in the introduction to chapter 2 that technical developments 

are very difficult to keep up with considering the time and effort it takes to 

incorporate these technologies in the creation of art projects. For the artists, 

it is important to keep the artistic goal in focus and not 'get lost' in the 

technology. The technology should only assist in realizing the original idea, 

not merely serve as a goal in itself.

The investigations in this chapter have clarified the requirements for the 

technical 3D system to be used in this research. As a result, the development 

of the 3DIM has been realized using the two RF/US systems that will be 

described in chapter 5. The review of hardware and software design in 

combination with the artistic outcomes of the described projects in the 

previous two chapters, provide us with additional ideas for interpretations in 

the interactive movement based sonic art field. A re-contextualization of this 

form of performance art leads us to the next chapter in which the creation of 

the spatial ChoreoSonic performance space is outlined. The aim is to clarify 

how my ideas behind the relationship of dance movement and spatial sound 

evolved in the creative research process. It will be shown that this re- 

contextualization leads to new approaches and methods for the creation of 

interactive movement-based performance.
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Chapter 4 Context of the Spatial ChoreoSonic Environment

Introduction

This chapter describes how my ideas regarding the interactive relationship 

between the spatiality of dance movement (Choreo) and sound (Sonic) 

evolved. This exploration ultimately leads to the development of the 

ChoreoSonic environment and the 3DIM software creation.

After an initial review of the relationship between music and dance providing 

insights into the collaborative experiences of choreographers and music 

composers, the chapter continues with a deeper exploration of the spatial 

domain of both movement and sound in the real time interactive performance 

domain. In the last section, several spatial synchronicities between the two 

art forms will be observed by combining a number of specific elements that 

exist in the ChoreoSonic environment.

4.1 Music and Sound for Dance

Roger Scruton (1993:341) writes that x [m]usic shows us movement 
without the thing that moves' and I am tempted to suggest that dance 
shows us music without the thing that sounds [...] and although that 
may appear rather a circular argument, it is suggestive of the link 
through metaphor between the two in an important way. (Duerden 
2005:31)

Dance researcher Rachel Duerden extends Scruton's view in her article 

'Dancing in the Imagined Space of Music' with regard to the relationship 

between movement and sound. Her thoughts suggest that the relationship 

between the two art forms does not require explicit articulation: it just 

naturally exists. Relating to this view, dancer Isadora Duncan tells us about 

the fact that, as a child, it was the occurrence of sound that encouraged her 

to move: X I was born by the sea ... my first idea of movement, of the dance, 

certainly came from the rhythm of the waves' (Duncan 1927:13). These 

citations suggest a dynamic relationship between dance and sound, both art 

forms existing in a time-based domain.

Considering the creative relationship between dance and music, composer 

Van Stiefel (2002:12) notes that a highly developed sensitivity towards both 

art forms is necessary: 'It is a matter of negotiating that fine balance between 

creating music that both motivates and contextualizes movement 

successfully'. He later adds to this view the choreographic context: '[...] the
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composer is either an interpreter of the choreography, or the choreographer 

is an interpreter of the music' (ibid:22). Sketching a certain level of 

dependency and control regarding music composition for dance, he 

categorizes the various collaborative relationships between choreographers 

and composers into music that is either composed before or after the 

choreography in a recorded, live or improvised version.

All things considered, music commonly functions as a background to dance 

performance either offering a 'music visualization' opportunity for the 

dancer125 , or the possibility to regard dance as a means of interpreting 

music 126 . However, considering the latter, Stiefel remarks that it has been 

noted that music composed after the creation of the choreography can sound 

'forced' or 'too subservient' (ibid: IS). This, he suggests, is mainly due to the 

fact that dancers and musicians count time and mark structure differently, in 

so far as that the dancer counts sequences of movement phrases 'each of 

which may have a specific, intrinsically physical timing' (ibid:6) whereas the 

musical person counts musical rhythm in bars and beats. Therefore, it is 

difficult to design musical phrases that adhere to choreographic structure 

retrospectively. Neverthesless, as noted earlier, the music should motivate 

and contextualize action. The, at the time, controversial collaboration between 

Cunningham and Cage (Reynolds 2006, Brown 2007, Copeland 2003), 

provoked this relationship between dance and music. Cunningham believed 

that dance only needed to be the same time-length as the music, but that no 

attempt was needed to relate the two in any other way: both art forms should 

simply 'co-exist 1 . In the Cage/Cunningham collaborations, the performative 

elements dance, music, and lightning would be rehearsed separately and 

often only come together on the opening night.

In the context of a real time interactive dance and sound performance, the 

collaborative relationship is challenged in a different (real time) way. In this 

context the following question arises: how is this relationship created when 

dance and sound evolve at the same time, when both art forms evolve in a 

real time interdependent performance creation?

125 Music visualization is a dance 'style that called for movement equivalents 
to the timbres, dynamics, rhythm, and structural shapes of music'. From: 
http://www.ruhaniat.org/lineaqe/RSDBio.php [accessed 06.11.08]. It was 
developed by the early 20th century dancer/choreographer Ruth St. Denis 
(US).
126 This concept was initiated around 1920 by dancer/choreographer Martha 
Graham (US) and Isadora Duncan (US).
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4.1.1 Improvisation in Dance and Technology Performance

To answer this question, one important aspect of this interactive relationship 

can be found in the act of improvisation 127 , another example of a real time 

emerging art process. Adding to the view of Stiefel that the composer is either 

an interpreter of the choreography or the choreographer is an interpreter of 

the music, Rovan eta/, note that in an interactive context:

There are no musical cues for the dancers, since without their 
movements the music is either nonexistent, or at other times, missing 
key elements. This method of working forced not only an inherent 
degree of improvisation upon the group, but also prompted a sharing 
of artistic roles in the working process: dancer became musician, 
composer became choreographer [...]. (Rovan eta/. 2001:45)

Stiefel noted previously that it is preferable that there should exist a sensitive 

understanding of the delicate balance between movement and sound. Rovan 

et a/, argue that, in an interactive environment, a performer can best achieve 

this goal by a certain element of improvisation. After a basic learning process, 

a performer should be able to play the system intuitively128 without just being 

a human controller tool that triggers the pre-programmed parameter 

changes. In line with Rovan et a/., Coniglio stresses the importance of 

implicating performance improvisation in interactive dance performances 

when he explains his motivation to develop interactive projects:

[...] I provide interactive control to the performers as a way of 
imposing the chaos of the organic on to the fixed nature of the 
electronic, ensuring that the digital materials remain as fluid and alive 
as the performers themselves. There are two important implications 
that arise from this approach, namely:
1. we must give the performers latitude to improvise if they are to 
take advantage of such interactivity; and
2. the audience must have some understanding of the interaction to 
complete the loop between audience and performer (Coniglio 2004:7).

127 I use the word 'improvisation' in the context of this research as a certain 
playfulness that allows the dancers to investigate the working of the 
interactive system. This playfulness can be choreographically structured or 
free according to the choice of the involved artists.
128 In accordance with Choi et a/. (1995:385) the term 'intuitive' in the 
human-machine interactive context is taken as a process learned by 
experience, an interactive process that explains the mechanisms of 'the large 
numbers of states that exist in a complex system' that operate within the 
participant.
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Andy Hunt & Ross Kirk (2000a:385) remark that in an interactive 

environment The control mechanism is a physical and multi-parametric 

device [that] must be learned by the user until the actions become automatic' 

and 'Further practice develops an increased control intimacy and thus 

competence of operation'. They obviously strive for a more 'controlled' 

musical environment, in line with the earlier mentioned operation of DMI 

interfaces (see 2.2).

From the viewpoint of the performing artist, Sophia Lycouris explains how 

artists experiment with improvised hybrid multimedia works that involve 

mixing elements of movement, sound and choreography:

There are a number of parameters which inform the decision-making 
process [in live performance], amongst which one of the most crucial 
is the performers' assumptions and experiences in relation to models 
of composition in hybrid improvised work which incorporates the use 
of technology, the heterogeneity of the participating elements 
intensifies the role of the unknown (Lycouris 1999).

In other words, the additional use of technology is another factor that inspires 

the improvisational process of the performers involved. In an earlier paper I 

added to this viewpoint that: '[...] the aspect of a technology performance 

improvisation becomes even more important, being able to interact, 'play', 

freely with a technology that can sometimes distribute an unexpected 

dataflow' (Wijnans 2004).

4.1.2 How does a Dancer perceive the Technology?

As previously indicated (p.24), in an interactive performance environment the 

performer faces a double task being the operator of the sensor system and 

the communicator. In the ChoreoSonic environment the dancer is at same 

time the active agent (realizing the movement triggers) and the interface 

(wearing the needed technology on the body). Marc Downie (2005:39) 

defines this 'embodied' agent from the history of Artificial Intelligence (AI) as 

'[...] the agent [that] acts upon the world and senses immediately itself 

acting'. I abbreviate Downie's (2005:40-41) descriptions of the process of the 

interactive agent in three steps as follows:

  The perception system of an agent': the acting of the agent 
through its systems of perception to be able to transform the 
world as it finds it.

  The motor system of an agent': the coordination of the body's 
relationship to the world through the agent's motor system.
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  The action system of an agent': the actions to perform based on 
the perceptual state and the state of the motor system. The 
action system articulates these selections to the motor system.

Alluding to Coniglio's earlier statement (p.69), it is interesting to observe how 

Stoppiello from Troika Ranch, as the interactive agent, perceives Coniglio's 

'fixed nature of the electronic' from a dancer's and choreographer's point of 

view:

As an artist working with computer technology, my relationship to the 

world is filtered through a hyper-river of bits performing multiple 

operations in parallel as they flow madly through computer 

space/time. This duality has infiltrated my choreographic sensibility. It 

manifests itself as accumulative phrases that are orderly, repetitive 

and organized, like a program, but that are interrupted by material 

that is completely human in its unpredictability and occasional 

violence. This duality, between what is most human and what is most 

machine, has become the inspiration for much of my recent work. 

(Stoppiello & Coniglio 2003:1)

Stoppiello explains that technology has had an inspirational impact on her 

movement work. Although she remarks that she started to move 'machine 

like', she realizes that in an improvised environment she has the freedom to 

let human character prevail at unpredictable moments. In the early dance and 

technology projects of Troika Ranch, she experienced the controlled 

technology (sound, video, lights) as other collaborators in the piece that were 

actually constantly under her control (ibid}. In line with this view, Diana 

Theodores points out in her introduction to the 'Connecting Bodies' 

Symposium (1996) 129 that: 'interactive immersive computer technologies 

extend and transform the shape of movement and choreography, and if digital 

media can penetrate the materiality of the body, then our perceptual and 

ontological notions of embodiment are profoundly affected (quoted in 

Birringer 1998:125).

Considering this issue, Chrissie Parrott refers to the fact that technology can 

have a positive influence on the dancer's perception. Concerning the use of 

Motion Capture technology (see 3.1.2.2) and the software Life Forms (see 

p.60), she observes that: 'The technology redefines the principles of space

129 At the 'Connecting Bodies Symposium' (1996) Theodores coined the term 
'technography' as a way 'to help focus on the mutually informing processes of 
technology and choreography'. See: http://art.net/~dtz/diana.html [accessed 
12.12.08].
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and time that we've always looked at as choreographers, and we will continue 

to look at that, but it helps us redefine them and it helps us redevelop those 

ideas' (quoted in McKechnie & Potter 2005:105). She points out that dancers 

and choreographers are used to looking at space and time in certain defined 

ways. For example, the pelvis is considered the centre of gravity and of the 

personal space of the dancer. However, in the software 'Life Forms' it was 

impossible to independently move the pelvis of the animated character. This 

led to the fact that hip swings or pelvic movements were impossible, resulting 

in quite static movements. As another example Cunningham recognized that 

'Life Forms' supplied the choreographer with a 'capacity to slice, cut, separate 

larger components into smaller ones, and the consequences of then re­ 

ordering the parts' (quoted in McKechnie & Potter 2005:96). Therefore, 

Theodores concludes that technology might be able to help to re- 

conceptualize the established movement aesthetics. This view is particularly 

applicable to this research project in which the dancer needs to be aware of 

the visual and tactical space as well as the auditory space. In section 5.1.4 

the experiences of the dancers that collaborated in a 'Sound Skeleton' 

experiment will be reviewed.

4.1.2.1 Embodiment and Virtual Disembodiment

Theodores pointed us in the former section to the fact that if 'digital media 

can penetrate the materiality of the body, then our perceptual and ontological 

notions of embodiment are profoundly affected' (quoted in Birringer 

1998:125). In a technologically enhanced environment, the term 

'embodiment' is frequently used as the bodily relationship of the dancer to the 

world. The term 'disembodiment' is used in these environments to refer to the 

'ideal' relationship of humans to the computer that is one without any physical 

restraints. The term originated in 'cyberpunk', an anarchistic movement 

emerging at the onset of the internet in the 1980s. Cyberpunk was directed 

towards a complete disembodiment and total immersion in visual Cyberspace 

and Virtual Reality (VR) with the aim of escaping from the limitations of the 

physical body by creating cyborgs who move 'ever away from the somatic 

being to the digital spirit, and Nirvana' (Gordon 1999). Cyberpunk promoted 

the ultimate mind-body split in which logical reason dominates over the 

illogical nature of life (as proposed by French philosopher Descartes 1596- 

1650). VR was envisaged to realize physically impossible actions by:
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[...] experiencing an expansion of our physical and sensory powers; 

getting out of the body and seeing ourselves from the outside; 

adopting a new identity; apprehending immaterial objects... being 

able to modify the environment through either verbal commands or 

physical gestures; seeing creative thoughts instantly realized. 130

A similar viewpoint is presented by Stelarc when he states that The body is 

obsolete' 131 . Stelarc promotes the idea that The body is neither a very 

efficient nor very durable structure' 132 and can only be enhanced by a human- 

machine interface. But is the body in fact a 'dis-body 133 '? When we transfer 

these views back to the dance and technology field, it was noted previously 

(p.72) that it became possible to abstract and re-choreograph dance 

movements in the computer. Motion-capture technology and the 'Life Forms' 

software resulted in a 'disembodiment' of dance in which the body can visually 

be dissected and manipulated into previously unimaginable shapes and spaces 

from all sorts of virtual perspectives. Real life dancers interactively manipulate 

these computer images that consist either of real time recordings of the 

dancers themselves or of filmic animations that resemble the dancers' 

movements 134 .

However, the term 'disembodied' quickly became contested in the artistic, 

technological, philosophical, neuro-physiological, and perceptual field. From a 

dancer's point of view, Carolien Herman (2002) for example questions if: 

'New technology has created the ultimate, invisible body: the anti 

gravitational body, the multi-layered, the vanishing, the inside-out bodies'. In 

line with Herman, Gloria Mark (1997:221) poses the following question: 

'Should we really speak about disembodiment, or rather should we imagine a 

background-foreground relationship with our bodies where they exist more in 

the background as we enter a digital environment'? In her writing she argues 

that'[...] in a virtual world sensory information is restricted, either through a 

single or very few channels' (ibid:223).

130 From: http://pro1ect.cvberpunk.ru/idb/virtualreality.html [accessed
01.10.08].
131 From: http://www.stelarc.va.com.au/obsolete/obsolete.html [accessed
01.10.08].
132 From: http://www.streettech.com/bcp/BCPqraf/CvberCulture/stelarc.htm 
[accessed 23.02.10].
133 I coin the term 'dis-body' to name the proposed dis-functioning of the
body.
134 See projects by artists such as Sharir & Gromala (1994), Kaiser eta/.
(1999), Cunningham (1999) and Brown (2005).
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Embodiment from a philosophical point of view 135 has been described by 

Maurice Merleau-Ponty (1962) as the perception by 'a "system" of meanings 

by which the phenomenological process of recognizing and "sensing" objects 

takes place, and it is through the medium of the body that we get to 

"experience" and "perceive" the world' (quoted in Ajana 2005:2). Perception 

is only possible through the body. A similar view was presented earlier 

(pp.70-71) by Downie in a technological context. Btihaj Ajana (2005:3) 

approaches the terms 'embodiment' and 'cyberspace' from a 

phenomenological point of view and goes on to state that conceptual 

'disembodiment' is a 'transcendence of body limitations through electronic 

prosthesis'. The term 'transcendence' means 'exceeding usual limits of 

ordinary experience' and 'self-transcendence' means 'surpassing the 

conscious boundaries of oneself' 135 .

Herman (2002) relates this notion to the interactive performance "Telematic 

Dreaming' (1994) by Paul Sermon in which performer Suzan Kozel was 

transformed into a virtual image projected on a bed in another room. A visitor 

could approach and touch this image. Kozel stated that she felt physically 

present on the bed and felt physically hurt when people started to elbow her 

virtual image in the stomach. The virtual image was not disembodied but 

became a transcendental perception of the physical body. Herman observes 

that The virtual body [of Kozel] is in this case the extension of the real body: 

in VR the virtual body becomes the scope and active radius of the touch. We 

think and perceive from the point of view of the virtual body'. Herman 

concludes:

[...] embodiment is not a fixed construct but a dynamique [sic], fluid 

and energetic system. Several independent informational systems are 

interconnected to take care for an embodied perception. Bodily 

experiences are multi-layered, non-logical and non-linear. Virtual 

body extensions, like computer interfaces, create continuity beyond 

the skin and flesh: the kinesthetic, proprioceptive and sensory 

informationchannels [sic] of the virtual limbs will lead to complex and 

organic experiences. A fluid and organic interaction is going on 

between the virtual body and real body. (Herman 2002)

135 A further philosophical discussion is beyond the scope of this writing. For 
more information on the subject 'disembodiment' I refer the reader to 
Merleau-Ponty (1962) or Ajana (2005).
135 From: http://www.britannica.com/EBchecked/topic/602404/transcendence 
[accessed 01.11.08].
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4.1.2.2 'TranSonic' Perception

Following the above discussion of 'disembodiment' and 'transcendence' in 

technologically enhanced dance environments, in the following section I would 

like to relate the views cited to movement based interactive spatial sound and 

introduce the term 'tranSonic' perception.

Mark (1997) favoured above (p.73) a 'disembodiment' as a background- 

foreground relationship between the performer and the visual imagery. In an 

interactive sonic environment, Verstraete (2005:6) keeps this relationship 

closer to the body when he states that 'sound can add an auditory 

"geography" like a second skin to the dancing body'. Verstraete mentions the 

interactive dance solo 'Mes Jours et mes Nuits' by sound designer Todor 

Todoroff and dancer/choreographer Michele Noiret (2002 137 ) and the 

interactive installation 'Sensuous Geographies' by Sarah Rubidge and Alistair 

MacDonald (2003 138 ) as examples of projects in which sound directly affects 

the movement creation. Both environments use a multi speaker set up to 

create interactive spatial sound 139 . In this way the sound acts as an active 

spatial element that is able to motivate and contextualize (see Stiefel p.67) 

the movements of either the performer (in 'Mes Jours et mes Nuits') or the 

audience as performer (in 'Sensuous Geographies'). Duerden interprets this 

sensation of the dance-sound relationship as follows:

But suddenly, the music is 'shown' to us and, at the same time, the 

dance reveals its difference - the difference between the embodied 

and the disembodied, visual and aural - and we recognise the 

existence of parallel worlds. (Duerden 2005:28)

Sound becomes an almost tactile and sensual experience for the dancer. 

Kozel's experience, mentioned above, was similar. In line with Duerden, I 

would like to introduce the term 'transonic' perception 140 to establish this 

experience: sound is going beyond the prior form of the human auditory

137 See: http://www.michele-noiret.be/index.php?paqe=bios m [accessed 
12.12.08].
138 See: http://www.sensuousqeoqraphies.co.uk/ [accessed 20.02.10].
139 Please note that the spatial sound in these environments is applied as a 
horizontal (2D) moving element with the speakers set up horizontally around 
the audience.
140 I originally proposed the term TranSoniscendence', but I am grateful to Dr 
Sher Doruff who advised me to change the name in the simpler term 
'tranSonic' perception.
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perception. These observations suggest 'sound as a disembodied movement' 

and 'dance as an embodied sound'.

