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Abstract
We move our eyes to place the fovea into the part of a viewed scene currently of 
interest. Recent evidence suggests that each human has signature patterns of eye 
movements like handwriting which depend on their sensitivity, allocation of atten-
tion and experience. Use of implicit knowledge of how earth's gravity influences 
object motion has been shown to aid dynamic perception. We used a projected ball-
tracking task with a plain background offering no context cues to probe the effect of 
acquired experience about physical laws of gravitation on performance differences 
of 44 participants under a simulated gravity and an atypical (upward) antigravity 
condition. Performance measured by the unsigned difference between instantaneous 
eye and stimulus positions (RMSE) was consistently worse in the antigravity condi-
tion. In the vertical RMSE, participants took about 200 ms longer to improve to the 
best performance for antigravity compared to gravity trials. The antigravity condition 
produced a divergence of individual performance which was correlated with levels 
of questionnaire-based quantified traits of schizotypy but not control traits. Grouping 
participants by high or low traits revealed a negative relationship between schizotypy 
trait level and both initiation and maintenance of tracking, a result consistent with 
trait-related impoverished sensory prediction. The findings confirm for the first time 
that where cues enabling exact estimation of acceleration are unavailable, knowledge 
of gravity contributes to dynamic prediction improving motion processing. With ac-
celeration expectations violated, we demonstrate that antigravity tracking could act 
as a multivariate diagnostic window into predictive brain function.
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1  |   INTRODUCTION

Eye movements are critical for vision both because of the 
limited size of the section of the retina in which we can 
see at high resolution and because eliminating movements 
eventually results in visual fading (Martinez-Conde, Otero-
Millan, & Macknik,  2013; Yarbus,  1967). A key role of 
the visual system is to continuously place and maintain the 
fovea where it needs to be. To this end, humans use a reper-
toire of functional movements which include saccades with 
their ballistic dynamics, smooth tracking and small tremors 
(Rucci & Victor, 2015). These movements have been stud-
ied extensively in paradigms which have helped isolate their 
characteristics and suggested in a range of contexts that the 
ocular motor system is a useful window into brain function 
(Bueno, Sato, & Hornberger, 2019; Freedman & Foxe, 2018; 
Kowler, 2011; Spering & Montagnini, 2011).

A recent large cohort study looked at performance met-
rics for classic computer-based eye-tracking tasks involving 
pro-saccades (towards a target), antisaccades (away from a 
target) and horizontal smooth pursuit along a linear trajec-
tory (Bargary et al., 2017). The study computed a 21-mea-
surement representation or vector of each individual's eye 
movement biometrics. When ten per cent of participants 
were retested, it was found that data from the second ses-
sion remained uniquely identifiable within the initial bank 
of 1,000+ individuals. The biometrics therefore captured 
participants’ unique ocular motor signatures. With a bet-
ter theoretical understanding of the relationships between 
the components of such biometrics, the roles played by the 
separate but interconnected sensorimotor networks of brain 
regions such as striate and extra-striate visual cortex, mid-
dle temporal visual motion area (MT), the frontal eye fields 
(FEF) and the superior colliculus (SC) in generating finely 
controlled eye movements might be more distinctly isolated 
and understood (Bueno et al., 2019; Freedman & Foxe, 2018; 
Masson & Perrinet, 2012).

Smooth pursuit is a skilled movement which improves 
during development, aided by experience of constantly 
tracking objects around us. In children, it has been shown 
to improve with maturity with later development in the ver-
tical direction compared to the horizontal (Ingster-Moati 
et  al.,  2009). This difference could reflect a longer time 
course of accumulating the experience of acceleration due to 
gravity or result from a biological difference in the neural 
representation of the vertical and horizontal axes, for exam-
ple, within the SC (Krauzlis,  2003) and other oculomotor 
structures (Johannesson, Tagu, & Kristjansson,  2018). A 
study with limited participants looking at direction anisot-
ropies during smooth pursuit in adults found that individuals 
were generally better at horizontal than vertical pursuit, but 
there was no measurable difference between up and down, 
though the study did not use accelerating stimuli (Rottach 

et al., 1996). Within studies looking across a broader adult 
lifespan, asymmetries have been identified in saccade task 
performance between upward and downward directions of 
pro-saccades (Bonnet et al., 2013). Differences were not seen 
for antisaccades and were found to be much more promi-
nent than left–right asymmetries. The latter are sometimes 
attributed to experience effects of reading in cultures which 
write from left to right. Within the smooth pursuit data col-
lected by Bargary et al. (2017), they identified the measures 
of catch-up saccades and root-mean-square errors (RMSE; 
performance measure based on the unsigned difference be-
tween eye position and target stimulus position) as metrics 
which showed broad distributions of individual differences 
in performance.

An aspiration of the current work was to use more ecolog-
ically valid visual stimulation where saccades and pursuit op-
erate in conjunction to serve performance and their combined 
effect could be studied (Orban de Xivry & Lefevre, 2007). 
Linear trajectories typically investigated can successfully iso-
late smooth tracking from saccades, but such a configuration 
remains ecologically unlikely. In contrast, it has been found 
that curved pursuit trajectories can introduce larger catch-up 
saccades and delays of up to 300 ms from onset before pursuit 
matches the tracked motion (Ross, Goettker, Schutz, Braun, 
& Gegenfurtner,  2017). In tracking tasks with blanked tra-
jectories, it was found that motion had to be tracked for up to 
500 ms before acceleration could be incorporated into extrap-
olated motion estimates (Bennett, Orban de Xivry, Barnes, & 
Lefevre, 2007). We probed the extent to which tracking could 
be attributed to learned experience of the physical laws of 
gravity governing dynamic natural scenes. Humans typically 
find estimating arbitrary accelerations difficult (Werkhoven, 
Snippe, & Toet, 1992) but have been shown to be sensitive to 
accelerations due to gravity in dynamic tasks involving inter-
ception (Brenner et al., 2016; Mijatovic, La Scaleia, Mercuri, 
Lacquaniti, & Zago, 2014). Direct judgements of vertical ac-
celeration due to gravity have also been shown to be possible, 
but with individual variability in the thresholds of 3%–50% of 
g (Kim & Spelke, 1992) or 13%–30% of g (Jorges, Hagenfeld, 
& Lopez-Moliner,  2018) depending on the tasks. A recent 
review discussed evidence (Jorges & Lopez-Moliner, 2017) 
that gravity-dependent estimation may strongly rely on mul-
tisensory integration with an assumption of downward accel-
eration. There is evidence that the otolith system in the inner 
ear which is sensitive to gravity provides a vertical reference 
frame which then influences aesthetic perception and nu-
meric decision-making (Gallagher, Arshad, & Ferre,  2019; 
Gallagher & Ferre,  2018). Most of the research on visual 
processing of gravity has additionally assumed that inter-
nal models of gravity require pictorial cues which aid in the 
calibration or estimation of the value of g (Zago, McIntyre, 
Senot, & Lacquaniti, 2009). This is because for any viewed 
object, its acceleration on the retina scales linearly with the 
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distance from the viewer and the expected retinal accelera-
tion due to gravity needed for fast prediction can be estimated 
from the target object size and depth. Indeed, contextual in-
formation is seen to influence estimation for catching of both 
familiar and unfamiliar objects (Hosking & Crassini, 2010) 
and trajectory discrimination of balls of variable sizes (Jorges 
et al., 2018). There are therefore outstanding questions about 
the extent to which sensitivity to gravity can be maintained 
when these contextual visual cues are impoverished. These 
are particularly pertinent as processing potentially complex 
contextual cues may be costly for an organism faced with a 
hostile dynamic environment.

For a simple moving dot stimulus without visual cues 
to object depth and expected retinal acceleration, we con-
sidered what measurable consequences experienced might 
engender. Gravity acts downwards for most of us over the 
lifespan providing a strong physical constraint on naturalis-
tic object motions. The value of g is almost constant across 

the globe varying by less than 0.5% ranging from 9.78 m/s2 
at the equator to 9.83 m/s2 at the poles (Young, Freedman, & 
Ford). We develop a projected bouncing ball task in which 
a small circle moves along a plain grey background with 
a constant horizontal speed and variable initial and subse-
quent vertical speed (see Figure 1a). Curvature of the trajec-
tory along a parabola is governed by a vertical acceleration 
due to gravity (or upward antigravity), and there are some 
abrupt speed changes due to collisions with virtual walls 
on either side of the task space which occur after the half a 
second we consider in the current work. We compute a sim-
ple time-varying performance measure (dynamic RMSE) to 
compare our conditions and contrast individual differences 
in tracking across what we expect to be a highly learned 
(gravity) against an unfamiliar (antigravity) acceleration 
condition. We probe what this can reveal about how indi-
viduals typically and atypically accomplish dynamic visual 
processing.

F I G U R E  1   Tracking task schematic and example traces. (a) Illustration of task sequence in three screens showing initial 500 ms grey screen 
with fixation, then the 2-s stimulus presentation for the 4°/s target under gravity moving within the virtual stimulus square in the dashed lines (note: 
the dashed line is not seen by participants) and finally the post-stimulus 1 s grey screen. After the grey screen, a button press initiates a new fixation 
and trial. (b) Two examples of tracked stimuli for participant S05 under gravity at 4°/s (top) and under antigravity at 4°/s (bottom). The grey circles 
represent sequential stimulus positions over the 2-s period, and the continuous black line is the high-resolution raw position trace including blinks 
and saccades. S05 generally has poorer tracking performance among participants. (c). Three example traces for participant S30 in the same format 
as b. This shows from left to right: 16°/s and 4°/s antigravity cases, and then a 4°/s gravity case. S30 typically shows better performance for the 
task. Each example is illustrated inside a reference square of sides 1,000 by 1,000 pixels with 100 pixel reference gradations along the vertical and 
halfway gradations (500 pixel) along the horizontal. Note that the five are example cases from over 14,000 trials recorded
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From its spatial and temporal tuning properties, smooth 
pursuit has been suggested to have an underlying sensory pro-
cessing substrate in which extra-striate human cortical mo-
tion area MT plays a key role (Debono, Schutz, Spering, & 
Gegenfurtner, 2010). The fast, fine control of motion direction 
estimation requires the use of inhibitory and excitatory neural 
computations within spatiotemporal channels encoding direc-
tion in a balance with a dynamic evolution over tens of millisec-
onds (Medathati, Rankin, Meso, Kornprobst, & Masson, 2017; 
Pack & Born, 2001; Xiao & Huang, 2015). Disrupted balances 
in synaptic level neural interactions have been linked to atypi-
cal sensorimotor processing in models of both autism spectrum 
disorder (Lee, Lee, & Kim, 2017) and schizophrenia (Murray 
et al., 2014). For schizophrenia, deficiencies in smooth pursuit 
and antisaccade performance attributable to poor inhibition 
have been identified as a phenotype of clinically diagnosed pa-
tients and their first-degree relatives (Myles, Rossell, Phillipou, 
Thomas, & Gurvich, 2017). One hypothesis for atypical smooth 
pursuit and other symptomatic sensory behaviours is that effer-
ent neural signals called corollary discharge generated by the 
brain (separately in parallel to sensorimotor networks) to indicate 
self-actions like eye movements made within a dynamic envi-
ronment contribute to online predictive computations (Bogadhi, 
Montagnini, & Masson, 2013; Orban de Xivry, Coppe, Blohm, 
& Lefevre, 2013). This predictive process can be impaired by 
deficits in inhibition with neurocognitive consequences (Crapse 
& Sommer, 2008; Fletcher & Frith, 2009). Thus, visual track-
ing tasks with continuous measures of performance dynamics 
provide a test case for contrasting hypotheses about hierarchical 
mechanisms behind deficits in schizophrenia and other neuro-
psychiatric disorders (Adams, Perrinet, & Friston, 2012; Faiola, 
Meyhöfer, & Ettinger, 2020). Schizophrenia is a heterogeneous 
disorder, and related traits within a healthy population captured by 
schizotypy also have a diverse set of associated behaviours which 
have been categorised by some as positive, negative or disorgan-
ised (Raine, 1991). In addition, some of the traits and behaviours 
associated with schizotypy are also found to overlap with be-
haviours associated with depression and anxiety (Lewandowski 
et al., 2006). Whether prediction deficits can be specifically asso-
ciated with schizotypy is an outstanding question.

Our paradigm offers a novel window into individuals’ 
sensorimotor processing. Predictive mechanisms in visual 
tracking have previously been measured in tasks involving 
blanking or occlusion of tracked objects (Bogadhi et al., 2013; 
Land & McLeod, 2000), analysis of tracking around a ball 
bounce (Diaz, Cooper, Rothkopf, & Hayhoe,  2013; Mann, 
Nakamoto, Logt, Sikkink, & Brenner, 2019) and prediction 
of whether a ball will hit a future target or be intercepted 
(Brenner, Smeets, & de Lussanet,  1998; Spering, Dias, 
Sanchez, Schutz, & Javitt, 2013) among other related previ-
ous experiments, too numerous to include. These tasks elu-
cidated the key role of extrapolation processes in estimating 
future locations and suggest a critical role for prediction along 

the trajectory (Bansal, Ford, & Spering,  2018). Three out-
standing questions formed the bases for the hypotheses tested 
in the present work: (a) Can participants accurately track a 
naturalistically accelerating moving ball within a background 
with impoverished target depth and size cues? (b) Will the in-
version of gravity have a measurable effect on tracking? (c) Is 
there evidence that schizophrenia-associated trait levels have 
any link with individual performance and does this depend 
on the gravity conditions? To obtain answers, we ran the ex-
periments collecting a large multivariate set of data with the 
novel task. In addition to testing the hypotheses related to 
questions (a) to (c) for our inferential statistics, we sought 
to obtain useful visualisations and accompanying descriptive 
statistics particularly around performance dynamics to aid in 
the conceptual understanding of this untested configuration. 
These could be important for scientific posterity, in the light 
of the multidisciplinary nature of the questions of interest, to 
ensure the work provides useful insights to behavioural, com-
putational and clinical researchers by illuminating potential 
follow-up questions.