Verstraete (2005:202) concludes that 'It [interactive choreographic sound] 

shifts our attention from visual geometric space to acoustic space'. However, 

there remains a level of sensitive 'discontrol' (see also p.33):

Though gestural control allows for a new type of intimacy for the 
dancer and corporeal immediacy between sound and movement for 
the spectator, the sound environment remains an indefinable 
presence, an open space for uncontrollability. In an interactive open 
system, gestural control is about loosing [sic] control enabling a 
renewed sensibility of choreography and space. (Verstraete 2005:203)

4.1.3 Summary "Music and Sound for Dance'

In this section the traditional collaboration between choreographers and 

music/sound composers has been investigated as an introduction to a 

discussion about the interactive relationship between movement and sound. 

In this investigation several points of departure in the collaborative 

relationship between dance and music/sound have been observed:

The relationship 'naturally exists' (Duerden, Duncan) or it should 
merely 'coexist' (Cunningham).

'Music visualization' that searched for a movement equivalence to 
musical characteristics (St. Denis).

  The possibility to 'interpret' the music (Graham) with dance 
movement.

These ways of looking at the relationships between movement and sound 

have been investigated as an introduction to the different relationship that 

exists in a real time interactive dance and sound performance. In the 

interactive domain, this relationship is challenged due to the fact that both art 

forms cease to exist in a clearly observable time-based domain. This implies 

that a dancer is, figuratively speaking, moving 'backwards in time' to the 

sound, i.e. the movement happens not in response to the sound but creates 

the sound real time. In this case, the dancer is only able to react to a sound 

that was created at an earlier moment. This mode of creation of the sonic 

environment eliminates the problems that arise when dancers and musicians 

count time and mark structure differently (see Stiefel p.68).

This implication has directed us to emphasize the need for play and 

improvisation as major elements in the creation of an interactive relationship 

between both art forms. Consequently it has been suggested that in the
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digitally enhanced environment, computer technologies are, firstly, able to 

influence the shape of movement and choreography (see Theodores p.71) 

and, secondly, to redefine the principles of space and time (see Parrot pp.71- 

72).

The terms 'Embodiment' and 'Disembodiment' have been reviewed as 

references to the constraints of the physical human body (embodiment) in 

real life as opposed to the limitless possibilities of the body in virtual life 

(disembodiment). Ajana (2005) favoured the notion that the self-perception 

of the body should be considered as a transcendence of body limitations 

surpassing the usual limits of the conscious bodily boundaries. These 

observations have led to the introduction of the term 'tranSonic' perception. 

In line with Verstraete (2005), this ChoreoSonic perception exceeds the usual 

limits of ordinary experience by moving the movement-sound relationship 

closer to the body by adding a second (auditory) skin to the dancing body: 

'sound as a disembodied movement' and 'dance as an embodied sound'. 

However, this sensation should not be regarded as a limitation or boundary 

but as an expansion of the bodily experience into wider space.

In the next two sections, the bodily and auditory spatial elements will be 

investigated in more detail to explore the creation of a 'tranSonic' perception 

in the interactive ChoreoSonic environment.

4.2 Bodily Space

Following Parrot's ideas that technology redefines the principles of space and 

time (pp.71-72) and my observation that the dancer needs to be aware of the 

visual and tactical space as well as the auditory space in the ChoreoSonic area 

(p.72), this section investigates space from the various spatial viewpoints of 

dance in the performance area. The theories focus on issues referring to:

  Human movement in general space.

  Spatial bodily perception of the dancer.

  The body in geometric space.

4.2.1 Human Movement in General Space

Space is a hidden feature of movement and movement is a visible 
aspect of space. (Laban 1966:4)

Space as a medium for movement has been conceptualized and articulated by 

movement theorist Rudolf von Laban in the late 1920s as introduced in his 

principles of 'Space Harmony' (Laban 1966). His study of movement, Laban
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Movement Analysis (LMA), deals with the spatial order of the paths or 

traceforms that the dancer's limbs make in space, taking into consideration 

the connection between 'the outer result of movement and the mover's inner 

attitude' (ibid\27). In dance this traceform is constructed out of changing 

spatial and rhythmic tendencies. 'Newtonian logic' is an important aspect of 

LMA because Laban observed a parallel geometric spatial structure in human 

movement and nature. Therefore, before further outlining some relevant 

concepts of the 'Laban Movement Analysis' (LMA), it is essential to briefly 

describe how this Newtonian logic is considered as a major scientific concept 

of geometric space.

General space in a geometrical sense 141 was initially defined by Greek 

mathematician Euclides (300BC) who described 'plane geometry' to show that 

three dimensional physical space consists of three plane surfaces 142 , in which 

a plane is defined as a perfectly two dimensional flat surface created of 'a 

two-dimensional group of points that goes on infinitely in all directions'143 . In 

the Cartesian 144 (rectangular) coordinate system two numbers (the X and Y 

coordinate) determine each spatial point in a plane. The theories of Euclides 

were still generally accepted during the time that scientist sir Isaac Newton 

defined the 'three Laws of Motion' 145 in the 17th century:

I. Every object in a state of uniform motion tends to remain in that state of 

motion unless an external force is applied to it.

II. The rate of change of momentum of a body is proportional to the resultant 

force acting on the body and is in the same direction. According to Newton, a

141 I mention some extracts of the theories of Euclides, Newton and Einstein 
here because they had a particular impact on spatial theories and artists in 
the movement field. For a deeper investigation of the mathemathical theories 
about space, I refer the writer to the numerous websites that exist on this 
subject as it is beyond the scope of this writing.
142 See: http://www.britannica.com/EBchecked/topic/194901/Euclidean- 
geometrv [accessed 15.09.08].
143 From:

http://librarv.thinkauest.orq/2647/geometry/qlossarv.htm#coordplane 
[accessed 12.12.08].
144 'Cartesian coordinates, also called rectangular coordinates, provide a 
method of rendering graphs and indicating the positions of points on a two- 
dimensional (2D) surface or in three-dimensional (3D) space'. From: 
http://whatis.techtaraet.com/definition/0..sid9 qci824296.00.html [accessed
11.12.08].
145 From: http://cseplO.phy5.utk.edu/astrl61/lect/historv/newton3laws.html
[accessed 15.09.08].

78



force causes only a change in velocity (an acceleration); it does not maintain 

the velocity as Aristotle held.

III. For every action, there is an equal and opposite reaction.

Laban followed this Newtonian logic and stated firstly that 'equilibrium in 

dance is never a complete stability or a standstill, but the result of two 

contrasting qualities of movement' (Laban 1966:6) and secondly that 'in 

movement each reaction has an equal but opposite reaction' (according to 

Rob Lovell eta/. 1996).

4.2.2 Spatial Bodily Perception of the Dancer

Throughout his book, Laban (1966) proposes that movement of the body is 

made up of pathways in which the movement phrase changes the spatial 

position of the body as well as the combined relationships and connections 

within the structure of the body. He considers the fact that limbs are only able 

to move in certain restricted areas of the kinesphere (the so called body 

'zones'). The term 'kinesphere' can be defined as:

  The sense of invisible boundaries around an individual body and 
separating one from others, the encroachment of which may 
cause anxiety 146 .

  The sphere around the body that a dancer can easily reach while 
standing still and that moves with the person's traceform in 
space (Laban 1966:10).

Several neuro-physiological sensations are associated with the first definition 

of the kinesphere. Firstly, the so-called 'sixth sense' that is defined as 

'proprioception': the sense of motion and position that 'bind[s] our sense of 

agency with our embodied selves at an emotional level' (Cole & Montero 

2007:1). The term 'kinesthesia' is interrelated with 'proprioception' and is 

similarly defined as 'the sense that detects bodily position, weight, or 

movement of the muscles, tendons, and joints' 147 . Secondly, the peri-personal 

or 'near' space which is defined as the 'close' space that surrounds the body. 

The conversion of the spatial coordinates of the peri-personal space is 'initially 

perceived [by the brain] with reference to the sensory organs (e.g. with 

respect to the retina in vision or with respect to the head in audition) into 

coordinates that guide the chosen effector, usually the hand, towards those

146 From: http://dictionarv.reference.com/browse/Dersonal%20space 
[accessed 15.09.08].
147 From: http://www.thefreedictionarv.com/kinesthesia [accessed 15.09.08],
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coordinates' 148 . In post modern dance for example, the peri-personal space is 

explored in 'contact improvisation' in which points of physical contact start the 

movement improvisation.

The second definition of the kinesphere is derived from the above mentioned 

LMA. Within his principles of 'Space Harmony', Laban (1966:10) defined the 

'kinesphere' or 'personal space' as 'the sphere around the body whose 

periphery can be reached by easily extended limbs without stepping away 

from that place which is the point of support when standing on one foot [...]'  

In other words, the kinesphere is defined as the space around a dancer's body 

limited by the maximum space that the limbs can reach. The centre of the 

kinesphere is the pelvis, defined as the dividing point of the three possible 

movement directions: height, breadth and depth (/M/:ll).

Considering a later geometric space theory, I briefly refer to the General 

Relativity theory of Einstein's 'laws of gravity'. Here it is stated that '[...] 

gravity, as well as motion [as a geometrical phenomenon], can affect the 

intervals of time and of space' and that' [...] gravity pulling in one direction is 

completely equivalent to an acceleration in the opposite direction' 149 - 

Einstein's theory of general relativity proved that Euclidean/Newtonian 

geometry is a good approximation to the properties of physical space only if 

the gravitational field is not too strong. Choreographer Cunningham 

concluded, after having read Einstein, that there are no fixed points in the 

stage space, the center could be wherever anybody is. In other words, a 

decentralization of the performance space was created. The choreographer 

stated:

And it's all in space, not time. That doesn't sound big, but it's huge. 

Instead of thinking in time, you're looking visually and putting things 

in space (quoted in Dunning 1991).

Relating to the geometric definitions mentioned above, space in dance can be 

defined in terms of dimensions, planes (horizontal, median, frontal) and 

diagonals. If the space is experienced from the perspective of the kinesphere, 

a multiplicity of directions emerge in relation to these main dimensions with 

respect to the geometry and boundary of human movement.

148 See: http://www.ineurosci.org/cgi/content/full/27/14/3616 [accessed
15.09.08].
149 From: http://www.pbs.org/wqbh/nova/einstein/relativity/ [accessed
15.09.08].
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As an example of this incorporation of the LMA concept in a dance and 

technology context, Lovell et al. (1996) describe the definition, organization 

and experience of movement space within the developments of the 'Virtual 

Stage Environment' (VSE). In the VSE a mover is able to control changes in 

sound, lights, video, and/or graphics within a three dimensional area that is 

sensitized with two tracking cameras (a picture of the system is shown on 

p. 102) using 'Eyes'150 , a MAX based software package. Within this 

environment a dancer's movements are interpreted according to Laban's 

'Space Harmony' theory. The data measurements involve triggering the 

pathways of the dancer in space as well as the movements within the 

personal space of the dancer151 . A sound composition could for example arise 

by giving every dimension an individual sound sample or a graphical drawing 

could be created by following the traceform of the dancer in the performance 

space. Lovell et al. expanded on the ideas of Laban who referred to the 

dancer's movement as a 'living architecture': 'movement is, so to speak, 

living architecture- living in the sense of changing emplacements as well as 

changing cohesion' (Laban 1966:5). The researchers concluded that a design 

for a 'Virtual Space Harmony' was created in which improvisations of the 

dancer can be analysed and related to the principles of Laban's Space 

Harmony theory.

The research described in this thesis also concentrates on these two main 

spatial and dimensional subjects of the 'Space Harmony' principles 152 :

The location and the traceforms (pathways) of the movement in 
general space.

  The localized movement (of the limbs) within the dancer's 
kinesphere.

150 See: http://www.siliconatelier.com/squishedeyeball/index.html [accessed 
10.12.08].
151 Please note that in technological movement research different terms are 
applied to these two spatial definitions. For example, in Motion Capture 
technologies, general space is called 'World Space' (measured in a global 
coordinate system) and personal space is defined as the 'Object Space' 
(measured in a local coordinate system). See:
http://books.qooqle.fr/books?id = pJFowfd5EtkC&pq = PT2008Jpq = PT200&dq = 
motion+capture+worldspace&source=web&ots=M9cE416ed- 
&siq = ezktlaZs9DQI49Pb4Wn9 3zYGDk&hl = fr&sa=X&oi = book result&resnum 
= 6&ct= result [accessed 06.08.08].
152 It is beyond the scope of this writing to fully discuss Laban's movement 
theories. I therefore refer the reader for further information to the numerous 
publications that discuss Laban's theories.
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It is important here to restate that the dancer's body is bound to the 

kinespere, but the kinesphere is mobile in the context of general space.

4.2.3 The Body in Geometric Space

Several contemporary choreographers have reconfigured the geometric 

conceptions of Laban. For example, Brown created the choreography 'Locus' 

(1975) that used her concept of the cube and Laban's concept of the 3 

geometric planes of the personal space. In 'Locus' each allocated number on 

the cube represents a letter of the alphabet (fig. 2).

Figure 2 Trisha Brown 'Locus' (in Karpinska 2001).

The choreography of the piece is based on the letters of chosen words, each 

motivating the movement direction. Downie describes the fundamental 

compositional technique behind 'Locus' as:

A transformation of the dancer's kinesphere into boxes, the arbitrary 

representation of these boxes by letters of the alphabet, the 

manipulation of the temporal sequencing of boxes by the creation of 

words and messages and the retrans formation of these messages into 

movement yields a dance, a complex semaphore often intersecting 

with the representation's mirror - the spoken word. Downie (2005:22-

William Forsythe has extended Laban's view of the dancer as a 'living

architecture' and considered the body in space as a 'geometric construct' (in

Spier 2005:358) in which the center of movement was not necessarily the

center of the body. In this way the impetus for the movement was relocated.

From a choreographic point of view, Forsythe has used geometric

architectural drawings from the architects Libeskind or Tiepolo as a guideline

for improvisational processes for the dancers. In this way time and space

were given architectural movement aspects. Regarding the spatiality of

movement, Forsythe stated:
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You can establish a line with a gesture ... I can establish a line by 

making a crumbling gesture. I can establish a line on the floor with 

little hops. I can establish it by rubbing it into the floor ... by making 

little tiny dots, or between two dots . . .' (quoted in Spier 2005:359)

This improvisational technique, based on architectural forms, became one of 

the building blocks of the highly developed spatial sensibility in Forsythe's 

choreographies (Forsythe 1999).

In the scientific computing field, Herbert Edelsbrunner & Ernst Mucke (1992) 

offer a different perspective on the geometry of the movement of a shape in 

space. The topic of their writing is: v the definition and computation of the 

shape of a finite point set in three-dimensional Euclidean space [...]. 

Intuitively, we think of the set as a cloud of points, and we talk about the 

shape of this cloud' (/M/:44). They conclude that a moving shape in space 

consists of a 'cloud of points' in space of which the volume and position 

changes over time. They approach the meaning of the word shape as varying 

'with the amount of detail intended' (/M/:44).

If we transfer these spatial perspectives to the interactive environment, it can 

be suggested that space is not an inactive background, but the active director 

of the dancer through the responsive emergence of spatial sound. Birringer 

(1998:70-71) observes that several artists actively involve the background as 

a spatial element to the performance: 'Lucinda Childs and Trisha Brown very 

consciously use a cinematic approach [...] in the editing of their asynchronous 

movement repetitions onstage, exploiting and disturbing the regular 

geometries and symmetries perceived within the visual field'. As an example, 

Brown strapped a working projector, that displayed images of herself dancing, 

on her back in her piece 'Homemade' (1966). While performing the same 

dance on stage, the recorded images were wildly moving around, flying as it 

were, in the performance space 153 .

In recent times Sarah Rubidge & Alistair MacDonald describe the term 

'choreographic sensibility' towards the environmental space:

The term choreographic sensibility, used in the context of responsive 

electronically sensitised environments, refers to a very particular way 

of interpreting and sensing that environment, and the way the

153 See:

http://www.artsci.washinqton.edu/news/WinterSprina04/TrishaBrown.htm 
[accessed 12.12.08].
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environment is shaped by the presence of human bodies. Dancers 
'see' not only with their eyes, but also with their bodies. They develop 
a sensibility which is derived from a finely tuned pro-prioceptive 
sense, and an equally finely tuned sense of their relative proximity to 
the perimeters of the space and to objects in the space. (The 'objects' 
might be invisible objects like sounds, or they might be more tangible 
objects, such as other people.) (Rubidge & MacDonald 2001)

At the end of the paper it is suggested that 'a choreographer brings to the 

design [this sensibility] of the architecture of the space of the interactive 

installation, and in doing so choreographs not only bodies but the space itself 

(ibid}. In their collaborative interactive installation 'Sensuous Geographies' 

(2003), a performative environment is created in which the viewers are an 

integral part of the events the performers are generating (see also p.75).

Birringer also adds an environmental factor to the gesture recognition view 

(see 3.2.1). He addresses interaction as 'a spatial and architectural concept 

for performance'. This means:

[...] shifting the emphasis away from the creation of steps, phrases, 
"combinations" or points on the body that initiate movement, away 
from the dancer's internal bodily awareness [...] unto her 
environment, to a not-given space but a shifting relational 
architecture that influences her and that she shapes or that in turn 
shapes her. (Birringer 2003:91)

Birringer goes on to suggest that (when working with camera tracking 

technology) 'the dancers also become "sensors", adopting to a new spatial 

awareness of a digitally enhanced space or "operating system" which triggers 

responses and feedback. Dancers appear to be touching invisible partners; 

they become ghostcatchers' (ibid}.

4.2.4 Summary 'Bodily Space'

This section of the chapter investigated the perception of space from the 

performer's point of view. The section started by outlining the spatial 

movement theories of Laban (1966) in which the Newtonian theory of a space 

division in three-dimensional planes was defined. Laban applied this theory to 

both the pathways of the dancer in general space as well as to the 

movements of the dancer's body within the kinesphere or personal space of 

the body. It was observed that the kinesphere is bound to the framework of 

the body but mobile in the context of general space. In this context the body 

is regarded by Laban as a 'living architecture', it changes position in space as
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well as the cohesiveness of the body structure. This 'living architecture' moves 

in the three geometric spatial planes: horizontal plane (left - right), median 

plane (forwards - backwards) and frontal plane (up - down).

Three neuro-physiological sensations have been noted bearing a relation to 

the spatial perception of kinespheric movement:

  Proprioception. 

Kinesthesia. 

Peri-personal space.

These three elements assist human beings in the self-perception of the 

position of the body in general space. It is important to note that these 

elements are valuable as they suggest the possibility of transcending the 

conscious body limitations of the dancer and realizing a 'tranSonic' 

experience. In this case it is desirable to exceed the usual limits of ordinary 

experience and manipulate the second (auditory) skin as proposed by 

Verstraete (p.75). Here, the following question (and ambition) is repeated: is 

it possible to realize 'sound as a disembodied movement' and 'dance as an 

embodied sound' (p.77) by the emergence of a 'tranSonic' perception? In an 

attempt to find an answer to this question, the perception of auditory space is 

explored in the next section.

4.3 Auditory Space

The results [of aural rendering of events in mediated environments] 
showed that stereo and six-channel reproduction resulted in 
significantly stronger changes in emotional reactions than the mono 
condition. Further, six-channel reproduction received the highest 
ratings of presence and emotional realism. Taken together, the result 
suggested that both emotional reactions and ratings of presence 
increase with spatialized sound. (Vastfjall 2003:181)

Daniel Vastfjall highlights an important impetus for me to use spatial sound in 

my research by showing that spatial sound increases the emotional perception 

of sound.