2  |   METHODS

2.1  |  Participants

We tested 44 individuals (28 females, Age M  =  26.4, 
SD  =  9.2) including students and staff recruited by op-
portunity sampling at Bournemouth University. Each par-
ticipant received £5 for their participation. The study was 
approved by the Research Ethics Committee of Bournemouth 
University and carried out in accordance with the principles 
of the Declaration of Helsinki. The number of participants 
could not be determined by a standard power calculation as 
the experiment combined existing tools in a novel configu-
ration. To pre-determine the target number of participants, 
we therefore considered the statistical power within the eye-
tracking tasks and the trait measures separately. First, from 
previous tasks in which differences between conditions of 
motion direction or spatial orientation were compared using 
dynamic eye-tracking measures including saccades and 
tracking performance, medium effect sizes were obtained 
with 7 to 9 participants in within-participants designs (Meso, 
Montagnini, Bell, & Masson, 2016; Meso, Rankin, Faugeras, 
Kornprobst, & Masson,  2016). Second, in a previous task 
in which the schizotypy inventory (the SPQ) was used to 
quantify traits in a study of the link between scene scanning 
patterns and schizotypy, small effect sizes of r < 0.3 were 
obtained for one of the hypotheses using just 30 participants 
in a correlational design (Hills, Eaton, & Pake, 2016). The 
second of these experiment components involving the trait 
measures was therefore the part that critically determined the 
participant numbers. With SPQ as our primary trait measure 
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of interest, we took the minimum numbers of N = 30 for a 
small effect size from the Hills et al. study as our starting 
point and added 50% to obtain a target of N = 45. This target 
number was high enough not to limit the power of the control 
General Health Questionnaire, which has been shown to have 
a high sensitivity to mental state (Hu, Stewart-Brown, Twigg, 
& Weich, 2007), and the Beck Anxiety Inventory which has 
been demonstrated to measure trait anxiety in validation sam-
ples as low as 40 (Fydrich, Dowdall, & Chambless, 1992). 
During data collection, participants were occasionally ex-
cluded for various reasons such as failure to meet normal 
visual acuity requirements, withdrawn consent before experi-
ment completion and late arrival for experimental sessions. 
While in the data collection phase, the target N remained the 
same compensating for these exclusions. After data collec-
tion was completed, during inspection and validation of eye 
traces, two participants were found to have particularly noisy 
eye position data, possibly because of poor pupil tracking. 
Data for one of these participants had to be excluded because 
the high-frequency noise was much larger than the precision 
of the tracker. For the second participant, data were usable 
after the exclusion of about15 trials. Valid data were there-
fore eventually collected for 44 participants after application 
of the described exclusion criteria.

2.2  |  Materials (Stimuli)

Stimuli were generated on a Windows 7 PC running be-
spoke MATLAB (MathWorks) routines supported by 
the Psychtoolbox video control libraries (Brainard,  1997; 
Pelli,  1997). Visual stimuli were presented on a 21’ 
BenQ LED Source Eye 120 Monitor with a resolution of 
1,920 × 1,080 pixels and 100 Hz refresh rate. The monitor 
was placed 80  cm from participants, and eye movements 
were recorded from the right eye using an SR EyeLink video 
eye tracker operating at 1,000 Hz. During tracking, partici-
pants’ movements were restricted by a head- and chinrest.

On each trial, the stimulus was displayed in the central re-
gion of a full-screen mid-grey (15 cd/m2) background within 
a virtual square with invisible/unmarked sides of 900 pixels 
or 19.3 degrees of visual angle (°) (see Figure 1a). The task 
contained a black ball of size 0.34° diameter which moved 
with motion characterised by Equations (1) and (2) for the 
horizontal and Equations (3) and (4) for the vertical motion.

where Vx is the constant horizontal component of the speed 
with values of Sx set at ±4°/s or ±16°/s for the slow and fast 
conditions. The ball moved to the right (+) or left (−) in a ran-
domised order, making the horizontal direction unpredictable 
in each trial. The time-varying horizontal position is given by 
Px, a linear function of the initial speed Sx, with a constant start-
ing point at the horizontal centre of the screen, Xo.

Vy is the time-varying vertical speed component which is 
initiated as Sy with values randomly picked from a flat con-
tinuous distribution within the range of ± [2 to 2.5]°/s away 
from the direction of g. The acceleration due to gravity g is 
set to ±9.81°/s2 for the gravity (+) and antigravity (−) con-
ditions. For the stimulus circle of 0.34°, this generates on-
screen motion expected for a ball 40% bigger than a full-sized 
basketball (which is 23.9 cm in diameter). There are no ex-
plicit pictorial clues beyond this acceleration to the absolute 
size or depth of the stimulus ball, making the task less rich 
in visual cues than previous interception and tracking tasks.

2.3  |  Procedure

Participants were screened for normal or corrected-to-
normal vision with a visual acuity letter chart. Bespoke 
MATLAB programs with a mouse to check selected Likert 
scale items on a screen were used for three inventories, 
the 12-Item General Health Questionnaire (GHQ) (Hardy, 
Shapiro, Haynes, & Rick, 1999), the 74-item Schizotypal 
Personality Questionnaire (SPQ) (Raine,  1991) and the 
21-item Beck Anxiety Inventory (BAI) (Beck, Epstein, 
Brown, & Steer,  1988) presented before, in between and 
after the tracking experiment blocks, respectively. The 
tracking task was separated into two blocks of gravity 
and antigravity trials presented in a counterbalanced order 
across participants. Each block had 160 trials, each 2 s in 
duration with a participant button press to initiate stimulus 
onset after a 1-s interstimulus interval. Each trial started 
with a 500 ms central circular dark grey fixation spot on 
the mid-grey screen which disappeared at trial onset. The 
stimulus was followed by a grey screen (see Figure 1a for 
task sequence). Participants were instructed to fixate when-
ever the central spot was present and track the moving ball 
on the screen as well as they could until it disappeared, 
and this was achieved to different degrees by participants 
(see, e.g., Figure 1b-c). Each block contained 80 fast and 
80 slow trials and lasted approximately 12 min so that after 

(1)Px(t)=

t

∫
0

Vx(t)dt=Xo+Sxt

(2)Px(t)=

t

∫
0

Vx(t)dt=Xo+Sxt

(3)Vy(t)=Sy+gt

(4)Py(t)=

t

∫
0

Vy(t)dt=Yo+Syt+ (gt2)∕2
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a few trials at the start, the direction of gravity was quickly 
predictable within each block. The full experiment took 
about 30 min per participant.