Using space as a compositional element started in the mid 16th century with 

the placement of various choirs in several places of the church, creating the 

antiphonal effect. This antiphonal music was later extended to the spatial 

placements of performers in orchestral and theatrical environments. The 

spatiality of sound was further challenged with the use of multiple speaker 

arrangements in sonic performances by composers such as John Cage,
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Karlheinz Stockhausen, Pierre Henry amongst others (see p.9) 154 . In the 

contemporary literature about spatial sound 155 several approaches can be 

found such as binaural spatial sound (over headphones), appliances in 

industrial engineering fields, arts and entertainment (gaming computer user 

interfaces), auditory displays for the visually impaired, virtual environments 

(Naef eta/. 2002) and NASA space research (Begault 1991).

The following investigation concentrates on three topics involving moving 

spatial sound that are applicable to the subject of this writing and that will 

lead to parameter implementation in 3DIM:

  Sonic architecture

  Ambisonic (surround) sound

Psycho-acoustic spatial sound perception

4.3.1 Spatial Sound: A Moving Sonic Architecture?

We have noted previously (p.81) that the moving body has been considered a 

'living architecture' in space. Therefore, the following question arises: can 

moving spatial sound also be considered a 'living sonic architecture' in the 

ChoreoSonic performance space?

From an acoustic point of view, composer, musical theoretician and architect 

lannis Xenakis was often described as 'an architect of music'. Alessandra 

Capanna sketches his environmental performances called 'Polytopes':

[...] the related architectural space was designed to contain 

loudspeakers and light projectors in determined positions so that they 

could interact with one another [...]. These were ephemeral 

architectural installations that were part of experimentation with 

architectural continuity, carried out through the rigorous application of 

a mathematical-formative idea. (Capanna 2006)

Using the interplay of lights, sound and the internal walls of the space, 

Xenakis diffused the architecture of the space, disorienting the audience with 

a casual disposition in space. In recent times, artist and musician David 

Cunningham has become interested in a real-time exploration of (spatial)

154 For more information on the history of spatial sound see: 
http://cec.concordia.ca/econtact/Multichannel/spatial music short.html 
[accessed 17.09.08].
155 See a website such as:
http://interface.cipic.uDVDavis.edu/CIL tutorial/3D svsl/binaural.htm
[accessed 07.08.08].
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acoustics. Since 1994 he has presented a series of installations that alter an 

architectural space to allow its resonant frequencies to become audible and 

interactive 156 . His installations aim to make the viewer experience the 

acoustics of space. From an architectural point of view, Lynde Wismer (2004) 

studied and created musical architecture with layers of sound in space. She 

concentrates on density, structure and organization, material and emotional 

interpretation of the individual spaces, in particular noticing the different 

reverberation levels that are dependent on the size of the space and the pitch 

of the audible sound.

If sonic space is not created by a building, but with the use of spatial sound 

software, another sonic architecture emerges. Jan Hofmann (2002) imagines 

himself as a 'sonic architect' who works on extending his practice through 

generating single sounds, placing them in a three dimensional X-Y-Z 

coordinate system in the software. He suggests that ambisonic (surround) 

sound would make it possible to define sound in terms of its quality, time and 

3D space. He goes on to propose the constructive design of a generation of a 

whole 'environment of sound', much like an architect who creates a building 

from the elements he works with.

In order to further ground this section's question - can spatial sound be 

considered a moving sonic architecture? - it is necessary to outline the basic 

principles of the ambisonic system.

4.3.2 Ambisonic Surround Sound

Ambisonic surround sound 157 can be defined as true 3D sound information, 

reproducing sound in both vertical, horizontal and depth directions around a 

centrally positioned listener. The ambisonic method was initially invented to 

archive a better spatial representation of sounds recorded by microphones. A 

team of researchers at the Mathematical Institute in Oxford and the 

Cybernetics department at Reading University developed the 'Soundfield 

Microphone'158 which generates a 4-channel signal, called 'B-Format', adding 

an up-down factor to the left-right and front-back information plus a mono

156 See: http://www.stalk.net/piano/asindex.htm [accessed 06.08.08].
157 Extensive research on Ambisonics is done at the University of York. See:
http://www.vork.ac.uk/inst/mustech/3d audio/welcome.html [accessed
07.08.08].
158 The Soundfield B-format microphone is now manufactured by Soundfield
Research, UK. See: http://www.soundfield.com/ [accessed 0.08.08].
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reference signal (Elen 2001:2). Ambisonic encodes and decodes sound 

through the use of several equations and assigns a precise X, Y and Z 

Cartesian (see p.78) coordinate to every sound.

The speakers used in an ambisonic environment should all be full range and 

preferably the same brand. The speaker lay out can vary from a conventional 

stereo spread to hexagonal, octagonal, cubical forms, or any other 

symmetrical configuration. Michael Gerzon, the inventor in Oxford of the 

mathematical codes needed for ambisonic sound (early 1970s), refers to 

ambisonic sound as 'full sphere sound' or 'periphony' (Gerzon 1980). Full 

sphere sound 'requires speakers to be placed above and below the height of 

the listeners' ears' 159 . When more speakers are used, the listening area is 

larger and a more stable sound localization is realized because the 'sweet 

spot' (the ideal central listening spot in which the ambisonic sound field is 

reproduced accurately due to the algorithmic decoder process) becomes 

wider. In this way, listeners that are not positioned in the exact centre will 

hear more output from more speakers. In a full sphere ambisonic 

environment the geometry of the (surround) sound can be categorized as a 

cubiform in which the sound boundaries extend beyond the lines created by 

the speaker setup depending on certain parameters of the sound, as will be 

seen later (6.4) 160 .

In the research described here, the use of ambisonic ICST tools for Max, 

developed by the Institute for Computer Music and Sound Technology 161 , 

allow the encoding and decoding in three dimensions of up to third order 

Ambisonics. Jan Schacher (2006:1) explains that the spatial sound quality of 

the software is dependent on the Ambisonic order: 'Ambisonic spatialization 

starts from the premise that the soundwaves any source emits in space, can 

be modeled using spherical harmonics'. With each higher order an additional 

layer of this 'spatial harmonic sampling' occurs, making the spatialization 

more precise and the ideal listening spot wider dependent on size of listening

159 From Ambisonic Surround Sound FAQ, see:
http://members.tripod.com/martin leese/Ambisonic/faq latest.html#SECTIO 
N5 [accessed 18.09.08].
160 It should be noted here that another surround sound system (5.1) is 
commercially exploited that processes audio in a horizontal panorama. 
However, this system cannot be classified as true full sphere sound due to the 
fact that it supplies an extremely limited audio output in the height direction.
161 See: http://www.icst.net [accessed 07.08.07].
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area, room acoustics, speaker specifications etc 162 . However, a precise 

perception of the dynamic movement of the sound space is still hard to 

achieve.

4.3.3 Spatial Perception of Ambisonic Sound

Having described the background and the operation of ambisonic sound, I will 

take a closer look at the perception of full sphere ambisonic audio in the 

ChoreoSonic environment.

In effect, the term 'spatial perception' refers to our apprehension of 
information about relationships between features of our environment 
[as perceived by the senses] at a level of detail specific to the task(s) 
in hand [...]. (Lennox eta/. 1999:4)

Considering the development of 3D audio, Peter Lennox eta/., from the Signal 

Processing Applications Research Group at York University, stress that spatial 

perception is not an isolated feature but created by an interconnected 

relationship of all the senses. In line with this view, Jens Blauert (1997a:193) 

observes: 'The assumption underlying visual theories may be stated as 

follows: What the subject sees during sound presentation, and where the 

subject sees it, are factors determining the position of the auditory sound 

event'. Lennox eta/. (1999:5) also state: 'Furthermore, perhaps the most 

significant insight that modern psychoacoustics has to offer the development 

of audio is the realization that the spatial perception of audio is primarily a 

time-domain process 1 . Temporal differences at the ears give rise to good 

individuation and localization information about sound perception. Therefore, 

an algorithmic design for audio involves digital filtering according to a head- 

related transfer function 163 (HRTF). 'An HRTF describes how the shape of the 

torso, head, pinnae (outer ears), and ear canals affect the properties of the 

sound wave' (Karpinska 2001). The University of York defines HRTF thus: The 

shape of the head and the external part of the ears results in a frequency 

dependent response which varies with sound position'164 .

162 For a deeper technical analysis of the ICST tools and ambisonic I refer the 
reader to Schacher (2006). A list of papers about ambisonic sound can be 
found on http://members.cox.net/surround/uhidisc/ambipubl.htm [accessed 
09/06/09].
163 See http://www.vork.ac.uk/inst/mustech/3d audio/ambis2.htm [accessed
18.09.08].
164 From: http://www.vork.ac.uk/inst/mustech/3d audio/gerzono.f.htm
[accessed 30.09.08].
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As was observed above, spatial audio is an interconnected relationship of all 

the senses. For this reason, errors in perception of auditory location 

judgments can also occur under the influence of visual and cognitive cues. 

Head movements can compensate for this imprecise localization. Where a 

visual cue for the localization of sound is missing, a number of artists have 

chosen to blindfold their audience (Rubidge & MacDonald 2004) or darken the 

exhibition environment (Terry Braun 165 ) to help the audience ignore visual 

distractions and fully focus auditorily on the presented sound transformations 

and spatialization. However, Lennox eta/. (1999:1) debate this issue when 

they state: 'Natural perceptual attempts to improve localisation by head 

turning and perceiver relocation around or toward a postulated object, always 

result in a decrease in spatial information apprehended; the opposite of a 

natural environmental situation'.

All things considered, it should be taken into account that spatiality in a 

ChoreoSonic environment is experienced differently when observed from the 

outside as a viewer than when felt from the inside by a dancer, who is 

actually directing the visible- and audible movements in space (see also 'the 

inside and outside' point of view p.93). The latter, by moving in the direction 

of the spatial sound that s/he is guiding, can more easily choose to hear and 

experience sound from all speakers in the ChoreoSonic environment than the 

audience. In a live situation only a small minority of the audience may ever be 

in the most ideal spot to get the full spatial audio effect despite the influence 

of head movements and visual cues. A sound that is located in one speaker 

may simply be hard to perceive by a segment of the audience.

4.3.4 Summary 'Auditory Space'

Spatial sound influences the emotional perception of sound and becomes an 

almost tactile and sensual experience for the dancer in an interactive 

performance environment. Both the 'full sphere' spatial sound perception and 

the perception of bodily movement are created by an interconnected 

relationship of all the senses in the digitally enhanced ChoreoSonic 

environment.

Ambisonic software, that incorporates the required psycho-acoustic principles, 

makes it possible to simulate this spatial perception of sound in a 3D

165 See: http://www.24hourmuseum.org.uk/nwh gfx en/ART20518.html 
[accessed 15-09-08].
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coordinate system based on the same geometric plane theories that 

determine the bodily space described by Laban (see also p.80). I suggest that 

the combination of all these factors make it possible to design a 'living sonic 

architecture'. However, as has been observed, a precise perception of the 

dynamic movement of the sound space is difficult to achieve. In this research, 

however, a precise perception of the sound is not a major concern.

4.4 Audiovisual Spatial Synchronicity, 'Sound as Disembodied 
Movement' and 'Dance as Embodied Sound'

This section presents three interdependent spatial ChoreoSonic strategies that 

have evolved from the spatial concepts described in sections 4.2-4.3 of this 

chapter. These strategies emphasize the spatial concepts for full body and 

kinespheric movement, and explain how a 3DIM strategy is created:

  Geometry in spatial audio-visual division and perception.

  Spatial body-sensor pentagon.

  Geometry in a cubical form. 

4.4.1 Geometry in Spatial Audiovisual Division and Perception

The first spatial synchronicity between body movement and spatial sound 

perception could be found within the geometric division of space in the 

median (forwards- backwards), frontal (up and down) and horizontal planes 

(left-right) of both elements. Laban describes these as six movement 

directions for the moving body (fig. 3).

DIVISION OF SPACE THROUGH THE MOVING BODY '43

FIG. 58 FIG. 59

Figure 3 The Division of Space through the Moving Body (Laban in Ullmann 1966:143).

Blauert (1997a&b), a psycho-acoustic scientist, observes these movement 

directions in relationship to the perception of 3D spatial sound (fig. 4).
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Figure 4 Head-related System of Coordinates in Auditory Experiments (Blauert 

1997a:14).

Blauert shows that the quality of directional hearing is dependent on certain 

parameters of the sound (see 6.4). When we overlay these pictures from 

Laban and Blauert we more clearly notice their differences in that the centre 

of the moving body is the pelvis and the centre of spatial hearing is in the 

middle of the head between both ears (fig. 5).

frontol p ane ion plane

6:

horizontal plo

Figure 5 Compiled picture by the author of the Centre of Spatial Movement- and Sound 

Perception.

However, in the ChoreoSonic environment, this conceptual difference is solved 

when we take the pelvis of the dancer as the centre of performance and also 

as the centre for the trigger of the interactive 3D ambisonic sound. Besides 

this perception, Verstraete points us to two main viewpoints that exist in an 

interactive dance-sound performance environment:

While the dancer learns to utilize the system as a musical instrument 
affecting the immediate environment, the spectator contemplates 
from a distance either the technical know-how of the system or the 
communication through gestures in terms of surfacing meaning or 
playfulness. (Verstraete 2005:7)

Therefore, to avoid such a division in the experience of the interdependent 

spatial ChoreoSonic performance relationship, and to integrate the two 

viewpoints of performer and viewer, I propose the terms 'inside' for the
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perception of the dancer in the sensitive area and 'outside' for the perception 

of the centre of performance by the viewer:

  Inside: the pelvis is the centre of performance and is a clearer 
viewpoint for the dancer who is directing the visible and audible 
movements as the active agent.

  Outside: the viewer/listener, who is usually more visually 
focused, sees the dancer as the centre of performance. Thus, the 
dancer is visually directing the movement of the spatial sound for 
the audience.

To reach this conceptual aim, the dancer(s) as well as the audience are 

moving in the performance space (bounded by the eight speakers) 166 . In this 

way the best spatial perception for both the dancer and the audience can be 

created within the ChoreoSonic environment167 .

4.4.2 Spatial Body-Sensor Pentagon

A second relationship is derived from Laban's division of the body in a 

pentagonal structure (fig.6). This flat two-dimensional reconstruction 

represents the body in a division of the five principle zones of movement: the 

head, the two arms and the two legs.

Figure 6 A flat Pentagonal Pose of the Body (Laban 1966:19).

As it was possible to use 5 electronic sensors in the electronic positioning 

system (see chapter 5) as an experiment (the system originally used just one 

sensor), a sensor was placed on the head, the two hands and feet according 

to Laban's pentagonal structure. However, as described previously (p.80), the 

centre of the kinesphere and thus of full body movement is the pelvis. In this 

experiment it was impossible to attach the sensor device to the pelvis due to

166 This performance environment was tested during the sharing at the 
University of Chichester although the interactive spatial sound was not yet 
fully operable (see pp.129-132 & DVD 1:22).
167 The thesis concentrates mainly on the perception of the dancer. An 
evaluation of audience perception is beyond the scope of the thesis.
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its electronic construction (the sensor has to point upwards to the ceiling 

where four receivers are attached, see p.109). It was possible however, for 

the sensor on the head to become the trigger for the pelvis with a simple 

mathematical formula that subtracted the distance between the head and the 

pelvis of the dancer in the software.

This method would have allowed the measurement of both the movements of 

the head and the pelvis at the same time, but the decision was taken to allow 

the movements of the arms and legs to prevail (also according to Laban) in 

relation to the pelvis. In general, the movements of the limbs together with 

the movement of the whole body in space are more easily perceived than the 

movements of the head.

It has been proposed by Lincoln Kirstein et al. (1953) that limbs also have 

their own individual dynamic kinespheres (fig.7). They define the spaces of 

the two legs and the two arms as the 'space modules' of movement in which 

the ground of style and technique resides.

rSy^f-^ /:i.^^^2-k^- ̂

\

Figure 7 Space Modules of the Arms and Legs I (Kirstein et al. 1953:2).

Therefore, in the 'Sound Skeleton' creations each of the four sensors on the 

limbs determines its own kinesphere and a combination of all 5 sensors 

determines the kinesphere of the full body. These individual movement 

spaces were chosen as the trigger space for the spatial sound in the 

ChoreoSonic environment. Each sensor spatially directs its individually
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allocated sound. In this way, the body and the limbs direct their allocated 

sounds to the distance ranges of the surround sound set up.

For a reestablishment of the subjective spatial correlation experienced by the 

dancer and the viewer (who are both moving in the sensitive area), it can be 

helpful to visualize a picture of the moving sensors that direct the auditory 

sensitive space environment outlined above. The real time movement of the 

five sensors, attached to the body of the dancer, is visualized in the 

Max/MSP/Jitter software developed for this project (fig.8). In this 

visualization, the viewer is standing still at the front of the stage.

90

Figure 8 Dynamic sensors representation in Max/MSP software.

This visualization of the moving sensors was shown on a projection screen 

during a demonstration of several 'Sound Skeleton' experiments in 2007 (see 

Ch. 6) to emphasize the relationship between the two disciplines. The sensors 

are represented by dots as is normally also the case with Motion Capture 

systems.

4.4.3 Geometry in a Cubical Form

As noted above (4.2.2), Laban (1966) defined the space that a dancer can 

reach (while standing still) as the kinesphere or personal space. A simple 

geometric form of the kinesphere is the cube (fig. 9).
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Figure 9 'Geometric Kinesphere' Laban (1966:140).

A third relationship between movement and spatial sound arises within the 

geometry and boundary of both elements, when one concentrates on this 

cubic form. This cubiform is, as we've seen earlier (p.88), also an important 

geometric element in ambisonic surround sound. In the 'Sound Skeleton' 

creations, four speakers are positioned in a square of approximately 25m 2 on 

the floor and another four, about two meters above these, forming a cubical 

speaker set up. Thus, the speaker set up enclosed the sensitive ChoreoSonic 

area. This speaker placement provides the possibility of making sounds 

audible in a 3D moving sound space. The triggered ambisonic surround sound 

can move in all directions in much the same manner as the dancer who 

triggers this movement interactively.

It should be noted that, strictly speaking, the body does not move in a cubical 

fashion. Louise Campbell (2005:15) remarks that 'In reality, a kinesphere is 

the changing area that can be reached with every part of a person's body, 

clearly not the shape of a box' and 'While some may keep the kinesphere 

small, intimate, and well inside their possible range of movement, others may 

extend their kinesphere to the limits of their range of motion'. In much the 

same way surround sound also does not move in an exact cubical fashion, but 

rather creates a dynamic sonic environment in which the distance of audible 

reach and direction is dependent on several characteristics of the sound as 

will be outlined later (6.4).

To synchronize the spatial movement and sound elements in the 'Sound 

Skeleton' creations, the kinesphere of the dancer is sonically extended to the 

cubical sound space of the sensitive interactive area. In this manner, the 

movement was sonically transferred to the spatial area covered by the

surround sound.
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As noted previously (p.94), each of the five sensors from the tracking system 

(see Ch. 5 for a full technical explanation) has its own ChoreoSonic 

kinesphere: one for the whole body in space (defined by the sensor on the 

head) and four for the separate limbs. The whole body movement directs the 

sound localization of its specifically allocated individual sound according to the 

dancer's position in the ChoreoSonic environment. The limbs spatially position 

their individually allocated sound according to their localization and proximity 

to the pelvis (i.e. their own 'space module').

4.4.4 Summary 'Audiovisual Spatial Synchronicity'

The concept of a spatial synchronicity between whole body movement and 

spatial 3D sound perception was observed within the geometric division of 

space in the median, frontal and horizontal planes of both elements. Here the 

pelvis is regarded as the centre of performance according to the concept of 

the 'inside-outside' relationship (p.93). This concept was defined in relation to 

the perception of the performer as the centre of performance (from the 

inside) and the viewer (from the outside) in the ChoreoSonic environment.

It was decided to place a sensor on the head 168 , two in the hands and two on 

the feet according to Laban's pentagonal structure. To optimize the 

observation of the spatial synchronicity between movement and sound, the 

movement direction of the spatial sound is bound to the individual spaces of 

the body: the four kinespheres of the limbs with their individual space 

modules, as defined by Kirstein (1953), and the dynamic pathways of the full 

body position of the dancer in the sensitive area, as defined by Laban (1966). 

In this way, the sounds move spatially in all directions according to the body 

movement within these five defined spaces.

The dimension of the spatial sound is determined by the size of the cubical set 

up of the surrounding speakers. As such, the dancer acts as a visual cue that 

helps the viewers to locate the position of the sound. To reestablish the 

correlation between the ChoreoSonic spatiality as experienced by the dancer 

and the viewer a visualization of the moving sensors was created in 

Max/MSP/Jitter. In this way, the five-sensor configuration is able to intensify

168 Here the head substitutes the measurement of the spatial movement of 
the pelvis, being similarly located on the vertical axis of the human body (see 
p.119).
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the perception of the interactive spatial relationship between movement and 

sound in the created interactive environment.

4.5 Summary 'Context of the Spatial ChoreoSonic Environment'

This chapter looked into numerous writings and artistic practices by 

researcher-artists that evolved from working within the context of an 

interactive environment. In these technologically enhanced environments 

dance and sound are created at the same time, in contrast to traditional 

dance performance in which music is either created before or after the design 

of the choreography. This observation directed us to a major performance 

strategy: after a certain amount of training time, the performer should be 

able to play the system intuitively and in an improvisational manner. 

Improvisation in a technological environment, in which the sonic composition 

is created real time by body movements, can strengthen the interactive 

ChoreoSonic creation.

It was observed that the use of interactive technology changes the way that 

choreographers and dancers perceive space and time. A choreography created 

using animation software enables movement of body parts in independent 

manners, denying the laws of gravity and physical limitations. This different 

method for generating a choreography evokes a dynamic representation of 

the ChoreoSonic environment directed by the well-trained pro-prioception, 

peri-personal space sensitivity and kinesthetic sense of the dancer. I 

introduced the term 'tranSonic' perception to identify the perception of 

ChoreoSonic interactivity in which sound becomes almost tactile and visible: 

'sound as a disembodied movement' and 'dance as an embodied sound'.

I listed the two main spatial and dimensional subjects regarding the 

movements of a dancer as proposed by Laban (1966) as follows:

  The location and the traceforms (pathways) of the movement in 
general space.

  The localized movement of the limbs within the dancer's 
kinesphere.

The combination of these two issues directed us to the fact that the dancer's 

body is bound to the kinespere, but the kinesphere is mobile in the context of 

general space. In line with these spatial theories, I placed two sensors in the 

hands and two on the feet to measure the movements of the limbs in their 

individual space modules, and one on the head to measure full body motion in 

the sensitive environment. In this way, it is possible to create a dynamic
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spatial sonic entity that represents the dancer's movements in the 

ChoreoSonic environment.

In order to accommodate the ambisonic theories described, eight identical full 

range loudspeakers are placed in a cubiform around the audience and the 

dancer who both move inside this sensitive area to get maximal spatial sound 

perception. My research has taken the position that 'space' and 'spatiality' are 

subjective and time-domain related impressions. Both performer and listener 

perceive the generated dynamic positioning and timing of movement and 

spatial sound differently, both elements depending on their position in the 

sensitive space. For this reason, a visualization of the moving sensors in the 

ChoreoSonic environment was created in Max/MSP/Jitter.

I list the following artistic decisions, taken from the spatial observations in 

this chapter, as follows:

  Realization of measurement of the movements of the traceforms 
(pathways) of the dancer in space by the central sensor on the 
head (measuring the pelvis).

  Realization of measurement of the movements within the 
kinesphere of the dancer's body by proximity measurements of 
the hands and feet to the pelvis.

  The pathway of whole body movement directs the sound 
localization of its allocated individual sound according to the 
dancer's position in the ChoreoSonic space.

Each sensor, that measures the movement of a foot or hand, 
triggers its allocated individual sound. This sound is spatially 
directed according to the dimensions of the movement within its 
own space module.

  The main performance strategy is free body movement 
improvisation.

Eight speakers are set up in a cubical form around the sensitive 
area to enable the perception of the ambisonic sound.

  A visualization of the movements of the sensors attached to the 
dancer's body is projected on a screen during performance as a 
guide for the interactive real time ChoreoSonic spatialization 
process.

These observations are incorporated in the next part of the thesis that 

describes the practical research: the Normative Case Studies.
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Part II 

Normative Case Studies
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Chapter 5 Case Study 1: Preliminary Practical Research, 

'Cricket' System Development

Choreographer: Sarah Rubidge

Dancers: Carrie Whitaker, Guy Adams

Sonic artist, Max/MSP: Stan Wijnans

System engineer: Stan Wijnans

(University of Chichester, UK, 2006-2007)

In chapter 4, I outlined how the tracking system should provide the three 

dimensional dynamic position (location and traceforms) of the dancer in space 

and the data measurements of the four space modules of the dancer's limbs.

In collaboration with V2lab 169 (Rotterdam, the Netherlands) and 

SurroundAV 170 (London, UK) a prototype of such a motion tracking system, 

the 'Cricket' system, was developed. I initiated, researched and materialized 

the initial technical developments of this system. The aim was to create a 3D 

sensitive environment of suitable space dimensions. The work outlined in this 

chapter resumes the research undertaken in 2006-2007.

5.1 The Cricket System

The Cricket system tracks the 3D (X-Y-Z) position and trajectories of up to 

two performers as they move through space. The sensitive environment of 

the system is comparable to the Virtual Stage Environment (VSE). In the VSE, 

two cameras determine presence, and track the position of a black glove worn 

by a white costumed dancer. Rob Lovell & John Mitchell (1995) describe the 

operation of the VSE:

Two cameras viewing the same space intersect to form a box like area 

representing the common viewing field. Triggers defined in each 

camera's image plane form smaller intersections further narrowing the 

field of view. A three dimensional trigger defined in this manner is 

sensitive only to events within this box like area. (Lovell & Mitchell 

1995)

In figure 10 a picture is shown that displays the basic setup of the VSE.

159 See: http://www.v2.nl/lab/ [accessed 05.06.09].
170 See: http://www.pqacoustics.org [accessed 15.06.07],
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Figure 10 Two cameras viewing the same space intersect to form a box like area 

representing the common viewing field (Lovell & Mitchell 1995).

However, the RF/US Cricket system was meant to replace optical technologies 

that suffer from the limitations that beset such camera based systems (see 

pp.46-47). The ultimate goal of the new development was to design a system 

that would be easily configurable by artists, with a high data collection 

precision, that would work indoors over a large space area, be affordable, and 

easily accessible for artists.

A similar RF/US system has been developed by the Universidade Federal do 

Parana in Brazil (Auer eta/. 1996). However, this system could only track one 

sender beacon at anyone time. In addition to this, Feldmeier (1996) describes 

the use of an RF/US system to collect data from the collective activity of 

groups, summing up the pulses of the sensors worn by 10-1000 participants. 

In contrast to the development of the Cricket system, here the sensors used 

had no individual ID. Therefore, the operation of this system can be described 

as tracking 'one giant person', created by the total amount of the data 

provided by all active sensors.

The following sections describe the context and technical operation of the 

Cricket system in an AHRC research project (Small Grants Award 2006) 

exploring the choreographic potential of the system 171 . The research took 

place at the University of Chichester (UC), UK, in collaboration with 

choreographer, digital installation artist, and dance writer Rubidge from the 

UC and dancers from the Lila Dance Company 172 . It was concluded with a 

sharing and demonstration session 173 (see also 6.3.3). The testing included 

preliminary research of prototype ambisonic Max programming by myself in

171 The writings regularly cite from the AHRC research report written by
Rubidge & Wijnans (2008).
172 See: http://www.liladance.co.uk [accessed 31.08.08].
173 See: http://alcor.concordia.ca/~kaustin/cecconference/current/9268.html
[accessed 31.08.08].
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Max/MSP/Jitter (using a beta version of ambisonic externals for Max/MSP 

programmed by Dave Hunt, UK 174 ).

5.1.1 Context of the Cricket System

The first research week took place in May 2006, the second in January 2007, 

with intermittent choreographic research taking place between them. In both 

of the research weeks we installed and tested the Cricket tracking system and 

experimented with the dancers, my interactive composition 'Global Drifts' 175 

(see CDR: 'Global Drifts' excerpt sound file and Max patch) and the 

possibilities of the ambisonic system. The research took place in a studio 

context in order to gain the most realistic tracking environment for 

choreographic research, and to explore any issues that might pertain with the 

ambisonic system.

After the first research week the tracking system was refined for our 

particular research needs, in collaboration with the engineers at V2, for use in 

the second research week. During the latter part of the period between 

research weeks, I developed the real time interactive music composition 

system further, such that it could be used in the second research week to test 

the ChoreoSonic potential of both systems. The research methodology was 

thus reiterative, and combined technological research into the tracking 

systems, choreographic and sound compositional research without the 

tracking systems, and these research topics with the tracking systems. I was 

responsible for the technological and sonic aspects of the research, Rubidge 

for the choreographic research. The close dialogue between a choreographer 

and someone closely involved in the development of the two systems being 

tested was of considerable benefit in refining the systems for use in a 

performance context.

5.1.2 Technical Operation of the Cricket System

The Cricket system comprises one, and later two wireless wearable device(s) 

called the x Handheld(s)' (fig.11 & fig.12), constituting RF and US technology

174 Similar ambisonic objects exist such as 'Spat' (Ircam) and X VBAP' (by Ville 
Pulki). However, I offered myself as a beta tester for the A Ambi-8' Max tools 
developed by Hunt.
175 'Global Drifts' is a Distributed Digital Choreographic Event (2006) by 
Sarah Rubidge and Hellen Sky, with Seunghye Kim, Hyojung Seo, and Stan 
Wijnans. See: http://www.sensedigital.co.uk/GDl.htm [accessed 05.07.07].
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embodied in Cricket electronic beacons developed by the Massachusetts 

Institute for Technology (MIT), USA 176 .

Figure 11 Cricket Handheld 1 (2006). Figure 12 Cricket Handheld 2 (2007).

In the Cricket tracker software, as developed by Marc Boon 177 at V2, NL, the 

width of the sensitive space area is determined by the position of the 5 

receiving Cricket beacons fixed on the ceiling. Four beacons are attached to 

the edges of a flexible grid that can be shifted in and out to change the length 

of the holding Megs', with the fifth beacon placed in the centre of the grid 

(fig. 13). Shifting the width of the Megs' is required to make the sensitive area 

as large as possible. The 'handheld' sensor should be pointed upwards to the 

ceiling to enable communication with this infrastructure by sending out 

periodic coincident RF and US signals.

Figure 13 Flexible grid of infrastructure of 5 Cricket beacons on the ceiling.

The 5 Crickets output sensitive cones (fig. 14) that realize sensitive circles on 

the floor (fig. 15). The length of the diameter of the sensitive circle is

176 See: http://www.nms.lcs.mit.edu/pro1ects/cricket [accessed 15.06.07],
177 See: http://www.karma-multimedia.nl/ [accessed 03.02.07].
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dependent on the height of the grid: the higher the space, the further away 

the receiving Crickets can be placed from the centre of the grid.

Cnckel sensors

Figure 14 Ideal shape of directional Figure 15 Two dimensional sensitive floor of 
flow of 5 Cricket sensors. 5 Cricket sensors (approximately).

According to the Cricket specifications, the perfect height of the grid should be 

between 4 and 6 meters, wherein the maximum height gives a floor space of 

between 8 and 10 m 3 with an accuracy of about 2 cm. The dynamic position 

of the handheld is measured real time in Cartesian X-Y-Z coordinates. The 

user has to fill in the X-Z (horizontal and depth) distances of the grid in the 

software, Y (height) being always zero as the software calculates this 

coordinate automatically, i.e. all receiving Crickets were either on the floor or 

on the ceiling. The sensitive area displays as an irregular box shape 178 where 

the 5 cones are overlapping, similar to the box shaped sensitive area that was 

created in the VSE (see fig. 10 p. 102). V2 had also developed the required 

Open Sound Control (OSC) network communication.

5.1.3 Technical Set Up ChoreoSonic Environment

The Cricket system was used in combination with a G4 Mac 1.67 GHz laptop 

with 1GB RAM that collected the data pulses of the ultrasonic system and 

controlled the real time changes of the sound. The Cricket software ran on the 

J2SE Java Runtime Environment version 1.4.2 or higher. The Crickets on the 

ceiling were connected to the computer with an extended USB connection lead 

(15m) coming from the ceiling. One of the four Crickets on the ceiling had to 

be chosen as the centre of the grid with coordinates 0.0, after which the user 

had to fill in the horizontal and depth measurements of the remaining 3

178 The exact ratio of the rectangular overlap of the ultrasonic cones in the 
sensitive area is unknown to the author.
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Cricket sensors. The software communicated over OSC, with Max/MSP to 

receive the X-Y-Z data package transmitted by the Cricket system 179 .

I set up 8 small PC speakers 180 in a cubical form (see p.88), with 4 speakers 

placed in a square layout at floor levels, and 4 placed above these at slightly 

higher than head height 181 (fig.16).

Figure 16 The speaker system and Cricket receiver grid. 

5.1.4 Outcome Case Study I: 'Cricket' System Development

During the choreographic research several technical constraints, that 

influenced the choreographic possibilities, were identified:

  The weight and size of the handheld.
Although the dancers stated that the weight made it easier to 
locate the sensor, the physical dimension of the handheld would 
focus the attention of a viewer too much on the technology.

  Latency 182 .
Due to latency, the sensor did not recognize the same border 
when moving away from the centre of the sensitive space and 
towards that centre. In figure 17, the blue lines represent the 
sensitive area when moving to the outer side, and the green lines 
represent (approximately) the sensitive (delayed) area when 
moving to the inner side.

179 It should be noted that in line with the ambisonic convention, the X 
coordinate is assigned to front-back (depth) with positive values to the front, 
the Y coordinate to left-right with positive values to the left and 0 is the 
middle of the speaker rig. This is confusing because the ultrasonic system 
assigns the X to left-right and the Z to front-back and the Y to height.
180 Ambisonic surround sound needs full range speakers (see p.88), however, 
our facilities were limited at this stage and investigating the spatial sound was 
not our first interest.
181 Thanks to Frank Bulthuis, Amsterdam, NL, for constructing the four poles 
that held the 8 PC speakers in a cubical set up.
182 Ultrasonic sensors are notorious for a fairly high latency. See for example: 
http://www.cs.nps.navv.mil/people/facultv/capps/4473/proiects/chanq2/Simp 
le.htm [accessed 04.08.08].
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Speaker Speaker

Speaker Speaker 

Figure 17 Diagram of the shape of the sensitive space (approximate).

  Slow update rate.
If the dancers traveled through space too quickly, the sensors 
found it difficult to 'catch' the motion (also due to the previously 
mentioned latency problem).

  Occlusion 1.
The use of rotation as a modulating factor was not a possibility 
as the sensor was occluded when the dancers rotated their 
wrists, which meant that the wireless connection between 
computer and sensor was lost.

Occlusion 2.
The dancers' bodies occluded the sensor from time to time if they 
performed dance movements without paying attention to the 
position of the handheld.

The choreographic and sonic possibilities that these limitations presented with 

the dancers (in case they were not resolvable technologically) are further 

explored in the 'Sound Skeleton' creations that are interwoven in chapter 6 of 

this writing.

Finally, I list several feedback comments from the dancers regarding the 

ChoreoSonic interrelationships:

  The dancer has dual responsibilities due to the fact that her 
movements are surrounded, and therefore overwhelmed, by the 
3D sound. However, initial development of a movement 
vocabulary with choreographer Rubidge gave the dancers a start 
for the movement improvisation.

  The sounds directed by 2 dancers started to blend at certain 
positions in the space. This raised questions of the identity and 
individuality of the dancers, whilst separated in space.

Because the sound was positioned opposite one of the dancers in 
the ambisonic Max software, she in particular sometimes was not 
sure who's sound she was creating. Therefore, she sometimes
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decided just to dance until she 'found her sound back'.

  In case there was only one sensor available, the dancer without 
sensor feels the other one as her sensor. This adds another 
ChoreoSonic dimension to the dance partner.

The weight of the sensor unit made it easier for the dancer to 
trace the movements of this other 'partner'.

  The occlusion of the sensor gave the dancer the power to control 
the interactive process, i.e. s/he was able to decide if s/he would 
be dancing 'solo' or with this other 'partner'.

5.2 System Errors: 'The Ghost of the Machine'

After the description of the limitations beset by the 'Cricket' System, let us 

consider the question: what happens when the technology is limited, stumbles 

or even fails? The first consideration of an artist is to incorporate any existing 

technical limitations of the instrument at hand and use them to their benefit. 

In reference to the DMI design field, Atau Tanaka states:

With a tool, there is the hope that it will become better at its job, and 
will perhaps someday do everything. With an instrument, on the other 
hand, the performer accepts its limitations, and in fact, celebrates 
them, taking into account the instrument's personality, (quoted in 
Bongers 1998:20)

In line with Tanaka, I consider the computer as a tool and the combination of 

the sensors used as a musical instrument (in addition to this research I also 

consider it as a choreographic instrument). The existing imperfections of the 

technology, created by a jittery and noisy dataflow, can trigger an unintended 

sound response from the computer. In the research project described in this 

thesis, the position of any data errors by the tracking system was exploited to 

create an unexpected sonic atmosphere within the spatial environment. These 

imperfections necessitate the capacity to improvise from the artists involved 

(see also 4.1.1). In addition to technological errors, human errors can also 

add interesting and unexpected mapping relationships between the controller 

data and the artistic output. In a 'Sound Skeleton' experiment (see DVD: 1, 

CDR: Max 2007-1 sub-patch synthesizers) during the research at the UC in 

2007, a human error existed in the calibration Max subpatch of the ultrasonic 

sensors. Consequently, a very high 'squeaking' sinusoidal pitch was triggered 

on one edge of the sensitive area. Remarkably, the dancer was particularly 

intrigued by this area and purposely returned there frequently to improvise 

with this sound.
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5.3 A Low Cost Indoor Positioning System (LCIPS)

When the development of the Cricket system came to a pause for financial 

and logistic reasons, a second and more advanced RF/US system, the 'Low 

Cost Indoor Positioning System'(LCIPS), became available in the second part 

of my research. The LCIPS has been developed at the Department of 

Computer Science, University of Bristol, UK and is still in development 

(Randell & Muller 2001, Randell et al. 2002 and 2006). It is at the time of this 

writing able to track up to 6 RF/US sensors individually and synchronously. As 

with the Cricket system, the sending sensors have to point upwards (fig. 18) 

for data communication with the receiving sensors on the ceiling.

Figure 18 Sensor pointing upwards to the ceiling.

The LCIPS was originally designed for mobile and wearable computers for 

ubiquitous computing, and to complement an external GPS positioning 

system. The techniques developed for the LCIPS have been extended in a 

variety of ways, including RF Free versions (McCarthy & Muller 2003), and 

systems for tracking users (Duff et a/. 2005). The system uses five 

transponders which respond sequentially to RF triggers by emitting 40kHz 

ultrasonic pulses. These pulses are captured by a 2m square grid of receivers 

mounted above the research/performance space. The receivers are connected 

to a microcontroller which uses the relative timings of the captured pulses to 

determine the 3D position of the transponders. The system is designed to 

achieve a maximum accuracy of 4.3 cm with a full update every 250ms. The 

host computer filters the data to remove spurious readings, and then converts 

the measured positions into MIDI signals for convenient interfacing with 

Max/MSP. The MIDI interface uses 128bit resolution over a distance of 4m.
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This translates to a 3.1cm resolution giving a good match to the tracking 

system parameters 183 . Note that the LCIPS suffers from occlusion like the 

'Cricket' system.