2.4  |  Design

We used a multivariate within-participants design. The in-
dependent variables were Gravity direction with two levels, 
Gravity (G) and Antigravity (AG), and Horizontal Speed 
with two levels, Slow (S, 4°/s) and Fast (F, 16°/s). The five 
dependent variables were SPQ, GHQ, BAI, RMSE (with fifty 
performance values organised as 2 × 25, that is the two rep-
resenting the orthogonal directions x or y; and 25 values as 
averages every 20 ms from onset—20 ms, 40 ms, 60 ms, ..., 
in the range 0–500 ms) and Saccades (x2, rates and sizes). 
We also recorded participant AGE and SEX as demographic 
variables during the experiments. Our three questions of 
interest (a) to (c) generated four hypotheses. H1: If partici-
pants are particularly good at tracking under gravity, then 
performance dynamics for constant speed x-RMSE and ac-
celerating y-RMSE will be the same; and this may depend 
on gravity direction. H2: If antigravity substantially disrupts 
tracking, then there will be an effect of gravity direction on 
the vertical y-RMSE dynamics revealing the time course of 
antigravity processing. H3: If a prediction deficit measurably 
impacts antigravity tracking (more so than predictable grav-
ity tracking), then SPQ traits will be specifically related to 
tracking metrics, RMSE and Saccades, in a way that depends 
on or interacts with gravity direction and is not explained 
by GHQ and BAI. H4: If the evidence supports H2 and H3, 
then through PCA, the multivariate data may enable us to 
characterise the relationship between the DVs and identify 
independent contributions to the variability including those 
specifically associated with schizotypy traits, prediction defi-
cits and tracking.

2.5  |  Data analysis

We identified and removed blinks and other instances of 
lost eye movement signals from the data using standard ap-
proaches previously described (Meso, Montagnini, et al., 
2016; Meso, Rankin, et al., 2016). We extracted each sac-
cade during the task and estimated the amplitude according 
to the algorithm of Engbert and Kliegl (2003), adapted for 
more sensitivity by reducing the median speed in the thresh-
old parameter λ from 6 to 5 and enforcing a longer restric-
tion between saccade events of 30  ms (Meso, Montagnini, 
et al., 2016). We filtered each individual trace with a 5th-
order Butterworth filter with a cut-off at 50  Hz to remove 
the higher frequency noise components and identified 
the valid trials (which did not have intrusive blinks, large 

stimulus-independent movements or noise), excluding the 
few invalid ones, <2%, from the analysis. We computed the 
dynamic root-mean-square errors (RMSE) by calculating the 
absolute difference between the separate x- and y-axis stimu-
lus positions (at 100 Hz, i.e. Py and Px of Equations 2 and 4) 
and the eye movement samples (averaged over every 10 ms 
to match resolution between eye tracker and screen) over 
time for each trial. This choice of RMSE as a variable makes 
the current work notably different to previous experiments on 
pursuit which focus on tracking gain as a key measure (Jorges 
& Lopez-Moliner,  2019; Spering & Montagnini,  2011). In 
our case, we made this decision to have a simple dynamic 
performance measure with no assumptions about directional-
ity of errors or about the interaction of saccades and pursuit 
systems. This simplified metric may no doubt need to be de-
composed into its parts in subsequent work. The result was 
a pair of horizontal and vertical values of RMSE in degrees 
(°) further averaged every 20  ms, matching the 50  Hz fil-
tered resolution. This was then analysed from stimulus onset 
at 0 ms up to 500 ms. In order to provide a general feel for 
the dynamic performance in the tasks, we visualised the data 
in figures (e.g. Figure 2) using standard errors across partici-
pants for data separated by time bins plotted as shading around 
line traces to indicate the overlap, or otherwise, of compared 
pairs of dynamic traces. As a direct follow-up to these visu-
alisations, for statistical inference, we compared conditions 
using two-tailed t tests of two types: repeated measures for 
the hypotheses contrasting the gravity direction conditions 
(H1 and H2) and independent samples for the comparison of 
the trait-level groups (H3). Over each of the 25 sample points 
along the section of the dynamic RMSE traces of interest 
(within the range 0–500 ms, i.e. 20 ms, 40 ms, 60 ms...), an 
alpha value of p = .05 was Bonferroni-adjusted to p = .002 
before significance testing. Previous work on visual motion 
processing serving tracking has shown that there are essen-
tially two phases of responses, an early closed-loop phase 
which is served by stimulus-driven bottom-up computations 
and a later open-loop phase gradually initiated from 150 to 
200 ms involving recurrent top-down contributions for both 
volitional and reflexive tracking (Masson & Perrinet, 2012; 
Spering & Montagnini, 2011). In the current work, we were 
particularly interested in the point of transition from closed 
to open loop to allow us to contrast conditions in a way that 
might separate fast automated pre-attentive processes, of 
which acceleration due to gravity might be as it exploits a 
strong prior (Jorges & Lopez-Moliner,  2017), from poten-
tially slower recurrent processing of acceleration as arbitrar-
ily curved trajectories (Bennett & Benguigui, 2013; Bennett 
et al., 2007; Ross et al., 2017). To this end, we set 200 ms as 
a critical time point for our data analysis further comparing 
gravity and antigravity conditions. Visualising the tracking 
under the range of conditions in Figure 2 supports the notion 
that there was a critical performance time window between 
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100 and 300 ms within which performance reached its peak 
so that pronounced differences in dynamics could be seen.

2.5.1  |  Linear mixed-effects modelling

We directly tested H2 using a linear mixed-effects model to 
ask whether the RMSE performance at this critical value of 
200 ms from onset was specifically dependent on the Gravity 
Direction (i.e. Gravity or Antigravity). As fixed effects, we 
used Gravity direction and Speed (without an interaction 
term), and as random effects, we had by-participant ran-
dom slopes for the effect of Gravity Direction. In the syntax 
used in R, the formula for this model was “RMSE200 ~ 1 
+  GravityDir  +  Speed  +  (GravityDir|Subject).” A P-value 

was obtained using a likelihood ratio test of the full model 
(with fixed terms Gravity direction and Speed) against a 
NULL model constructed by removing the Gravity Direction 
(GravityDir) predictor. The model comparison produced a 
chi-squared value exploiting Wilk's theorem to compute the 
estimate from −2  ×  log-likelihood ratio as detailed in the 
chapter on hypothesis testing in the textbook by Casella and 
Berger (2002). We chose the likelihood ratio approach rather 
than reporting several fixed and random effects in our novel 
multivariate experiment to restrict our statistical inference 
specifically to the hypotheses we wanted to test.