Figure 19 The four receiving LCIPS sensors attached in the corners of a square grid on 
the ceiling.

In figure 19, the especially constructed wooden hanging grid on the ceiling 

with four receivers is shown. This grid is very similar to the hanging grid of 

the Cricket system (see p. 104). In the corner of figure 19, one of the high 

positioned full range speakers is also shown. The mobile wireless sensors (fig. 

20) are able to cover an inside area of approximately 25m 2 .

Figure 20 The 5 sensors of the LCIPS.

Calibration of the system only took a couple of minutes in the 3DIM software 

(see DVD: 2, CDR: Max 2006-2008 and 3DIM, sub-patch 'calibration').

In chapter 6, the practical 'Sound Skeleton' creations, that utilize either the 

'Cricket System' or the 'Low Cost Indoor Positioning System', will be described 

from an artistic perspective.

183 I am much obliged to C. Randell for the text describing the technical 
specifications of the LCIPS
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5.4 Summary 'Case Study 1: Preliminary Practical Research'

In this chapter, two RF/US tracking systems have been described that best 

fulfill the spatial requirements of this PhD research. Both systems have 3D 

measurement capabilities, are easy to access and have a fast installation 

procedure. A prototype of the 'Cricket' system has been tested for its 

technical and choreographic potential. Several constraints of this RF/US 

system have been identified such as:

  The dimension of the sensor box.

  Latency.

Slow update rate.

  Occlusion.

However, it was decided to pursue the research with a similar RF/US system 

and explore how these limitations can be incorporated in the creative 

development of the ChoreoSonic environment. This Low Cost Indoor 

Positioning System (LCIPS) is able to track 6 sensors individually and 

synchronously.

In the next chapter, the various movement and sonic parameters that 

influence the perception of the interactive spatial ChoreoSonic experiments 

will be established practically. The aim is to relate the bodily space (4.2) to 

the auditory space (4.3) in the practical 'Sound Skeleton' creations 

undertaken for this project.
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Chapter 6 Three Dimensional Data Interpreting Methodology

(3DIM)

Introduction

Following the contextualization of the spatial ChoreoSonic environment in 

chapter 4, this chapter describes and analyses the development of the 3DIM 

software. 3DIM proposes a subjective method to map the available movement 

parameters, as supplied by the RF/US tracking system, to the spatial sound 

environment. In the introduction (p.9), the term 'subjective' was clarified as 

meaning: 'an output for a conscious choice, a decision to use a coincidental 

error or a moment of inspiration'. It is necessary at this point to establish a 

more precise definition of the words 'subjective mapping' before proceeding 

with the practical presentations. This definition will restrict the scope of this 

chapter to a more cohesive artistic proposition.

Downie (2005:30) sketches various departure points of the meaning of the 

term mapping: '[...] researchers talk of sensor data to musical parameters, 

of the mapping problem, of classes of mapping, of good mappings and bad 

mappings, of intuitive mappings and unsuccessful mappings, of tools for 

mappings'. Downie concludes that the published writings on mapping are 

commonly presented as a 'prescription', 'a vista of possibility', a 'central 

problem that faces the artist'; 'the solution endlessly deferred as a future 

work' (ibid:32). He stresses the need to create a wider vocabulary with a 

greater nuance to organize the intellectual field around 'mapping'. He 

concludes that: 'Mapping should be receding in digital art's rearview mirror, 

not as a solved or exhausted problem, but as an idea either too small or too 

broad to really fit [with the tasks and the opportunities at hand]' (ibid:36). 

Guy Garnett & Camille Goudeseune (1999) point us to the complex mapping 

strategies that might evolve when mapping the performer's geometric 

'gesture space' to the listener's 'perceptual space': 'we need a way to define 

sometimes very complex [geometric gestural] trajectories within the [sound] 

parameter space' (ibid\3-4).

In the context of this research, a creation and classification of the 'parameter' 

space is necessary to be able to make the choices that support the aesthetic 

concept of the author. 3DIM tries to achieve an interactive conceptualization 

within the visual (here dance) and auditory spatial domain, defining a 

classification of the (incoming) spatial movement parameters and those of the
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(processed) spatial digital audio data. Similar mapping strategies have been 

developed in research projects such as Trans Domain Mapping' (Ng et al. 

2000a), in which one creative domain (gestures) is mapped onto another 

(musical events). This strategy uses the 'MvM' (Music via Motion) system 

consisting of C ++ software and camera tracking technology (Ng et al. 2000b). 

However, 3DIM focuses in particular on the mapping of the spatiality of 

movement parameters into spatial sound parameters.

Before describing the development of 3DIM, it is important to realize that in 

interactive dance performances the mapping relations that the technology and 

applied software offer can limit the aspirations of both the dancer and the 

audience. Considering this issue, Manning states:

Yet their "process" [of new technology and dance performances] is 
limited by the dimensions of the software which tends to call forth a 
docile body, both in the software-conformist dancer and in the 
technologically-attentive spectator. Affective transformation depends 
on evolution in the machinic system such that both bodies and 
technological systems are altered. Transduction: the process develops 
according to a dynamic not of interactivity but of relation. (Manning 
2006)

This insight determines the dynamic relationship of the mapping process in 

this research, in which it will be shown that the ChoreoSonic environment is 

sonically 'choreographed' in tandem with the spatial characteristics of the 

performers' movements in the sensitive space. The ChoreoSonic environment 

consists on the one hand of the applied RF/US sensor systems which are able 

to track the X-Y-Z positional data of up to two (Cricket system) or six (LCIPS 

system) independent sensor points attached to the body of the dancer. On the 

other end of this process, the use of Max/MSP/Jitter opens up a wide range of 

available sound parameters and spatial sound elements that can be generated 

with the incoming spatial movement data.

The description of the 3DIM development is accompanied by various video 

excerpts (identified in the text as DVD: 'xx') and Max patches (identified as 

CDR: Max 'year') of the 'Sound Skeleton' creations. These experiments show 

the developmental process of 3DIM as the conceptual ChoreoSonic framework 

that resulted from a combination of the practical and theoretical processes 

undertaken in this research. In this documentation it is shown that the artistic 

outcome is achieved by an interdependent relationship between the two 

artforms.
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In the following sections of this chapter, the development of the 3DIM 

software is described. As a starting point for this description it might be 

helpful to simplify the mapping possibilities in the ChoreoSonic trajectory. This 

simplification leads to four broad parameter mapping categories:

1. Raw movement input data of spatial movement events [first 
derivate].

2. Deduced spatial movement parameters [second (algorithmic) 
derivate].

3. Sonic output of the first and second movement derivates [first 
mapping process].

4. Sonic spatial structure [second mapping process]. 

This starting point for the development of 3DIM is displayed in figure 21.

Raw
Movement 
Input Data

  *

Deduced 
Movement 
Parameters

  * So-Vc Output   *

Sonic 
Spatial 
Structure

Figure 21 3DIM implementation chart no.l: the four broad parameter categories. 

In the following, these four categories will be outlined and extended through 

the development of 3DIM - hence this figure is called '3DIM implementation 

chart no. 1'. Three 3DIM performance models are then proposed to 

demonstrate several sonic mapping strategies that emphasize the sonic 

spatiality of body movement.

6.1 Raw Movement Input Data

Each sensor unit of the ultrasonic dynamic positioning system measures the X 

(horizontal), Y (height) and Z (depth) position of a moving object/person in 

the sensitive space in six degrees of freedom: left-right, up-down, front-back 

(see also p. 105). As will be seen, one sensor unit is able to measure full 

spatial body motion, whereas a combination of five of these units is 

additionally able to measure the spatial limb movements within the dancer's 

kinesphere (see 4.2.2).

6.1.1 Full Body Motion Data

In a research project (2006) to test the technicalities of the prototype 'Cricket 

System' (see chapter 5), the position of the handheld Cricket is taken as the 

centre of the dancer's movement and not the pelvis as the centre of the 

dancer's kinesphere (parallelling Forsythe's ideas, see p.82). The handheld 

can be either moved to another bodily point by holding it against a body part,

putting it on the back while crawling (DVD: 3, CDR: Max 2006-1) or by
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attaching it to a spot on the costume 184 . The 'centre' is thus mobile within the 

kinesphere of the dancer.

In the research undertaken, this movement centre can also be moved outside 

the borders of the sensitive area. Aya Karpinska (2001) argues that 'the 

immersion of composed space within listening space gives rise to 

superimposed space 1 . In line with Karpinska, I designated the sensitive area 

of the Cricket system as the 'composed space' defined by the responsive 

surround sound system, and the area outside the sensitive area of the Cricket 

system as the 'superimposed space 1 in which no new sound manipulations 

were triggered (Rubidge & Wijnans 2008). This configuration allows the 

dancers a method to switch sounds on or off or 'leave' the sound in the last 

position the sensor trigger was placed (DVD: 4, CDR: Max 2007).

The X-Y-Z positioning data derived by the RF/US system are sufficient to 

allow measurement of the spatial and dynamic positioning of the dancer's 

body in motion. However, it will be shown in the next section (6.2) that 

derived movement parameters are needed to trigger the sound parameters 

that facilitate change in the spatial perception of the sound.

The raw movement input data of the two sensors of the Cricket system for full 

body motion tracking are implemented in the 3DIM chart (fig. 22).

1 X -Y Z 
Body centre

2 X-Y-Z 

Body centre

Figure 22 3DIM implementation chart no.2: raw positioning data of two (Cricket) 
sensor units.

184 The costume of the dancer should be tightly fitted to avoid occlusion of the 
ultrasonic data stream by flapping clothing fabric.
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6.1.2 Case Study 2 'Scanning the Space'

Choreographer: Sarah Rubidge

Dancers: Carrie Whitaker, Abi Mortimer

Sonic artist, Max/MSP: Stan Wijnans

System engineer: Stan Wijnans

(University of Chichester, UK, 2006 and Bath Spa University, UK, 2009)

Using a preliminary 3DIM patch in Max (CDR: 2006) and the sole Cricket 

sensor that worked at the time of the first practical research session (see 

Rubidge & Wijnans 2008), the X-Y-Z dynamic positioning parameters of the 

movement of the sensor that was held in the dancer's hand were measured 

(fig. 23).

Figure 23 Dancer C. Whitaker from Lila Dance Company 185 with the Cricket handheld 

2006.

The prototype 3DIM Max patch was conceived using the concepts derived 

from a combination of two similar research projects. The first project was 

described by Auer et al. (1996), who had developed a similar Ultrasound 

Positioning Acquisition System. Their work presents a design of sensitive 

geometrical forms in the active space that triggers various MIDI parameters. 

One of the forms that has been defined in the software was a 'sound volume 

circle'. As soon as the dancer entered this circle with one attached ultrasonic 

sender186 the loudness of the triggered sound would change. In their writing,

185 See: http://www.liladance.co.uk [accessed 31.08.08].
186 In their paper it was not stated where on the dancer's body the ultrasonic
sensor was positioned.
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the mapping process is of secondary importance to the testing of this 

scientific ultrasonic design project, which concentrates on accurate 

determination of a position in space. The second research project was 

described by Insook Choi eta/. (1995), in a practical experiment that involved 

a 'manifold interface' in an interactive space environment. This interface used 

the 'CHANT' synthesis technique (Rodet et al. 1984) that enables a composer 

to operate a desktop mouse with three degrees of freedom. In this research, 

vowel sounds were created from formant187 waveforms (FOF or fonction 

d'onde formantique) that were defined by seven parameters in a 'CHANT' 

table. These parameters were localized on various spots in the sensitive space 

of the software. The composer could create a non-linear path with a mouse in 

the visual interface supplied to create the vowel sounds composed of the 

triggered formants.

Combining the concepts presented by these two examples, I designed a 

preliminary 3DIM Max patch that consisted of two different sound 

environments (CDR:2006, sub-patch 'samples'). The first contained fourteen 

samples of freely assignable opera vowel sounds 188 , the second a set of 

various freely assignable abstract sounds 189 . These sounds were allocated 

horizontally to different spots on the floor in the sensitive space. The position 

configuration and number of the sounds could be changed with a couple of 

mouse clicks in the Max patch. The nearest trigger spot to the position of the 

dancer activates the allocated sound. Figure 24 visualizes the compositional 

strategy of this 'Sound Skeleton' experiment, called 'Scanning the Space'. In 

this way, the dancer is creating an interactive linear composition either 

consisting of the basic vocal sample sounds or of the abstract sounds. Thus, 

the distribution of the sounds over the space defines the geometric 

ChoreoSonic space.

187 Formants are defined as the resonant frequencies of the vocal tract, i.e. 
the characteristic partials that identify vowels to the listener. See: 
http://www.britannica.com/EBchecked/topic/213806/formant [accessed 
26.02.09].
188 Note that in this experiment I chose to play with existing voice sounds 
instead of designing the sounds from their basic formants because it allowed 
me more time to concentrate on the sound spatialization at a later stage of 
the practical research.
The vocal samples are from the 'Spectrasonics' sample CDR 'Symphony of 
Voices' see: http://www.spectrasonics.net/libraries/svmphonvvoices.php 
[accessed 23.02.10].
189 Freely downloaded from: http://www.freesound.ora [accessed 19.12.08].
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Figure 24 diagram of composition strategy 'Scanning the Space'. 

Movement path 1 of the dancer is represented by the thick black line in figure 

24. Moving down this pathway the dancer sequentially activates the trigger 

spots no. 1, 5, 2, 4, 3, 8, 5, 9, 8 and finally 7.

Movement path 2 of the dancer is represented by the thin black line in the 

diagram. Moving down this pathway the dancer sequentially activates the 

trigger spots no. 4, 5, 6, 2, 3, 4, 6, 8, 6, 5, 9, 8 and finally 7.

The picture shows that the sound composition depends on the direction and 

proximity of the dancer's movement path to the sound trigger spots. The 

irregular geometric distribution of the sounds in space avoids a 'Mickey 

Mouse' effect 190 in the relationship of the compositional sound response of the 

computer to the dancer's movements (DVD: 5-6, CDR: Max 2006 & 2009 

3DIM sub-patches 'Activated spot' & 'Proximity change spots').

From 2007-2009 it was possible to use 5 electronic sensors of the LCIPS 

positioning system as an experiment (the LCIPS system was originally 

developed with just one sensor). I therefore started to experiment with 

triggering sound parameters such as pitch and volume with various numbers 

and positions of these sensors. These experiments (DVD: 7-8, CDR: Max 2008 

sub-patch 'Matrices') show that the ChoreoSonic relationship was unclear due 

to the undefined mapping process that related the movement of various body

190 A term that defines a predictable and therefore unexciting reaction of the 
interactive system.

118



parts to randomly chosen sound parameter variations. As we will see in the 

following sections of this chapter, 3DIM was designed as a more specific 

mapping process in order to create an artistic ChoreoSonic balance.

6.1.3 Kinespheric Movement Data

Using Laban's division of the body as a pentagonal structure with the head, 

the two extended arms and two extended legs as the points of this pentagon 

(see p.93), a sensor was placed on the head, two in the hands and two on the 

feet (fig. 25).

Figure 25 Dancer S. Spasic with 5 sensors of the LCIPS in a pentagonal structure.

This configuration created four 'space modules' (see p.94) for all the limbs 

and one full body positional space that Max could identify as the basic 

principle for the spatial mapping strategies in 3DIM. As noted earlier (p.80), 

Laban defined the pelvis as the centre of the kinesphere and thus of the full 

body movement. It was at this time not possible to attach the sensor unit to 

the pelvis due to the electronic construction (the sensor has to point upwards 

to the ceiling where four receivers are attached to avoid obstructing the 

dataflow). However, it was possible for the sensor on the head to become an 

approximate trigger for the pelvis by subtracting the distance between head 

and pelvis from the derived data. It should be noted that occlusion of the 

RF/US system is still a problem (see p. 107).
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A similar (six sensor) configuration, consisting of acceleromators 191 and 

gyroscopes 192 , was applied by Torre et al. (2007) to measure a dancer's 

movements. The mapping idea in this project was based on Leonardo Da 

Vinci's 'Vitruvian Man', 'a nude male figure in two superimposed positions with 

his arms and legs apart and simultaneously inscribed in a circle and 

square' 193 , taking the male sexual organ as the centre of the body. This 

configuration is very similar to the previously mentioned 'pentagonal 

structure' as defined by Laban (p.93). In a Pure Data 194 patch a 'creation of 

the virtual spherical space around the body of the individual performer' (Torre 

et al. 2007:45) was realized, which the researchers divided in as 'many 

portions or zones as required' (ibid:46). However, an exploration of artistic 

tasks and possibilities was not implemented in this research project.

The chosen configuration of 5 sensors of the LCIPS in this project is able to 

measure the movement within the kinesphere, i.e. the individual spatial 

positions of the limbs in relation to the pelvis, in addition to measuring full 

body motion in space. In this way, a very simple but innovative Motion 

Capture system was constructed. As stated earlier (p. 110), the kinesphere of 

the dancer was calibrated in the Max software to be able to adjust the sound 

parameters to the body size of the performing dancer.

The five separate sets of X-Y-Z coordinate data are added to the 3DIM chart 

(fig. 26).

191 Acceleromators retrieve the acceleration values along the three 
dimensional axes X, Y and Z.
192 Gyroscopes measure rotation or angular speed.
193 From: http://www.mlahanas.de/Greeks/LX/VitruviusMan.htnnl [accessed 
11/06/09].
194 Pure Data (Pd) is a real time music and multimedia environment similar to 
Max/MSP. See: http://puredata.info/ [accessed 06.06.09].
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Figure 26 3DIM implementation chart no. 3: raw kinespheric input data.

6.2 Deduced Spatial Movement Parameters

Deduced spatial movement parameters are the second (algorithmic) 

derivatives of the raw X-Y-Z movement input data from each sensor of the 

RF/US tracking system. In the ChoreoSonic performance area these spatial 

bodily parameters are classified as:

  Proximity. 

Speed.

  Rotation.

  Direction.

In the following section the basic concepts for the use of these four spatial 

movement parameters in 3DIM are outlined.

6.2.1 Proximity

Proximity, or relative distance in the performance space, is an important 

spatial movement parameter that influences the energy of the dancer. As 

Winkler states:

The stage, room, or space also has its boundaries, limiting speed, 
direction, and maneuverability. Psychological intensity increases or
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decreases with stage position, as the audience perceives more energy 
and focus as the performer moves upstage. Apparent gravity pulls the 
performer downstage with less effort, in a way similar to the very real 
pull of vertical downward motion. Intensity may also vary with the 
amount of activity confined to a given space. (Winkler 1995:3)

Similarly, the personal space within any performance can feel smaller when 

there is something/somebody in proximity of the dancer. Proximity to a wall, 

an object or another dancer can limit or obstruct the speed and freedom of a 

dancer's movement.

In a preliminary 'Sound Skeleton' experiment (2007), the proximity of the 

Cricket sensors in the hands of two dancers was measured to trigger 

increases and decreases in the additive synthesizer sound volumes (DVD: 9, 

CDR: Max 2007 sub-patch 'Dancer proximity'). In this experiment the bodies 

did not always need to be close together to modulate the sound volume. 

Rather the sensors could be held close to each other using an extended arm, 

leaving the bodies at some distance from each other. In this way, the distance 

between the two space modules of the dancers' arms is investigated. On the 

choreographic implication of this mapping procedure, Rubidge states: 'this 

gives a quite different emotional nuance to the choreographic forms, and a 

sense of ambiguity to the interrelationship between sound and movement' 

(Rubidge & Wijnans 2008).

As stated above, from 2007 onwards this type of spatial movement was 

measured within the kinesphere of the dancer him/herself by defining the 

relative distance of the different body parts to the pelvis using 5 sensors of 

the LCIPS (see p.128).

6.2.2 Speed

Speed defines the tempo and duration of the movement phrases and is a 

spatial and temporal parameter that has an impact on the spatial bodily 

perception of a dancer. Laban (1966:87) states: 'It seems that if we direct 

our attention towards the end of a trace-form or path, we are more easily 

able to produce a quick movement, than when concentrating on the beginning 

of a trace-form, which seems to delay the flow'. He suggests that this 

consideration is evidence of time as a spatial function.

Another significant observation relating to speed was made earlier (p.68) by 

Stiefel, who remarked that tempo (rhythm) is experienced differently by a 

dancer than by a musician due to the fact that the two artists count tempo in
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a different way. Regarding the fact that speed is a time-based parameter, 

David Topper et al. (2002:3) state: 'Variables [of audio spatialization] can 

also be mapped to trajectory or rate of change, defined by a time-varying 

function, or generated gesturally in real time'. In line with this citation, the 

derived speed parameter is used to emphasize sonically this temporal 

dynamic of the movement path. In several 'Sound Skeleton' creations this 

dynamic is created by the body as a 'living architecture' (see p.81) in space to 

generate the moving 'sound architecture' (DVD: 10-13, CDR: Max 2009 3DIM 

sub-patches 'Speedsample', 'Matrix mapping').

6.2.3 Circular Movement, Rotation and 'Wave-ing'

Circular full body motion involves rotation around the body axis and changes 

the orientation of the dancer in space. Whereas rotation in geometric 360° is 

possible for full body movement by movements such as rolling on the floor or 

making a somersault, this is beyond the anatomical capabilities of human 

limbs. Considering this issue, Longo notes:

Gestures are wavelike in nature. This is because muscles always 
operate in pairs. One muscle pulls in one direction, while the other 
controls the motion by pulling in the opposite direction. (Longo 1996)

This Newtonian phenomenon was earlier observed in the theories of Laban 

(see p.79). Therefore, the term 'wave-ing'195 will be used instead of'rotation' 

for rotational movement of the limbs within the kinesphere of the dancer.

As previously remarked (p. 113), the technology applied to dance movement 

can limit artistic possibilities. In the research undertaken for this thesis, 

measuring rotation proved difficult (DVD: 14-15, CDR: Max 2007 & 2006 sub- 

patch 'Rotation') with the ultrasonic systems due to the fact that the sensors 

must point upwards to the sensors on the ceiling to be seen by the system 

(see p. 104). Therefore, downward turns of the sensor cannot not be 

measured. However, in the next section an experiment is shown in which 

these limited circular and wave-like movements are measured in combination 

with movement direction.

195 The term wave-ing is used here to make a distinction from 'waving' as the 
image of the 'hello/goodbye' wave.
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6.2.4 Direction

Direction of movement path and spatial dimensions are important elements in 

dance because, firstly, the dancer can only fully 'scan' the spatial 3D 

environment by changing his/her orientation either in a full body circular 

movement and/or by including height transitions (jumps), and, secondly, 

because a direction within the kinesphere is limited by certain body 

constraints. As Winkler stated above, direction towards certain spatial 

elements such as boundaries of the stage, room, or space can influence the 

speed or comfort of the dancer's movement. In line with this view, Laban 

(1966:122) states: 'Retardations and accelerations as well as the increase of 

intensity depend on directional intricacy'. Therefore, direction is an 

interdependent element that can only be fully incorporated as a spatial 

movement element when also taking other movement parameters 

(orientation and speed) into account. A ChoreoSonic effect can develop based 

on the circular and wave-like movements, combined with the movement 

direction. It would, for example, be possible to define and change the 

direction and length of a sonic pathway by using the spatial distance of the 

movement path in the interactive environment as a parameter (DVD: 16, 

CDR: Max 2009 3DIM Sub- patch 'Direction').

In figure 27 the four deduced spatial movement parameters, proximity, 

speed, rotation and direction, are added to 3DIM.
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Figure 27 3DIM implementation chart no. 4: deduced spatial movement parameters.

6.3 Sonic Output

This section presents a discussion that focuses on sonic compositional 

mapping strategies that are designed for sonic interpretation of the first and 

second movement data derivates. The number of possible movement phrases 

is as numerous as the number of sonic possibilities. This implies that, even if 

it is possible to define a spatial movement phrase with a limited number of 

sensors (as is the case in this research), a rich spatial sound composition 

relating to the varying space of the body might still arise. When referring this 

issue to the DMI design field, Garnett & Goudeseune remark:

One might then think that all the instrument builder needs to do is 
supply as many controls into the synthesis as possible. However, this 
can lead to a cognitive overload problem; an instrument may have so 
many controllable sonic parameters that performers cannot attend 
fully to all of them at once: they need a mental model simpler than 
brute-force awareness of every detail. (Garnett & Goudeseune 
1999:2)

In line with Garnett & Goudeseune, Rovan et al. also note, from a 

choreographic point of view, that:
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The dramatic effectiveness of a dance, however, invariably depends 
on myriad factors movement dynamics of body parts and torso, 
movement in space, location on stage, direction of focus, use of 
weight, muscle tension, and so on [...] what we perceive in dance is 
highly filtered and often illusory the choreographer and dancer work 
hard for this effect. Indeed, the quality of flow at one moment may 
dominate our perception of a phrase so much so that individual 
shapes of the body go unnoticed. (Rovan et al. 2001:44)

These quotations point us to the fact that adding a multiple dimension of 

trigger parameters won't necessarily result in a satisfactory ChoreoSonic 

composition. For this reason, only two sonic output forms were chosen in the 

'Sound Skeleton' creations:

  Additive Synthesizer. 

Samples and Effects.

6.3.1 Additive Synthesizer

I developed an elementary real time interactive additive synthesizer in 

Max/MSP (2006) to give the dancers freedom to alter the timbres of the 

sounds with their movements. David Wessel (1979:46) states: x ln the 

additive model for sound synthesis, a tone is represented by the sum of 

sinusoidal components, each of which has time-varying amplitude and 

frequency'. In the preliminary Max patch (CDR: 2007, sub-patch 

'synthesizers'), the additive synthesizer consists of eight partials (the 

sinusoidal components). The additive synthesizer parameters used for the 

sonification 195 are: frequency of the total timbre, amplitude modulation, 

modulation depth and duration/tempo. These parameters are added to the 

3DIM implementation chart no. 5 (fig. 28).

196 The term 'sonification' is used here in the context of enabling or enhancing 
a translation of input data into sound in order to find relationships in those 
data, in this case specifically between movement and sound.
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Figure 28 3DIM implementation chart no. 5: additive synthesizer parameters.

Several 'Sound Skeleton' experiments (DVD: 17-19, CDR: Max 2007 sub- 

patch 'synthesizers') using this preliminary Max patch took place during the 

testing of the prototype Cricket system (University of Chichester 2006-2007). 

However, I decided to restrict the sonic output to samples after this research 

due to the unsatisfactory sonic results.

6.3.2 Samples and Effects

A wide range of samples with either an organic character (vocal samples, see 

p.117) or an abstract character (ranging from machine, gaming, synthesizer, 

ticking sounds etc. 197 ) had been chosen for basic sound generation. Samples 

were pre-edited in Logic Express 198 to prepare the sounds for looping and 

further effects processing in Max/MSP. Several of these samples have already 

been demonstrated in previous video extracts (DVD: 5-8, 10-13 and 16).

197 Downloaded from: htto://www.freesound.org [accessed 19.12.08], 
198 See: http://www.aDDle.com/loqicexpress/ [accessed 26.09.08].
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In two other Sound Skeleton experiments I investigated the ChoreoSonic 

relationship further. In the first experiment the position of the sensor on the 

foot (that triggers the sound) is taken as the centre of movement (DVD: 20, 

CDR: Max 2009 3DIM sub-patch 'Bodypart proximity'). In this experiment the 

dancer's body is more specifically turned into a musical instrument when the 

proximity of a limb to the pelvis determines the pitch of the sound. In the 

second experiment, I also asked the dancer to concentrate on the movement 

of her feet, although the sound was triggered by the sensors in her hands. In 

this way a certain 'contra' ChoreoSonic relationship is created (DVD: 21, CDR: 

Max 2009 3DIM sub-patch 'Bodypart proximity'). In these examples it is 

shown that the technology has an influence on the movement choreography 

and, consequently, on the sonic output.

For reasons of clarity, the parameter changes of the samples that influence 

the spatial perception of the sound will be listed in the next section. 

Therefore, in this 3DIM implementation chart (fig.29) only the choice of 

sample (organic or abstract), the possibility to interactively change samples 

(as demonstrated in Case Study 2, see 6.1.2) and the addition of (vst plug-in) 

effects are listed.
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Figure 29 3DIM implementation chart no. 6: samples and effects.
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6.3.3 Case Study 3: Showing at the University of Chichester (U.C.), 
UK (12/01/2007).

Choreographer: Sarah Rubidge

Dancers: Carrie Whitaker, Guy Adams

Sonic artist, Max/MSP: Stan Wijnans

System engineer: Stan Wijnans

This case study took place during a showing at the University of Chichester in 

January 2007. The showing demonstrated the outcome of a collaborative 

research project undertaken by Rubidge and myself. The mapping concept of 

this case study is linked to a review of a scientific test that was undertaken by 

Wanderley et al. (2000a) in an engineering R&D project. The research team 

submitted a theoretical relationship between gestural parameters and musical 

parameters to a practical test. In that project a Wacom graphic tablet was 

used as the controller device in combination with force sensors (pressure). 

One-to-One mapping strategies (see p.48) were applied with participating 

subjects who had some musical experience, but no experience in using the 

Wacom graphic tablet. In table no. 2 the mapping layer is shown.

X position
Pressure sensor
Pressure of stylus

Fundamental frequency
Vibrato (modulation)
General amplitude

Table 2 Mapping layer in the test case by Wanderley et al. (2000a).

In the 'Sound Skeleton' experiment undertaken for Case Study 3 the aim was 

to research how two dancers would respond sonically to a similarly simple 

mapping layout. According to Lovell et al. (1996:8), 'Weight-effort is aligned 

with the vertical dimension, space-effort with the horizontal dimension and 

time-effort with the saggital dimension'. The X-direction of the dancer in 

space was therefore chosen to change the fundamental frequency of the 

resulting combination of the 8 partials in line with Wanderley et al. (2000a). 

Jumps (vertical dimension), that attempt to defeat gravity and weight, were 

chosen to manipulate modulation depth, and speed to change the volume, in 

line with Lovell et al. (1996). In table no. 3 the mapping layer chosen is 

shown.

X direction
height direction
Speed

Frequency
Modulation
Loudness

Table 3 3DIM for two dancers and additive synthesizer.
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In addition to this mapping layer, the position of the full body of one dancer 

activated 14 spots to trigger opera vowel sounds, as described in Case Study 

2 'Scanning the Space' (6.1.2).

Due to limited technical resources - lack of availability of 8 full range speakers 

- eight small PC speakers were set up in a cubical form to try to achieve full 

sphere spatial sound (see p.88). A beta version of the ambisonic software 

developed by D. Hunt in Max/MSP was used for the 3D spatialization of the 

sound (CDR2:2007-2). During the showing, the viewers were allowed to freely 

walk around inside the performance space (see p.93) to experiment with 

Rubidge's notion of creating an installation in which a performance takes place 

in amongst the visitors to the installation. 'In a non-optical setup such as the 

Cricket system, such a strategy is possible' (Rubidge & Wijnans 2008). The 

movement improvisation took place inside and outside the sensitive area of 

the ChoreoSonic environment. The sensitive area was marked with white tape 

on the floor (fig. 30).

Figure 30 The sensitive floor area marked with white tape. From left to right: 

S. Wijnans, C. Whitaker, G. Adams, S. Rubidge.

First, the dancers engaged in a ten-minute improvisation, using the micro- 

and macro- improvisational structures that were developed during the 

research period. Dancer Whitaker (f) changed the frequency, modulation and 

loudness of a bell sound that was processed by the interactive additive 

synthesizer with her movements. The moving 3D sound position was directed 

to the opposite spatial position of her moving body. Dancer Adams (m) 

changed the same parameters of a basic sine wave when moving inside the
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sensitive area. He also triggered a voice sample according to his position in 

the sensitive area. The position of his allocated sound in space was directed to 

the same position as his movements. The sounds stayed in their last 

processed position when the dancers moved outside the sensitive area.

Unfortunately the spatialization of the sound was difficult to perceive 

accurately by the dancers as well by the attending audience. This was due to 

the fact that PC speakers are not full range (needed for ambisonics - see 

p.88) and because I positioned the sounds spatially opposite from Whitaker 

and close to Adams. Both these decisions made the spatial effect hard to 

perceive for the dancers, either because the sound was far away and 

therefore relatively quiet (Whitaker) or the sound was always moving in the 

same direction (Adams), i.e. very near to him.

Rubidge and I then gave a brief explanation of both the technological and 

artistic principles underlying the outcomes of the research, using the dancers 

to demonstrate certain aspects of the system. The dancers then performed a 

second ten-minute improvisation to allow the audience to view the systems in 

operation in the light of their new knowledge. At this time, both dancers also 

triggered an abstract sample when exceeding a set speed threshold. We 

actively encouraged the audience to move in the active space from time to 

time to ascertain what such a dialogue between audience and performers 

would look like (DVD: 22, CDR: Max 2007 main patch button 'demo 1' and 

'demo 2') from both the inside and outside point of view (see p.93). Figure 31 

shows the 3DIM implementation chart used in the showing.
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Figure 31 3DIM implementation chart no. 7: Showing at University Chichester.

6.4 Sonic Spatiality

In this section, I will categorize the different sound parameters that influence 

the spatial perception of sound according to generally accepted or scientific 

premises. The aim of this part of the research is to be able to incorporate the 

observed spatial sonic elements into the development of the 3DIM mapping 

strategy to allow the modulation of both the texture, direction and sonic reach 

of the interactive environment. Please note however that, as stated earlier 

(p.91), a precise and 'naturalistic' fidelity of sound perception is not a major 

issue in my research. However, it is useful to be aware of the scientific 

findings in order to be able to alter the spatial sound perception with the 

movements of the dancer.
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The spatial sonic parameters are defined as:

Volume & Panning. 

Frequency.

  Reverb.

  Delay.

6.4.1 Volume & Panning

Volume and panning are two features that have generally been accepted as 

having an impact on spatial sound perception. For example, in the MSP 

manual it is stated that:

All other factors being equal, we assume that a softer sound is more 

distant than a louder sound, so the overall loudness effect created by 

the combined channels will give us an important distance cue ... 

panning must be concerned not only with the proper balance to 

suggest direction of the sound source; it must also control the 

perceived loudness of the combined speakers to suggest distance. 199

In an acoustic context, Blauert (1997b:108) states: 'Spaciousness increases 

sharply with increasing sound level'. He outlines that when the volume of an 

orchestra increases, the sound space is extended accordingly in the median, 

frontal and horizontal planes (fig. 32).

.00000 
oo

orrhi^.ih u **>
listener

low sound 
level

high sound 
lovel

Figure 32 To explain the effect of auditory spaciousness (Blauert 1997b: 109).

199 From MSP manual Tutorial 22 'Panning for localization and distance effects' 
online] available from: http://www.cvclinq74.com/docs/max5/tutorial5/rnsp- 
tut/mspchapter22.html [accessed 10.08.08],
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Therefore, the overall volume created in the spatialization software should 

give the listener an important distance cue. The applied panning should 

provide the required volume balance between loudspeakers. For this reason, 

it is important to level the initial volumes of all loudspeakers in the 

ChoreoSonic environment.

6.4.2 Frequency

It was shown in several psycho-acoustic experiments by Blauert (1997b) that 

the frequency spectrum is not only significant for the timbre of the sound, but 

also for spatial sound perception. In a sound source, that is normally 

composed of a frequency spectrum of different highs and lows, the various 

frequencies might be perceived as coming from different spatial locations. For 

example, Erich Von Hornbostel reported in 1926 that 'the song of a bird 

constantly changes position, though the bird may not' (quoted in Blauert 

1997a:43). Low frequency signals are 'perceived as being particularly present 

and forward oriented', signals in the midrange (centered around 1 kHz) 

'sound rather diffuse in space and sometimes even sound as if they are 

coming from behind the listener' and 'signals with strong components around 

8 KHz lead to auditory events above the horizontal plane under a greater or 

smaller angle of elevation' (Blauert 1997b:106).

It was stated previously (p.89) that the physical characteristics of the 

listener's head and ears determine a frequency dependent response to sound 

position. Therefore, a HRTF (head related transfer function) algorithm is 

applied in ambisonic decoding. Music and sound will consist of a varied and 

dynamic frequency spectrum. For this reason, it is important to realize that, 

when frequencies have their own inherent movement (see Von Hornbostel 

above), an exact controlled direction of the spatial sound is hard to achieve.

6.4.3 Reverb

Although reverberation contributes to the spaciousness, Blauert (1997b:110) 

notes that 'A too strong and too long reverberation leads to a smearing of the 

sound signals in time and thus to a loss of sharpness in articulation and 

clarity'. I tested this statement in several 'Sound Skeleton' compositions 

(DVD: 23-24, CDR: Max 2009 3DIM) to see if, and to what extent, reverb 

would disturb the perception of the spatial sound. As can be heard in the 

video excerpt, I concluded that adding reverb emphasizes the perception of 

the spatiality of the dancer's 'space modules' (p.94). However, the localization

134



of the sounds in space was more difficult to achieve. Therefore, reverb should 

be applied with caution unless a widening of total space is desirable.

6.4.4 Delay

This parameter is another important element that helps the brain to locate 

moving spatial sound. Blauert showed that with zero to very short delays (up 

to 1 ms) 'the percept drifts off to the earlier sounding loudspeaker' but with 

longer delays (over 80ms), an echo towards the earlier sounding loudspeaker 

is perceived (1997b:107). It was concluded that 'One factor that contributes 

to the spatial impression is the characteristic temporal slurring of auditory 

events that results from late reflections and reverberation' (ibid 1997a:348). 

Delays and echoes originating from reflections from the walls and ceiling can 

also diffuse the perceived sound signal direction. However, these reflections 

are not considered in this thesis as this acoustic factor is beyond the scope of 

this research.

As shown above, volume, panning, frequency of the sound, reverb and 

delays/echoes have an influence on how we perceive the direction and 

spatialization of sound. Therefore, I add these four elements as spatial sonic 

parameters to the 3DIM chart (fig.33).

135



Sonic Interpretation Sonic
Spatia!
Structure

Figure 33 3DIM implementation chart no. 8: sonic spatial structure parameters.

6.5 Interdependent Spatial ChoreoSonic Relationship

In this section, three 3DIM mapping strategies are proposed that emphasize 

the influence of sonic spatiality on movement choreography. The aim is to 

emphasize the 'transonic' perception (see 4.1.2.2) of the performative event. 

The three mapping models are labeled:

  'Beep-Stop' Model.

  'S-E-N-S-I-O' Model.

  'Vector' Model.

A spatial ChoreoSonic relationship can evolve by starting either from a sonic, 

or a choreographic perspective. In order to support these strategies they are 

underlined by several references from the appropriate field.

6.5.1 'Beep-Stop'Model

Dance researcher Duerden (2005) remarks in her paper 'Dancing in the 

Imagined Space of Music':
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Physical movement, perceived visually, is much more sluggish than 
movement in sound can be; this is a spatial issue, of course - a 
human body has to get from here to there by passing through all the 
space between; it cannot simply be 'here' and then be 'there'. 
(Duerden 2005:29)

She observes that dancers move linearly, but sound can be linear or non­ 

linear. In a philosophical sense, Manning (2006) talks about the 'stop-gap of 

perception: about a half second'200 . This space-time perception is inherent to 

the fact that we perceive events according to a composition of these 'holes of 

experience' (ibid)', we perceive the world with a delay. In the following I will 

propose a way in which a dancer is able to 'beep herself around' (being here 

and being there) in the created virtual space, emphasized by the interactive 

spatial sound.