For H3, we asked whether the saccade rates and/or the 
saccade amplitudes were specifically predicted by levels of 
SPQ rather than BAI or GHQ trait levels. Direct relationships 
between both saccade metrics and SPQ traits were quantified 

F I G U R E  2   Gravity versus Antigravity dynamic root-mean-square error (RMSE) traces. (a) Position RMSE trace on the ordinate axis is 
plotted against stimulus time from onset (0 ms) on the abscissa for 44 participants averaged for the vertical (purple) and horizontal (cyan) values 
sampled every 20 ms over 500 ms. Shaded areas are standard error of the mean. This trace is the slow-speed gravity condition showing small 
standard errors with consistent performance across participants for both x- and y-RMSE. After onset, performance improves down to 0.5° in 
100 ms. (b) This condition is the fast-speed gravity condition, and the trace colour codes are the same as a. Performance quickly improves for the 
purple trace with the same time course of 100 ms, but takes longer to do so for the cyan trace following a catch-up saccade required at the higher 
speed. (c) RMSE traces for the slow antigravity condition with similar colour coding to a. There is worse performance for up to 200 ms in the 
horizontal direction (cyan), and up to 400 ms in the vertical (purple) negative gravity-influenced direction. (d) RMSE traces for the fast antigravity 
condition with the same colour coding as c. The vertical performance difference (in magenta) shows the same trend as c, while the horizontal 
difference (blue) reduces to zero quicker than in c. (e) Two additional traces computing the difference between the gravity and antigravity RMSE 
traces for the vertical (magenta) and the horizontal (blue) components marked at the slower speed. (f). A similar trace to (e), for the faster speed 
condition also showing a delayed difference in the y-direction. Note that the horizontal axis is at −0.3 and not zero [Colour figure can be viewed at 
wileyonlinelibrary.com]
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using linear mixed-effects models. As fixed effects, we used 
SPQ, Gravity Direction and Speed. We included an inter-
action term between SPQ and Gravity to test the trait pre-
diction hypothesis which we were specifically interested in. 
As random effects, we used intercept-only models for BAI 
and GHQ, and by-participant random slopes for the effect of 
gravity. Again, we compared the tested models to alternative 
null models and produced corresponding chi-squared values 
for significance testing. The formula of the tested models 
using R-syntax was “SacAmp ~ 1 + SPQ * GravityDir + S
peed + (GravityDir|Subject) + (1|BAI) + (1|GHQ)” for the 
amplitudes and “SacRate ~ 1 + SPQ * GravityDir + Speed 
+ (GravityDir|Subject) + (1|BAI) + (1|GHQ)” for the rates. 
In both cases, the corresponding null models were the same 
as above but without the SPQ term, retaining the GravityDir 
term. In the control models testing for BAI and GHQ depen-
dence, respectively, in the R formulae above, there was a sub-
stitution of positions between the SPQ and BAI, or GHQ, 
terms. To run the linear mixed-effects models, we used the 
lme4 library in R (Bates, Mächler, Bolker, & Walker, 2015; 
R-Core-Team,  2019). Before all analyses, we visually in-
spected residual plots for deviations from homoscedasticity 
or normality.

2.5.2  |  Pattern analysis and abstract 
feature extraction

To unpack some of the less obvious patterns within selected 
multivariate metrics of the rich data set, we used principal 
component analysis (PCA) to identify the dominant para-
metric relationships between our measures. PCA is among 
the oldest and most widespread multivariate techniques that 
reduce the dimensionality of a data set with interrelated origi-
nal variables (m), transforming the meaningful variation to a 
new set of much fewer variables or principal components (r; 
such that the number of elements nm > nr), which are ordered 
from strongest to weakest and uncorrelated (Hotelling, 1933; 
Pearson, 1901). In other words, each component will combine 
contributions from multiple variables within m to capture an 
aspect of the data that is orthogonal to the rest of the data 
and therefore qualitatively different in how it should be inter-
preted. As such, it is useful as a means of providing insights 
about data obtained in a range of different fields, for example 
economics, biology, engineering or psychology, particularly 
when one has an understanding of what is measured by indi-
vidual variables, but a bigger picture about how they come 
together remains elusive (Jolliffe & Cadima, 2016; Wegner-
Clemens, Rennig, Magnotti, & Beauchamp,  2019). In the 
present case, we set nm = 32, restricting our matrix to just a 
selective explorative subset of what might have been possible 
in an unconstrained data-driven approach. The data matrix 
included as dependent variable columns with information 

about AGE, SPQ, BAI, GHQ, five values of RMSE intended 
to capture the temporal evolution of tracking performance at 
five time points [100, 200, 300, 400 and 500] ms, and two 
saccade properties of Amplitude/Size and Rate. The seven 
ocular metrics, five RMSE and two from saccades were each 
obtained for four conditions across speed and gravity levels. 
The data produced a 44-by-32 matrix and the subsequent 
analysis reduced these to a limited set of nr components from 
the PCA. Running PCA uses iterative fits of the data matrix 
to produce λ, a set of nm eigenvalues of descending magni-
tude corresponding to the relative strength of the variance 
of each subsequent independent component. Each λi is the 
sum of contributions from the nm elements of a correspond-
ing eigenvector α, with one element for every variable of m 
providing a loading or weight quantifying how much it con-
tributes to the PCi with relative variance λi. Transformation 
between data space and PCA space can be done using ma-
trix operations of λ with α. The analysis is implemented with 
MathWorks MATLAB and the Statistics toolbox using the 
eigenvalue decomposition method for the covariance ma-
trix to estimate λ with α and the number of PCs nr is de-
termined by parallel analysis with a run of 1,000 iterations 
(Jolliffe, 2002; Ledesma & Valero-Mora, 2007).

The traits estimated by our three inventories SPQ, BAI 
and GHQ are known to have some comorbidity with each 
other. SPQ as a measure captures the heterogeneous symp-
tomology of schizophrenia which includes positive, negative 
and disorganised symptoms (Raine, 1991). A subset of neural 
mechanisms which are implicated in schizophrenia are also 
found in models of depression (Samsom & Wong, 2015) and 
across all three of these inventories, there is 50+% comorbid-
ity between diagnosed schizophrenia and depression, depres-
sion and anxiety and, to a lesser degree, schizophrenia and 
anxiety (Lewandowski et  al.,  2006). For these reasons, we 
expected some strong correlation identified during the anal-
ysis including these three inventories and these relationships 
will capture the common aspects of the traits. In such cases, 
it is expected that the comorbidities might explain a dominant 
proportion of the variance and as such take up one or more 
of the strongest principal components identified. The analy-
sis would then have to consider more components than these 
initial ones which still remain above the threshold of noise; in 
this case, up to a number nr is determined by the parallel anal-
ysis to take into account the less obvious structure of interest 
to us relating the trait and oculometric data beyond comorbid-
ities (Jolliffe, 2002; Ledesma & Valero-Mora, 2007). What 
PCA allows us to do further is to separate these composite 
heterogeneous traits into potentially meaningful features in 
a data-driven way by identifying statistically independent 
relationships. For example, if evidence found while testing 
H3 supports a prediction hypothesis linked specifically to 
the SPQ and not the control inventories, then one might ex-
pect that SPQ will contribute to multiple independent PCA 

 14609568, 2020, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.14926 by T

est, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  4811ISAAC MESO et al.

components, but only one of these will be most strongly spe-
cifically related to prediction effects in tracking performance.