In the ChoreoSonic environment, it is possible for a dancer to break down 

her/his fluent interactive movement trigger by occluding the sensor with the 

hand, other body parts or another dancer. Another way to stop the sensor 

from working (and thus create a 'stop-gap' in the sound composition) is 

stepping or jumping outside the sensitive range of the system. In the 

research undertaken, the centre was moved outside the borders of the 

sensitive area, which gives the dancers a method which allows them to 

choose to switch sounds on and off, or 'leave' the sound in the last position 

the sensor was placed (DVD: 4, CDR: Max 2007). The dancer desynchronizes 

the movement of the body and the spatial sound. In this way, the sound is 

beeping around spatially by virtue of the quick 'beeping' occlusion of the 

sensor by the dancer. This creates an interesting choreographic element, 

especially when this is done at the high speed that is necessary to achieve an 

obvious spatial and rhythmic sonic effect.

6.5.2'S-E-N-S-I-O' Model

Previously (pp.83-84), I referred to Rubidge & MacDonald (2001) who used 

the term 'choreographic sensibility' to indicate that the choreographer in 

interactive environments brings a certain sensibility to the choreographic

200 Bergson (1911) and Whitehead (1922) philosophised about the half-second 
gap or discontinuity in our experience, before this 'readiness potential' gap of 
the conscious mind was scientifically proved by Libet (2004) in the late 60's.
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design of not only the performers, but also of the architecture of the space 

itself. To investigate this idea of incorporating the spatial environment, I 

allocated different trigger parameters to the sensors in the hands of the 

dancer in order to modulate only one sound. I composed a short compilation 

of pop music and abstract samples that were switched on or off when the 

right hand movement of dancer Spasic exceeded a certain set speed 

threshold. This process was marked by another abstract sample to tell the 

dancer that she had switched on or off the composition. The height of Spasic's 

left hand changed the pitch of the composition. The position of the whole 

body in the sensitive area subtly changes the amount of reverb.

In this way, the architectural space of the body and the spatial environment 

was sonically choreographed by choosing several spatial parameters in 3DIM 

and by moving from one extreme corner of the Surround Sound space to the 

opposite corner. Here, the movement space of the dancer is directly linked to 

the generated sound changes and the spatialization of the sound (DVD: 25, 

CDR: Max 2009 3DIM).

6.5.3 'Vector' Model'

Duerden (2005) further remarks that 'music notes can move much faster than 

the human body'. This is clearly true, and in an interactive virtual 

environment this fact is a particularly productive feature to explore as an 

artist.

When combining the two models described above, we are able to shift the 

spatial perception purposely and create another spatial possibility. In a 

ChoreoSonic project, the pathways that the dancer creates can be 

interrupted, combined or extended by setting various starting points in the 

ChoreoSonic performance area. To achieve this, a dancer can start from any 

spot where she has been able to hide, either behind a stage curtain, an object 

in space, a viewer or another dancer (when more than one dancer is involved 

in the practice). By influencing the spatial perception of an audience member 

(who is also moving within the ChoreoSonic environment, see p.93) whilst 

choosing these different points of view, the pathways of the dancer become 

vectors that can start from any point in space. In this way the viewer's 

changing perception of the dancer can trigger different processes of the sonic 

and spatial elements. This spatial 'playfulness' makes it possible to 'shoot' 

sounds around according to a sudden 'sensitive displacement' of the dancer in 

the space.
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The purposely chosen 'invisibility' of the dancer by either occluding the sensor 

('sonic invisibility'), or by starting to move from different visible positions in 

space ('movement invisibility') can place, replace and displace the virtual 

sound body. The perception of the spatialization of the sound is particularly 

dependent both on the position of the dancer as well as of the position of the 

listener in the ChoreoSonic performance area. In this context the 

performative environment is not just an inactive ambience, but is altered by 

the movements of the interactive agent (here the dancer) through a 

responsive immersion of the spatial sound. The freely chosen dynamic 

positioning of the listener can further moderate the perception of the sonic 

space.

6.6 Equipment used

The initial sound composition in the studio used a Kawai MM-16 16 channel 

MIDI mixer to imitate the moving sensors on the body.

The preliminary practical research at the University of Chichester (2006-2007) 

used two networked Apple G4 laptops (OSX 10.4 867 MHz & IGHz). The first 

one processed the Cricket data reception and the sounds in Max/MSP 4.5.7. 

The Cricket data were transferred over a network to the second laptop and 

the sounds were transferred using a 4-Out Echo Indigo DJ soundcard.

The second laptop spatialized the incoming 4 sound channels from the first 

laptop in a Max/MSP 4.5.7 patch running the ambisonic tools and a RME 

Hammerfall Multiface 8In/8Out soundcard. The eight outputs were connected 

to 8 small Sony PC speakers. Sounds were mixed with a Behringer 1622-FX 

8/8 mixing desk. The initial patch uses a beta version of Max 4.5.7 tools for 

ambisonic sound spatialization (developed by David Hunt, UK).
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Figure 34 Technical Set Up 2006-2007.

The final version of 3DIM was designed and operated using a Mac Pro 3 Ghz 

Dual-Core Intel computer under OSX 10.4.11 and Max 4.6.3. 3DIM is 

developed to use audio interfaces that have eight analogue audio outputs. In 

the research a RME Hammerfall Multiface Interface was used as mentioned 

above. The 8 separate outputs of the Multiface communicated the spatialized 

sounds that were mixed using a Behringer 1622-FX 8/8 mixing desk, to 8 

self-powered Mackie or Peavey speakers.

The final patch uses Max 4.6.3 tools for ambisonic sound spatialization 

developed by the Institute for Computer Music and Sound Technology in 

Switzerland (ICST 1.2).
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6.7 Summary "Three Dimensional Data Interpreting 
Methodology'

In this chapter the development of 3DIM has been described. 3DIM is a 

methodology that strives for a greater vocabulary and nuance in the mapping 

process in the computer as suggested by Downie (2005). It defines a 

classification of the (incoming) spatial movement parameters and those of the 

(processed) spatial digital audio data. The following four (spatial) parameter 

mapping categories have been defined:

1) Raw movement input data.

2) Deduced spatial movement data.

3) Sonic output.

4) Sonic spatial structure.

The description has been accompanied by 3DIM implementation charts and 

video excerpts that showed the results of the undertaken 'Sound Skeleton'

creations. These either helped to develop, or tested the strategy of 3DIM. A
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number of creative options for mapping spatial body movement parameters to 

spatial sound parameters have been described.

Several conclusions can be drawn from the practice undertaken. In the first 

instance (2006-2008), it showed me that choosing a large selection of 

movement and sound parameters blurs the perception of the interactive 

ChoreoSonic relationship. It was also shown that sounds should be clearly 

defined to be able to achieve a transparent spatial relationship between 

movement and sound. Apart from these parametrical issues, it also transpired 

on several occasions that the dancer needed more training time, in particular 

to adjust to the latency (about half a second) of the RF/US system. It was 

also concluded that the obvious visibility of the sensors on the dancer's body 

might obstruct an objective perception of the ChoreoSonic relationship due to 

the fact that the viewer focuses on the movements of the sensors. As such 

the sensor becomes a 'remote control' for the sound.

The ChoreoSonic relationship was further investigated by creating a variety of 

'Sound Skeleton' experiments and compositions that explored the distances of 

the four space modules of the body, the kinesphere of the body and the peri- 

personal space of the dancers. At the final stages of the practical research, 

the architectural space of the body was sonically choreographed when 

proposing three theoretical 3DIM parametric models that emphasized a 

'tranSonic' perception of the performative event: the 'Beep-Stop' Model 

(creation of a non-linear ChoreoSonic event), 'S-E-N-S-I-O' Model 

(choreographing sonic space) and 'Vector' Model (shifting the spatial position 

of movement and sound). In these models, the collaborative work of the 

dancer and the sonic artist has been presented as an interdependent, rather 

than a dependent, collaboration in which the spatial sound is able to guide the 

dance improvisation. These models indicate that interactive spatial surround 

sound can give rise to new choreographic strategies that emerge using the 

interactive technology created in this PhD research project.

In this chapter, the elements for artistic development and some of the wide 

choices of artistic possibilities using the enabling technology and the software 

development discussed in this thesis have been outlined and demonstrated 

through a description of a series of artistic experiments and compositions. 

These show that, in the 'Sound Skeleton' creations, the technology evokes a 

dynamic sonic representation of the improvised ChoreoSonic environment 

generated by the well-trained proprioception and spatial awareness of the 

dancer.
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Chapter 7 Conclusions and Future Work

This chapter concludes the research undertaken in this PhD project. In the 

introduction (Ch.l), it was observed that the spatial dimension of sound has 

rarely been incorporated in sound compositions made for dance performance. 

Therefore, in this research project the different spatial elements involved in 

both disciplines have been explored through a theoretical and practice-led 

methodology. In order to fully investigate the initial research questions - 

namely, which technical and artistic elements make it possible to create a real 

time spatial ChoreoSonic performance environment and what is needed to find 

a satisfactory artistic mapping relationship between the spatiality of dance 

movement and spatial sound composition in an interactive context - the thesis 

was divided into two parts. Part I, the 'general normative research', evaluated 

theoretical design strategies undertaken by artists and researchers in the field 

and Part II, the 'normative case study', presented several practical case 

studies devised to test new design strategies and technologies, and described 

the final artistic outcome.

PART I General Normative Research

7.1 The Theoretical Research

The thesis began with an investigation of the different types of technological 

discourses in art environments in which the applied technologies relate to 

and/or might enhance the intended art creation.

The first chapter (Ch.2) presented a review of a number of gesture based 

sonic projects describing the technical systems used and the artistic outcome 

created. Several pioneers (Waisvisz, Sonami, Rovan, the Sensorband) were 

described. These artists designed new digital musical interfaces for 

sonification and musical control. The sonic data measurement methods of 

these DMIs were classified as 'object location in space' and 'moving body part 

tracking'. These interfaces added movement, choreography and physical 

activity as a visual element to the sound performance by measuring the 

gestures needed to create and influence the digital sound creation.

In the next chapter (Ch.3), these sound-based developments were shown to 

be predecessors to movement-based interactive technologies. An analogy was 

observed between the sonic data measurement methods used in 'object 

location in space' and 'moving body part tracking' and the movement data
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measurement methods used in 'full body motion capacity' and 'personal space 

tracking techniques'. The review of interactive movement based technologies 

(sensitive dance floors, breaking beams, camera tracking, electronic body part 

motion sensing systems and motion capture systems) underlined the need to 

clearly define the technical capabilities and shortcomings of real time tracking 

systems. The specifications of these technologies have a major impact on the 

possibilities for artistic development, i.e. the sensitive geometric range and 

dimension of the system, and the data resolution and speed of the data 

transfer. Apart from these factors, it is important to be aware of restrictive 

issues such as access and availability, financial implications, required 

operational expertise, and the limited available research time.

Several examples (i.e. Bevilacqua, Camurri, Rokeby, Winkler, Troikaranch) 

showed that mathematical actions may need to take place on top of the 

artistic decisions before it's possible to map human motion to sound. It was 

noted that these unavoidable technical limitations are not necessarily 

counterproductive, but open up other avenues of creative explorations. At the 

end of the chapter, motion analysis and gesture recogniton techniques were 

described as examples of more specific data mapping methodologies. 

However, it was questioned whether these techniques - digitally processing 

the unique expressive qualities of the highly skilled movement artist - are 

artistically productive.

Thus it was outlined that hardware and software technology have, firstly, an 

influence on the movements that are needed for the artistic result and, 

secondly, on the final artistic (sonic) outcome. Unfortunately a precise, 

accessible and affordable system for measuring dancers' movements is still 

unavailable. Therefore, the decision was taken to pursue the practical 

research with RF/US systems that offer suitable 3D measurement capabilities, 

ease of access and a fast installation procedure.

In chapter 4, the digitally enhanced spatial ChoreoSonic environment was 

discussed in order to contextualize the central artistic methodology in this 

study. In this last theoretical research chapter it was argued that in such an 

environment, computer technologies are firstly able to influence the shape of 

movement and choreography and secondly to redefine the principles of space 

and time. In the same way, the spatial perception of sound can influence the 

sense of choreographic spatiality of both the dancer and the audience. The 

notion of playful improvisation, based on the dancer's knowledge of the
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capabilities and shortcomings of the applied technical system, is recognized as 

the main movement strategy in the ChoreoSonic environment.

In line with Laban (1966), the moving body is regarded as a 'living 

architecture' that changes its pathways (and thus position) in general space 

as well as the cohesiveness of the body structure. The latter is determined by 

the personal space (kinesphere) of the body and is bound to the framework of 

the body, but mobile in the context of general space. This 'living architecture' 

moves in the three geometric spatial planes: horizontal plane (left - right), 

median plane (forwards - backwards) and frontal plane (up - down).

It was outlined that three elements assist human beings in the self-perception 

of the position of the body in general space: proprioception, kinesthesia and 

the peri-personal space. These elements suggest the possibility of the 

transcendence of conscious body limitations by the dancer, a perception that 

surpasses the usual limits of conscious bodily boundaries. In this context, I 

proposed the term 'tranSonic' perception to identify the perception of a 

ChoreoSonic interactivity in which sound becomes almost tactile and visible: 

'sound as a disembodied movement' and 'dance as an embodied sound'. This 

ChoreoSonic perception exceeds the usual limits of ordinary experience by 

moving the movement-sound relationship closer to the body by adding a 

second (auditory) skin to the dancing body (Verstraete 2005) as a 

performative transcendence of body limitations. The use of real time 

ambisonic software, that is able to move sounds around in a three 

dimensional coordinate system based on the same geometric plane theories 

that determine the bodily space, makes it possible to design a 'living sonic 

architecture' that represents the 'living architecture' of the body.

After the contextualization of the ChoreoSonic environment, it was 

determined that the tracking system should measure the moving body 

structure and its mobility in general space. Therefore, the decision was taken 

to place five sensors on the body according to Laban's pentagonal structure 

(1966). The 3D localization of the sound allocated to the sensor on the head 

(measuring the position of the pelvis as the centre of full body motion) is 

directed by the dancer's pathway in the ChoreoSonic environment. The four 

sensors attached to the limbs spatially direct their individually allocated 

sounds according to the four space modules of the body (Kirstein 1953). In 

this way, the sounds move in the three geometric spatial planes according to 

'living architecture' of the body.
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A visualization in Max/MSP/Jitter of the movements of the sensors attached to 

the dancer's body is regularly projected on a screen during the 'Sound 

Skeleton' creations as a guide for the interactive real time ChoreoSonic 

spatialization process. The perception of the spatial ambisonic sound is 

realized by using eight full range speakers that are set up in a cubical form at 

the edges of the sensitive ChoreoSonic environment.

PART II Normative Case Studies

7.2 The Preliminary Technical Research

Chapter 5 described a case study of the development of the prototype 

'Cricket' RF/US system. In this practical research period (2006-2007) the 

technical and choreographic potential of the system was explored using a 

preliminary surround sound mapping patch in Max/MSP/Jitter, with eight small 

PC speakers to realize 3D movement of the spatial sound. Several 

disadvantages of the tracking system were identified such as the physical 

dimension of the sensor boxes, long latency, occlusion and a slow update 

rate.

When the development of the Cricket system was postponed, the 'Low Cost 

Indoor Positioning System' (LCIPS) became available. LCIPS is able to track 

up to 6 RF/US sensors synchronously. Although this system suffers from 

similar limitations as the 'Cricket' system, it afforded a significant advantage 

with its ability to track 5 sensors simultaneously.

After these initial technical investigations, it was concluded that the 

technology should only assist to the best of its abilities in realizing the original 

artistic idea, not merely serve as a goal in itself. Therefore, no other systems 

were further investigated and the choreographic and sonic possibilities, and 

the limitations of these RF/US systems were fully explored during the 'Sound 

Skeleton' creations.

7.3 The Final Artistic Outcome

In chapter 6, the theoretical research dimensions described in chapters 2-4 

culminated in the development of the Three Dimensional Data Interpreting 

Methodology (3DIM). It is the use of two wireless RF/US systems, the Cricket 

system and the Low Cost Indoor Positioning system (LCIPS), that has been 

explored here. The 'data body space' derived from these systems has been
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defined by introducing the 3DIM strategy that is implemented in the specially 

created Max/MSP/Jitter software.

3DIM is a subjective ChoreoSonic mapping matrix that combines and 

categorizes the time-space-rhythm movement parameters that modulate the 

parameters of the interactive spatial sound:

- Raw movement input data (full body motion data, kinespheric movement 

data).

- Deduced spatial movement parameters (proximity, speed, circular 

movement, rotation and wave-ing, direction).

- Sonic Output (additive synthesizer, samples, effects).

- Sonic spatiality (volume / panning, frequency, reverb, delay).

This process was used as an index and concept for the realization of a range 

of real time spatial 'Sound Skeleton' experiments and compositions created by 

the dancer(s). The aim of my research has been to design an open structured 

system consisting of a flexible software interface that can be adjusted to the 

tracking system used (as realized in the 3DIM 'MIDI' and 'calibration' Max 

sub-patch, see CDR: 3DIM) and the individual artistic needs of the 

choreographer and sound composer (as realized in the 3DIM 'mapping matrix' 

sub-patch, see CDR: 3DIM).

From the reviews and discussions in chapter II-IV, it becomes clear that 

numerous artistic possibilities arise because complex mapping strategies 

might evolve when mapping the performer's geometric 'gesture space' to the 

listener's 'perceptual space'. The level of interaction between the movement 

artist and the sonic result can vary greatly. In the practical research, the 

improvising dancer has demonstrated different combinations of the noted 

spatial movement parameters, the available sonic layers and the parameters 

that modulated them in 25 concise ChoreoSonic 'Sound Skeleton' creations 

(see DVD: 1-25). These have tested and demonstrated 3DIM, applying the 

two RF/US tracking systems. The dancer was trained to interact with the 

elementary sonic layers, concentrating on movement and sonic parameters 

separately, before beginning to combine the determined ChoreoSonic layers in 

different mapping configurations. The 'Sound Skeleton' creations showed that 

computer technologies and spatial digital sound are able to influence the 

shape of movement and choreography and to redefine the traditional 

principles of space and time by realizing a 'tranSonic' perception in the

interactive ChoreoSonic environment.
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7.4 Evaluation and Future Work

The investigations in this thesis have described technological discourses with 
artistic outcomes, and the spatial movement and sound context from the 
perspectives of researchers and artists. These theoretical and practical 
findings have created a meaningful relationship between the dual activities of 
spatial movement and sound in performance practice within the development 
of 3DIM.

After these investigations, I can articulate the details inherent in the proposed 
term 'tranSonic' perception by pointing out several contra distinctions in the 
ChoreoSonic experience that are generated by the sound environment:

Embodied - Disembodied (a second, auditory skin is added to the 
body and exposed in the performance space).

Intimate Space - Open Space (the intimate 'auditory skin' of the 
dancer changes the perception of the open performance space in 
which the spatial sound affects the choreographed movement).

  Object - Subject (the objective sound parameters are directed by 
the subjective experience of the dancer).

Human - Computer (the duality of what is most human and what 
is most machine can be an inspiration for the artist(s) involved).