3  |   RESULTS

3.1  |  Tracking performance dynamics under 
Gravity and Antigravity

We first calculated the position RMSE which gave the dy-
namic absolute difference between where the stimulus ap-
peared on the screen and where the eye was recorded to be 
in the same instant, thus serving as a simple performance 
measure. This was compared in separate plots for the slow 
and fast conditions both for the gravity and antigravity cases. 
The results shown in Figure 2 give the horizontal (x) and the 
vertical (y) RMSE components in the cyan and purple, re-
spectively. For the slow gravity condition where the stimulus 
x- and y-speeds are more comparable than the faster speed 
(i.e. both in range 0.4–4°/s so within an order of magnitude), 
there is little difference between the horizontal and vertical 
RMSE traces (see Figure 2a, purple versus cyan) with both 
reducing to a minimum by 100 ms and standard errors fully 
overlapping suggesting, under H1, that there is no measur-
able difference between horizontal and vertical tracking 
under this condition. To isolate the effect of switching accel-
eration from gravity to antigravity, the differences between 
these conditions are plotted in Figure 2e-f. We find that the 
antigravity condition (Figure  2c-d) consistently resulted in 
worse performance than the gravity condition (difference 
traces in magenta and blue, Figure 2e-f). For the horizontal, 
this difference between antigravity and gravity performance 
decreases gradually before a plateau of about 200 ms from 
onset (blue trace, Figure 2e-f). For the vertical, the difference 
was more sustained and gradual in its reduction taking up 
to 400  ms or more to reduce to zero (magenta, Figure  2e-
f). The fast condition had a large initial horizontal RMSE 
as participants typically initiated a larger catch-up saccade 
following onset latency (Figure 2b and d, cyan trace with a 
peak around 200 ms). The unfamiliar configuration of the an-
tigravity condition degraded participant performance, despite 
many practice trials within the block. The standard errors in 
the shaded areas were larger under the antigravity conditions, 
showing that individual differences in performance increased 
more than twofold under that configuration. The respective 
standard deviations at 200 ms for the gravity and antigrav-
ity conditions at 4°/s are GX = 0.16° and AGX = 0.24° for 
the x-direction and GY  =  0.27° and AGY  =  0.65° for the 
y-direction. Using a 2-sample F test for equal variance on 
the gravity and antigravity traces: for x-directions, we find 
the variances to be significantly different from each other, 
F (43) = 0.46, p = .012, and for the y-direction, the differ-
ence is even more pronounced, F (43) = 0.18, p < .001. To 

test H2, linear mixed-effects analysis was used to estimate 
the prediction of the y-RMSE at 200 ms (within the critical 
time shown in Figure 2) with Gravity direction and speed as 
fixed effects and participants as random effects. There was 
a significant effect of gravity direction on vertical RMSE 
(χ2(1) = 10.92, p = .00095 and giving a large effect size of 
d = 1.17), increasing the tracking error by 0.36° SE = 0.10° 
between Gravity and antigravity conditions at 200 ms.

3.2  |  The link between trait levels and 
behavioural measures

The dynamic RMSE results in Figure 2 gave little specific in-
dication of the individual differences beyond the standard er-
rors for the antigravity condition, particularly for the vertical 
RMSE. To probe this further, we looked at the vertical traces 
only and asked whether the predictive element of the task 
manipulated across gravity conditions might interact with in-
dividual trait levels. To this end, based on their scores using 
the self-report SPQ inventory we split the 44 participants into 
a lower (range 2–15, M = 10.1, SD = 3.8) and higher (range 
15–58, M = 30.1, SD = 12.8) schizotypy trait groups of equal 
numbers of individuals (Raine,  1991) to support the visu-
alisation of any differences here. We found that there was 
complete overlap between the low and high SPQ individuals’ 
performance traces under the gravity conditions (Figure 3a-
b), with both groups performing very well. In the antigravity 
condition however, low-trait individuals (Figure 3e-f, black 
trace) had better performance than high-trait individuals for 
the first 400 ms with a less steep dynamic improvement of 
performance, that is less reduction of error over time and a 
better peak performance with an RMSE of 0.5° compared to 
about 1° after 400 ms. There was no significant difference be-
tween the dynamic performance of the groups in the gravity 
condition but in the antigravity condition, between 300 and 
500 ms at least four samples representing 80 ms of compari-
son between the high- and low-trait groups were significantly 
different (p < .002) from each other in both speed conditions 
in Figure 3e and 3f, seen in the separation of the black and red 
curves after the dashed line. This tracking generated on aver-
age 2–5 saccades per second, and from these, we quantified 
the averaged rates and sizes, looking at how these metrics re-
lated to individuals’ SPQ scores. We tested these using linear 
mixed-effects analysis to predict the saccade metrics (rates 
and size) from fixed factors of SPQ, Gravity direction and 
Speed, and participants, BAI and GHQ were used as random 
effects in an analysis detailed in section 2.5.1. The NULL 
model was identical but with the SPQ fixed factor omitted. 
For the gravity condition, there was a slight trend towards 
lower rates for participants with higher SPQ scores but no 
significant relationship with saccade rates (Figure 3c). There 
was no evidence in comparison with the NULL model that 
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SPQ scores affected the saccade rate (χ2(2) = 1.60, p = .449). 
The rates were generally higher by almost one per second for 
the fast compared with the slow condition, implying more 
frequent catch-up saccades during the faster and therefore 
more difficult tracking task. The same analysis was done 
for the saccade amplitudes. There was a significant effect of 
SPQ on saccade amplitude (χ2(2) = 8.96, p = .0113, with a 

medium effect size estimated by Cramer's V  =  0.323), in-
dicating higher SPQ resulted in higher saccade amplitudes. 
The results generally suggest that individuals with higher 
SPQ scores tended to produce larger saccades than those with 
lower scores under both the gravity condition (Figure 3d) and 
the antigravity condition (Figure 3h), with it even more pro-
nounced in the latter case. We plot SPQ against the difference 

F I G U R E  3   RMSE and Saccade performance for gravity (top row) and antigravity (bottom row) conditions separated by SPQ trait levels. 
(a) The vertical component of the RMSE on the ordinate axis is plotted against stimulus time from onset on the abscissa. Two averaged traces are 
shown, comparing participants equally separated into a low SPQ trait group (black) and a high SPQ group (red). Performance traces cannot be 
separated up to 400 ms. (b) RMSE traces with similar colour coding to a show no differences between the low and high SPQ traces for the fast 
case. (c) The saccade rates in the ordinate axis are plotted against the SPQ score in the abscissa showing averages for all individuals during the 
fast (orange) and the slow (maroon) stimuli presentations with a difference of about 1 saccade/s between them. There is a negative trend for each 
indicated by the linear fit. (d) The saccade amplitudes/sizes are plotted against the SPQ score for each participant with slow (maroon) having a 
very similar trend to the fast (orange) linear fits, both increasing with SPQ. (e) The vertical direction RMSE plot for the antigravity condition in 
the same format as a. The lower SPQ trait cases (black) show steeper and faster gradual improvement than the higher SPQ cases (red) with all 
antigravity cases showing more gradual, delayed improvement than under the gravity condition. The plateau of performance after 400 ms has a 
larger difference (0.5°) between low and high traits than the gravity condition. f. The trend is similar to the slow condition in e. (g) Antigravity 
condition saccade rates against SPQ score show the same results as c. (h) Saccade amplitude against SPQ score illustrates a positive relationship 
with SPQ for both fast and slow stimuli, a trend which appears to be stronger under the gravity condition in d. (i) For the faster speed condition, 
the relationship between individuals’ SPQ scores (abscissa) is plotted in a scatter graph against the difference between the antigravity and gravity 
RMSE values (ordinate) first for 100 ms, as a visualisation of the interaction of gravity and trait. A least squares linear fitted trend line is included 
for visualisation. Similar plots are shown for subsequent time points, (j) 200 ms, (k) 300 ms and (l) 400 ms [Colour figure can be viewed at 
wileyonlinelibrary.com]
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between RMSE for the antigravity and gravity conditions at 
four time points to visualise trait dependence (Figure 3i-l).

The SPQ captures behavioural traits specifically related 
to schizotypy. It is unclear whether the trends identified in 
RMSE dynamics and saccade amplitudes in Figure 3 are spe-
cific to the SPQ or more broadly reflective of mental function 
or state. To explore the broader relationship between other 
traits and the tracking task, we similarly plotted results from 
two further established trait inventories. The short General 
Health Questionnaire, GHQ (Hardy et  al., 1999), was used 
to separate participants into two equal groups (low range 
−16 to −7, M = −10.6, SD = 2.7; and high range −7 to 10, 
M  =  −2.3 SD  =  5.1) and look at how these related to the 
set of eye-tracking measures used in Figure  3. The BAI, 
an anxiety trait measure, was similarly used (low range 0 
to 8, M = 3.6, SD = 2.8; and high range 8 to 46, M = 18.0 
SD = 10.5). As there was little substantial difference between 
fast and slow conditions in Figure 3, for the visualisation we 
focused on the slow conditions at 4°/s. We first looked at the 
dynamic RMSE traces for the vertical direction comparing 

a low GHQ averaged group (black) corresponding to nega-
tive states with a high GHQ group (red) in Figure 4a and e. 
Under the gravity condition, there was a very small offset 
of 0.1° between the pair of traces, with lower trait individ-
uals doing slightly worse but both notably reaching plateau 
performance within the first 150 ms. Under the antigravity 
condition however, the curves were surprisingly separated by 
about 0.4° so that the low GHQ cases (black traces) showed 
worse performance across the full duration considered up to 
500 ms from onset than the high GHQ cases (red) and this 
was true for both the fast and the slow stimuli. This visible 
tendency towards a difference was not statistically significant 
in the dynamic comparison, with p » .002 for all compared 
pairs in the range 0–500 ms. We similarly used the BAI trait 
measures to separate RMSE traces. Under the gravity condi-
tion, the low anxiety trait group (black) were similar in per-
formance for most of the range to the high anxiety trait (red) 
except for a small advantage, −0.2°, to the low-trait group 
around 200  ms (see Figure  4b). For the antigravity condi-
tion, there was a very small offset of ~0.2° across the range 

F I G U R E  4   RMSE and Saccade performance at the speed of 4°/s for gravity (top row) compared to antigravity (bottom row) grouped by GHQ 
and BAI trait scores; see text for details. (a) The vertical component of the RMSE on the ordinate axis is plotted against stimulus time from onset 
on the abscissa. Two averaged traces are shown, comparing participants equally separated into a low GHQ trait group (black) and a high GHQ 
group (red trace). Performance is approximately equal across the range but slightly better for the low group by about 0.2°. (b) RMSE traces with 
similar colour coding to a, for the BAI. The low- and high-trait cases overlap except briefly around 200 ms. (c) The saccade rates on the ordinate 
axis are plotted against the trait scores (separately for GHQ in maroon circles and BAI in yellow circles) showing averages for all individuals 
during the slow stimulus trials. There is no significant trend in the linear fits. (d) The saccade amplitudes are plotted against the trait scores (GHQ 
and BAI as in c) for each participant again with no significant trend. (e) The vertical direction RMSE plot for the antigravity condition in the same 
format as a. The lower GHQ trait cases (black) show worse performance than the higher GHQ cases (red) by about 0.4° across the presentation 
duration under the gravity condition. The small difference is not found to be statistically significantly. (f) For the BAI, where high trait is negative, 
the trend is very similar to E with sustained worse performance for the high BAI cases (red) with a smaller difference of ~0.3°, again a difference 
which is not statistically significant. (g) Antigravity condition saccade rates against GHQ and BAI trait scores show no significant trend. (h) 
Saccade amplitude against GHQ and BAI trait scores shows no significant trends [Colour figure can be viewed at wileyonlinelibrary.com]

 14609568, 2020, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.14926 by T

est, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com


4814  |      ISAAC MESO et al.

with low-trait individuals (black trace) performing better 
(see Figure  4f), though this difference was not statistically 
significant. Notably, a key difference between the SPQ and 
control GHQ and BAI RMSE traces can be seen by looking 
in between the marked vertical lines at 100 and 300 ms in 
Figures 3e-f and 4e-f, where the pair of SPQ groups shows 
a zero difference starting off from the same initial RMSE 
around 1.4°, whereas the controls (GHQ/BAI) start off with 
worse performance for the negative trait case. These dynam-
ics imply overall poorer performance, including imprecise 
fixation for the control trait comparisons, while SPQ differ-
ences which become prominent under the antigravity condi-
tion are specific to initiation and eventually to maintenance of 
tracking. We similarly considered the saccade parameters and 
their relationship with GHQ/BAI scores. In two further linear 
mixed-effects analyses, we substituted the GHQ and the BAI 
for the SPQ by moving these controls from random effects to 
fixed effects in the analyses, and vice versa for the SPQ, and 
then testing this model against a NULL alternative in which 
the control fixed effect was omitted. In both cases, no signif-
icant effect of the two traits as predictors of saccade metrics 
(p >  .05 in the χ2 model comparisons), amplitude or rates, 
was measured, consistent with the trends plotted (Figure 4c-d 
and g-h). Within the earlier part of the dynamic RMSE plots, 
the SPQ traits seemed to capture a feature of the individual 
performances that the control groupings were insensitive to. 

The specific trends in the saccade amplitudes and the form of 
the RMSE curves might be associated with the known atyp-
ical inhibitory processing which occurs with schizophrenia 
and schizotypy.