This research project, and the theoretical and practical research it developed, 
has provided the basis for an artistic mapping methodology that draws upon 
and offers an overview of technical systems for use by interdisciplinary 
interactive artist-researchers. Future studies on the development of an 
interactive ChoreoSonic performance environment and the implementation of 
new mapping strategies should lead to full performance events accompanied 
by research writings in the form of papers, book chapters and presentations in 
conferences and practical workshops. As technology rapidly progresses, it is 
anticipated that the applied tracking system will be updated or replaced. The 
3DIM software will be developed and adjusted when new tracking 
technologies become available. Recently, technologies such as the wireless 
Wii game controller by Nintendo201 , that features motion sensors with six 
degrees of freedom 202 , or 'Project Nato', for controller free gaming by XBox203 ,

201 Wi-Fi IEEE 802.11 b/g and Bluetooth 2.0 (EDR).
202 The wireless signal can be detected within 10 meters of the console. 
However, the resolution and CPU speed are generally low, see: 
http://www.whatconsole.co.uk/wii.php [accessed 29.07.08].
203 See: http://www.xbox.com/en-US/live/proiectnatal/ [accessed 23.07.09]. 
However, at the time of this writing the system has not yet been marketed.
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possess cheap and more widespread properties. The data derived from these 

new technologies can be received in Max/MSP over MIDI or OSC and mapped 

in the 3DIM software for use in an interdisciplinary setting with dancers, 

composers, technicians and computer scientists.

This research has highlighted the practical artistic methods that are 

complementary to interactive performance development. It hopes to 

contribute to Art & Technology research and development methods and 

interactive performance practice in general. This thesis provides an insight 

into the concepts of previously applied mapping methodologies and interactive 

performance methods reflecting on a range of interactive technologies. It 

provides research subjects for students and professional artists in the field, 

and can be considered as a reference in interactive performance work. A 

number of future developments are envisaged, concerning several topics 

presented in this thesis:

I suggest further development of the 3DIM software and the used 
Max/MSP tools for direct practical use for those who plan to 
create interactive performance practices.

  Further research with performers from other artistic fields, such 
as movement artists and dancers trained in different movement 
styles (hip-hop, street dance, classical, Asian etc.) or different 
musical styles (such as jazz, classical, popular) may bring up new 
findings on the created ChoreoSonic relationship. This can also 
lead to the creation of new mapping strategies in 3DIM.

  Concerning spatial sound, further exploration of the sonic 
parameters that influence the perception of spatial sound may 
help the innovative creation of the proposed 'transonic' 
perception of the interactive spatial ChoreoSonic environment. 
The models proposed at the end of chapter 4 can serve as a basis 
for these future developments.

Specifically it would be interesting to see how the availability of 
new technological inventions, whose tracking mechanisms are 
more precise, faster and easier to operate, might give rise to new 
ChoreoSonic models that can augment the spatial interactive 
relationship of movement and sound.

In all cases, I believe that it is necessary that artists and technologists 

collaborate closely to create new artistic methods and concepts in the 

interactive artistic performance domain. I hope that my thesis, and in 

particular the concept behind the 3DIM mapping strategy, can add to a new 

way of looking at interactive performance development. The thesis has aimed 

in particular to indicate the need for the development of clear mapping 

strategies.
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This brings me back to the artistic viewpoint described in the beginning of this 

thesis: as an 'artist-technologist' and 'audio-movement data translator' 

(p. 13), I created 3DIM to demonstrate how the interdependent spatial 

movement and sonic parameters may be used to generate movement-based 

3D interactive sonic art: 'the Body as a Spatial Sound Generating Instrument'.
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Appendices

1. Documentation

2. Publications

3. Presentations, Seminars & Workshops

4. 3DIM Operation Manual

5. Software Copyright Clearance

1 Documentation

1. CDR 'Sound Skeleton' Software.

1) Excerpt preliminary 'Global Drifts' composition (6.28")

Max patch with sound samples used in the 'Global Drifts' project.

2) 'Sound Skeleton Experiments'. Max/MSP/Jitter software patches

(2006-2008 and 2009 3DIM) with 'read me' files, 3DIM manual and 

sound samples.

3) Install files for patches 2006-2007: Max/MSP 4.5.7, Jitter 1.5.2, 

Pluggo 3.5.4, Taptools 2.0 and Ambisonic Max tools Hunt 

Install files for patches 2008 and 3DIM: Max 4.6.3, Jitter 1.6.3, 

Pluggo 3.6.1, & Ambisonic ICST 1.2.

Read me file, additional Max externals, help files and used VST 

Pluggo plug-ins.

2. DVD 25 'Sound Skeleton' creations accompanied by written text. Total 

length 27.01".

1) Error 0.27"

2) Calibration 0.56"

3) Sensor Back 0.37"

4) Border 0.18"

5) Scanning the Space I 0.35"

6) Scanning the Space II 0.42"

7) Overload Parameters I 0.49"

8) Overload Parameters II 0.42"

9) Prox-Vol 0.55"
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10) Speed Samples 1.10"

11) Speed = Pitch 1.16"

12) ChoreoSonic Rhythm 1.06"

13) ChoreoSonic Rhythm Edit 1.06"

14) Full Body Rotation 0.34"

15) Arm Wave-ing 0.31"

16) Direction 1.40"

17) Hopping 0.14"

18) Additive Synth I 0.16"

19) Additive Synth II 0.33"

20) Foot making Music 1.39"

21) Contra Centre 1.52"

22) Showing University Chichester 3.57"

23) Speed = Reverb 1.44"

24) Kinesphere=Reverb 1.53"

25) S-E-N-S-I-O Model 1.20"

2 Publications

Wijnans, S. (2007) 'Interactive Transformation of Dance Movements into 

Spatial Sound Creation'. Online Article Publication in Bits, Bytes and the 

Rhetoric of Practice: New Media Artist Statements, Journal of the new Media 

Caucus, 3(01) [online] available from:

http://median.shiftinqplanes.org/issues/2007 fall/statements/wilnans stan/w 

iinans stan.html [accessed 05.2008].

Wijnans, S. (2008) 'Sound Skeleton': Interactive transformation of improvised

dance movements into a spatial sonic disembodiment'. International Journal

of Performance Arts and Digital Media, 4 (1) pp.27-44 [online] available

from: http://www.atvpon-
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4 3DIM Operation Manual

This manual describes the operation of the Three Dimensional Data 

Interpreting Methodology (3DIM) implemented in Max/MSP/Jitter. The patches 

have been programmed in Max/MSP 4.6.3 and Jitter 1.6.3. 3DIM has not 

been tested in Max 5.0.

The final version of 3DIM was designed and operated using a Macintosh 2X3 

Ghz Dual-Core Intel computer under OSX 10.4.11. It is developed to use 

audio interfaces that have eight analogue audio inputs and outputs. The 8 

separate outputs communicate the processed spatial (ambisonic) sound to 8 

self-powered speakers.

To achieve a full ambisonic 3-D sound experience:

1. Set up the 8 loudspeakers in a cubical form.

2. Speaker 1 is the left upper speaker 2, 3, and 4 should be set up in 

clockwise order from speaker nr 1.

3. Speaker 5 is placed below speaker 1. Speaker 6, 7 and 8 are placed in 

clockwise order on the floor below speaker nrs 2, 3 and 4.

All speakers should preferably be identical with a full-range frequency 

spectrum and set to the same output level.

In line with standard Ambisonic conventions, X is front-back, Y is left-right, 

Z= up-down.

Please note that the applied RF/Ultrasonic tracking system uses the 

coordinates X for left-right, Y for up-down, Z for front-back. The difference 

between these coordinate conventions is solved in the 3DIM software.

1 The Main Window

The main window of the patch contains the following panels:

1. Sound

2. Mixer

3. Sub Patches

4. Practice Presets Matrix

5. Visualization Help
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1.1 Sound

Audio [ Off

Driver [ CoreAudio Built-in 0...)

CPU 9. * EH sound on/off

Max Sched. in o/d [ off 

Sched. in Audio Int

Signal Vector 
I/O Vector

total gain spacebar 

Speaker set up

SD^cube

512

SOUND
speaker outputs

Illlllll
12345678

The 'Sound' panel contains first of all the elements from the standard 

Max/MSP DSP window that are most relevant to be able to access during 

practical research sessions. 

Pressing the 'Sound On/Off button (standard) or spacebar will turn the audio 

processing on and off.

Secondly, the blue menubar 'Speaker Set Up' on the right chooses different 

speaker arrangements. In my research the '3D_cube' set up has been used 

for true full sphere 3-D surround sound. This is automatically filled in when 

loading the patch.

Thirdly, the meter levels from the 8 speakers are displayed at the lower part 

of the 'Sound' panel.
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1.2 Mixer
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MIXER

In the 'Mixer' panel the 5 output levels of the individually allocated sounds to 

the 5 sensors and their 5 effects can be easily adjusted during research 

periods. There is a choice of Pluggo vst effects204 in the menu bars:

1) rough, reverb

2) SpaceEcho

3) LongStereoDelay

4) Chamberverb

5) fragulator4

6) VibratoCauldron

7} Noyzckippr

8) Comber

9) AudioRatePan

10) FrequencyShift

11) GenericEffect

12) Granular-to-Go

13) MangleFilter

204 When Pluggo is not authorized, the plug-ins will emit an annoying buzz 
every minute or so. You need to purchase Pluggo to stop the buzz at 
cycling74.com and click on Store (see also the x read me' file on the 
accompanying documentation CDR).
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14) Monstercrunch

15) Pendulum

16) SpeedShifter

17) Stutterer

18) RingModulator

The volume of the abstract speed samples (the samples that are triggered 
when the speed of the dancer's sensor exceeds a set limit (see sub patch 
'speed') can also separately be adjusted in the mixer. They can be triggered 
manually by pressing the button.

1.3 Menubars sub patches

[ Matrix mapping t ) [ Calibration activate-save t ]

3DIM Parameter Patcher Data Handling

[ Proximity change ...) [ Speedsamples * J

Data Input/Ambisonic Movement and Sonic
Parameters

all on/off Speedsarnple 
Surround on/

fast slow

automatic panning

off on

delay position 
samples

SUB PATCHES

In the 'Sub Patches' panel the operator can access all the sub patches with 
the menubars (explained fully in section 2 of this manual).

The operator can switch on automatic panning for all the individually triggered 
sounds and the speed samples that are routed to the 'sounds to ambisonic' 
sub patch. The panners can be switched on individually in the '8 autopanners' 

sub patch.

The delay for the position samples can be set to zero (off) or to the times set 

in the 'position samples' sub patch (on).
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1.4 Practice Presets Matrix
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In the 'Practice Presets Matrix' panel the operator chooses the outputs for the 
5 sounds, 5 effects and 5 speed samples in the parameter mapping matrix 
(see 2.1 below). The presets of the settings I've used in the practical 
experiments and compositions that apply 3DIM can be chosen by clicking the 
numbers in the light grey box at the top left of the window (the mapping is 
fully explained in the sub patch 'notes' in the 'data handling' sub patches). 

The numbers correspond to the video excerpts. 
Several more Max experiments (no video excerpts) are listed below these.

In all experiments undertaken, sound nr. 1 is allocated to output 1 of the 
ambisonic patch, nr. 2 to 2, nr. 3 to 3, nr. 4 to 4 and nr. 5 to 5. However, the 
choice should be free due to the fact that an operator might want to set an 
ambisonic output to react in opposite directions, i.e. the sensor moves to the 

right and the ambisonic sound moves to the left.

At the top right of the window 5 different sample sets for the 4 sensors of the 

limbs are pre-programmed to be able to try out different compositions.
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'activate 3D cube' sets the speaker set up for full sphere surround sound. This 

should be loaded automaticly when starting the patch, but sometimes doesn't 

work.

'fix X5 bug'. This reminds the operator to fix a bug in the 'scale' object of 

sensor 5. Renewing the numbers of the scale object fixes the bug. There is 

also a reminder to subtract the distance between the pelvis and the head to 

be able to measure the full body position of the dancer with the sensor on the 

head.

1.5 Visualization Help

Sensor Body P«ftt«90A Visualisation help Sftiktr Set UP

Full Botfy Motwn in spice

The 'Visualization Help' panel visualizes the attachment of the sensors to the 

dancer's body as a reminder for the right configuration. At the right side of 

the window the lay out for the eight speakers is pictured. At the bottom left of 

the window the operator can follow the horizontal movement of sensor 5 (the 

centre of the body) in real time in a picture slider. At the bottom right, the 

amount of trigger spots for the 'position sample' is reproduced in black dots, 

the trigger spot turns yellow when activated by the dancer's movement in the 

performance space.

2 Sub Patches

In the 'Sub Patches' panel 4 different menu bars represent different sub 

patches which are listed as:

1) 3DIM Parameter Patcher
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2) Data Handling

3) Data Input/Ambisonic

4) Movement and Sonic Parameters 

2.1 3DIM Parameter Patching

'Matrix Mapping'

3 DIM Mapping Matrix

DEED politico pro. imtty

^=H VOLUME

SAMPLE 
ON OFF

CHANGE

SPEED 
sample

PITCH 
frequency

PHASORS

This is the main 3DIM movement to sound mapping matrix. It chooses 

different mapping configurations that communicate with all the 'Movement 

and Sonic Parameter' sub patches.

The movement parameters are listed at the upper part of the matrix as 

follows:

1) X-Y-Z position of the 5 sensors.

2) Proximity of the limbs (sensor 1-4) to the pelvis.

3) Speed and the speed threshold of the 5 sensors.

First of all the average speed of the 5 sensors can be chosen. 

Secondly, 'slow' switches on the sound when the sensor moves
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above a certain threshold and 'fast' triggers a '!' when above a 
certain threshold. Both thresholds are set in the 'speed' sub patch in 
the 'Movement and Sonic Parameters' sub patches.

4) Direction of sensor 1-5 in the sensitive space.

5) Total body space adds the proximity of sensor 1-4 to measure the 
total body space.

The sound parameters are listed on the right hand side of the matrix as 
follows:

1) Volume. Changes the volume of samples 1-4 according to the level 
set in 'Volume Scale' sub patch in the 'Movement and Sonic 
Parameters' sub patches.

2) Sample on/off. Switch on/off sample 1-4.

3) Change. Change the sound sample of sound 1-4.

4) Speed sample. Switch on the speed sample of sensor 1-5.

5) Pitch/frequency. Change the pitch/frequency of sample 1-4.

6) (Phasors. Redundant).

7) Effects. Control the first three parameters of effect 1-5.

8) PITCH 5 frequency changes the pitch/frequency of sample 

2.2 Data handling

'Calibration activate-save'
Switch on the toggles to calibrate (either individually or as a group) one of the
following:

- the X-Y-Z position of the 5 sensors in the sensitive space.

- The X-Y-Z space of the dancer's kinesphere.

- Speed.

It's also possible to set the data range to 199 in case the LCIPS is not 

available.

'View and edit data'
A patch that enables firstly switching on the calibration of the whole 
performance space or the kinesphere, secondly to quickly change data presets 
(change set of position samples, set the threshold for the speed parameter,
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thirdly fill in the data for the borders of the sensitive space and lastly set low 
and high volume of the 4 'limb' sensors) during practical research.

'Record and play data'

Records and replays the data of 5 LCIPS sensors (this didn't work as the
computer is too slow for all data processing).

V Autopanners'

Switch on 7 automatic ambisonic panners for the sound. They can move fast
or slow.

'notes'

Notes for the presets in the 'Practice Presets Matrix' that were applied in the
research periods in 2009.

2.3 Data Input

'Midi receive'

Midi data input from the 5 sensors of the' LCIPS' tracking system. The data 
are scaled to a range of 0-XX in which the number XX is set in the calibration 
process. The 'scale' object scales the data back to a range of 0-200. In this 
way the number range 0-200 can always be used in all the sub patches. 
The operator has to fill in the distance between the head and the pelvis of the 
dancer (marked red) to be able to measure the position of the pelvis by 
sensor 5.

'Calibration position'

Calibrates the X-Y-Z position data of all 5 sensors.

'Calibration bodyparts'
Calibrates the space of the kinesphere of the dancer and adjusts the software

to a specific dancer.

'3D visualized
View the 3-D position of the 5 LCIPS sensors in real time (see p.95). The red 
ball presents sensor 1, the blue ball sensor 2, the yellow ball sensor 3, the 

green ball sensor 4 and the black ball sensor 5.
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'Ambipanners'

; 1 0 I 0 I Q I fy; 1 1 JJ-*?tT]~,; 1 Q I 0 I 0 I [jyl l_f-*'- tMy; I 0 I 0 1 0 I Liyz rU-*gt'i[5r; IQIO lTT|

H

View the rotation of the ambisonic panners. The upper circle displays left-right 

and forward-backward movement, the lower circle displays up-down 

movement.

'Matrix datatransfer'

Subpatch that determines the 'Matrix mapping' control panel.

'Sounds to Ambisonic'

The sounds that are mapped in the 'Sound & Effect to panners mapping'

control panel are connected to the ICST ambisonic processing.
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'Proximity change spots'

background color led 

0.6745 I (O5

scale $1 | [gscale $1| j it .matrix 4 char 200 200 |

[coll «nv_po.n<
U«=^^^B=aHK=Mj

tap .pack o (g>triqq»rs Q ) Q |

p tracking-handler

[coll *nv_point; 1

The full body position of the dancer (the sensor on the head that represents 

the pelvis) triggers 14 different samples according to the spots set in this sub 

patch. The placement of the various spots can be changed here.
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2.4 Movement and Sonic Parameters

'Load Samples
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This sub patch allocates samples in the following way (only 4 samples for the 

4 bodysensors and 4 samples for the position samples are displayed in the 

figure above):

- 4 samples to sensors 1-4 on the limbs.

- 5 samples triggered by the speed of sensor 1-5.

- 14 position samples triggered by sensor 5 (on the head = pelvis measuring 

full body position).
The patch contains presets chosen by clicking the preset numbers in 'practice 

preset matrix' on the main page. New samples can be added by 'drag and 

drop' method.

'Samples playback' 

Sample playback patch.

'Position Samples'

Position samples playback patch.

'Speedsamples'
Speed samples playback patch.
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'Direction'

Measures if the dancer moves in the left or right direction. This possibility has

not been used in a 'Sound Skeleton 1 experiment.

'Bodypart proximity'

Measures the proximity of the sensors attached to the limbs to the sensor 

attached to the pelvis.

'Speed'

The software of the LCIPS (C. Randell) measures the speed of sensor 1-5 and

communicates these speeds over MIDI to this patch.

'Effsettingsl', x Effsettings2', 'EffsettingsB', x Effsettings4', 'EffsettingsS' 

In these patches the presets are loaded for the effects. Parameters 1-3 can be 

changed real time by the allocated sensor (1 for'effsettingsl', 2 for 

V effsettings2' etc.)

Volume scale'

In this patch the data from the sensor are scaled down to the preferred

volume changes as set in the 'view and edit data' patch ('data handling'

menu).
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5 Software Copyright Clearance

1. The used Max tools are freely downloadable from:

http://www.maxobiects.com/? [accessed 19.02.10]. The software is released 

under the terms of the GNU Lesser General Public License (LGPL). For more 
information regarding this license go to http://www.anu.org [accessed 
19.02.10].

2. Pluggo vst effects:

Pluggo is © 2005 Cycling 74. 'When Pluggo is not authorized, the plug-ins 

will emit an annoying buzz every minute or so.... Obtaining an authorization 

will require that you purchase the software at the online store (go to 

http://www.cvclina74.com and click on Store) or visit your favorite retailer of 
plug-in product' (from Pluggo documentation).

3. Ambisonic tools developed by Dave Hunt:

'Ambi 8' ambisonic tools are used and published with permission of the 
inventor Dave Hunt.

4. ISCT Ambisonic tools:

Developed by Philippe Kocher and Jan Schacher. This software is released 
under the terms of the GNU Lesser General Public License (LGPL). For more 
information regarding this license go to www.gnu.org' (from: 
http://www.icst.net/research/downloads/ambisonics-externals-for-maxmsp/ 

[accessed 19.02.10]).
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