3.3  |  Principal component analysis for 
feature extraction

Finally, we used principal component analysis (PCA) to 
look at the main independent dimensions or features in our 
multivariate data set using a selection of our demographic 
and sensorimotor measures. We expected some relation-
ships between our trait measures, and possibly age, due to the 
known comorbidity between the traits related to the patho-
logical states the three inventories used attempt to capture. 
We sought to use the independent features identified by the 
analysis to separate out these heterogenous comorbidities 
and identify those related to the tracking performance, spe-
cifically those which might be associated with a prediction 
hypothesis. The set of 32 metrics included the four trait and 
demographic measures of AGE, SPQ, BAI and GHQ along 
with seven eye movement metrics including five dynamic y-
RMSE metrics, saccade rates and saccade amplitudes, each 
repeated four times across the speed (S/F) and gravity (G/A) 
conditions (i.e. SG, SA, FG, FA). The aim was to allow us to 

F I G U R E  5   PCA results focusing on the first five components. (a) Projection of the data (small red circles) and the variable coefficients α 
(blue lines) onto the PCA space for the first two components. PC1 is dominated by SPQ with a contribution by BAI and to a lesser extent GHQ. 
PC2 includes AGE and small weights for BAI and GHQ but no SPQ. (b) Components PC2 plotted against PC3 in the same format as a. SPQ and 
AGE are weighted in an opposite direction from BAI, which dominates PC3. (c) PC3 versus PC4 shows PC4 to be strongly dominated by the GHQ. 
(d) PC4 versus PC5 shows the eye movements start to make a contribution to the components with the rate and size components aligned in opposite 
directions along the vertical axis (see α values in Table 1) [Colour figure can be viewed at wileyonlinelibrary.com]
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cluster related measures from this selected subset and evalu-
ate whether any identified abstract features could be used to 
infer specific processes and underlying mechanisms. Using 
a Bartlett test for dimensionality, we found that most of the 
measures contributed, that is N = 26, were needed to explain 
the variance of the input data with an alpha level of p = .01. 
This figure of variance from over 80% of the measures con-
tributing suggests that the relationships which were identi-
fied with PCA reflected a heterogeneous set of underlying 
mechanisms which we sought to unpack. We used parallel 
analysis to estimate how many principal components were 
required to capture systematic variance from the contribut-
ing data variables (Ledesma & Valero-Mora,  2007). The 

resulting estimate was that this was achieved by the first five 
components, and the total variance collectively explained by 
these was 99.1%. In the current work, we focussed on these 
five PCs remaining aware that in future work with more data, 
additional components may also be found to be meaningful. 
We plotted the normalised projection of the variable (α) and 
data coefficients in pairs along the planes representing the 
five principal components (see Figure 5 and Table 1). This 
allowed us to consider each component in turn.

The first component, PC1, has the SPQ as the dominant 
variable contribution with BAI as second (both with weights 
over 0.5) and then GHQ. There are some inconsistent con-
tributions from eye metrics particularly for antigravity, but 

Measure type
Metric 
# Name

PC Number and Coefficient

1 2 3 4 5

Demographic 1 Age −0.15 0.96 −0.21 −0.04 −0.06

2 SPQ 0.78 −0.02 −0.59 −0.15 −0.10

3 BAI 0.55 0.25 0.76 −0.22 0.04

4 GHQ 0.24 0.10 0.06 0.96 0.07

Slow G 5 100 ms 0.00 0.02 0.01 −0.02 0.03

6 200 ms 0.00 0.01 0.01 0.00 0.03

RMSE 7 300 ms 0.00 0.01 0.01 0.00 0.05

8 400 ms 0.00 0.01 0.01 −0.02 0.06

9 500 ms 0.00 0.00 0.01 −0.03 0.06

Saccades 10 Amp 0.01 −0.01 −0.02 −0.02 0.05

11 Rate −0.01 0.00 0.02 0.00 −0.20

Slow A 12 100 ms 0.00 0.03 −0.03 −0.01 0.30

13 200 ms 0.01 0.02 −0.03 −0.02 0.27

RMSE 14 300 ms 0.01 0.01 −0.03 −0.02 0.26

15 400 ms 0.01 0.00 −0.03 −0.03 0.23

16 500 ms 0.01 0.00 −0.03 −0.02 0.19

Saccades 17 Amp 0.01 0.01 −0.03 −0.05 0.18

18 Rate 0.00 −0.01 0.01 0.00 −0.29

Fast G 19 100 ms 0.00 0.02 0.01 −0.03 0.03

20 200 ms 0.00 0.01 0.01 −0.01 0.02

RMSE 21 300 ms 0.00 0.01 0.01 −0.01 0.05

22 400 ms 0.00 0.01 0.00 0.00 0.07

23 500 ms 0.00 0.01 0.00 −0.01 0.06

Saccades 24 Amp 0.01 −0.01 −0.04 −0.01 0.06

25 Rate −0.01 0.01 0.02 0.01 −0.12

Fast A 26 100 ms 0.01 0.04 −0.03 −0.03 0.29

27 200 ms 0.01 0.01 −0.03 −0.01 0.28

RMSE 28 300 ms 0.01 0.00 −0.03 −0.01 0.28

29 400 ms 0.01 0.00 −0.03 −0.02 0.26

30 500 ms 0.01 0.00 −0.03 −0.02 0.25

Saccades 31 Amp 0.01 0.01 −0.04 −0.05 0.18

32 Rate −0.01 0.00 0.01 −0.01 −0.23

T A B L E  1   The 32 measured variables 
from the experiment are listed grouped 
by measure type in the first column with 
each variable name included in the third 
column. The coefficients α which scale 
from −1 to 1 returned during the principal 
component analysis are shown to 2 dp with 
the highest three absolute values in bold. In 
the case of the fifth column where several 
coefficient values clustered around similar 
levels of 0.2–0.3, more than three values 
are highlighted with the higher half of the 
values all in bold
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these have very small weights of <0.02 (Figures 5a and 6a and 
Table 1). We believe that this component captures a non-spe-
cific largely age-independent comorbidity between the 
traits, for example similar to that suggested by Lewandowski 
et al.  (2006), capturing the variation of negative mood lev-
els which are not strongly associated with age. PC2 is over-
whelmingly dominated by AGE (Figure 5a and b) and notably 
has an almost zero weight for SPQ. BAI and GHQ have small 
weights here, and the early part of the y-RMSE (100–200 ms) 
also has very small weights of <0.03. This component may 
capture age-related differences in mental state, perhaps also 
mildly associated with anxiety differences across the lifes-
pan. These first two components dominated by the traits and 
AGE account for 85.3% of the variance.

The third component, PC3, is dominated by BAI, with 
a weight of over 0.75, and has a negative relationship with 
SPQ (weight −0.6) and AGE (weight <|0.25|). This is the first 

component that gives us a small but consistent difference in 
weights between the eye metrics (excluding saccade rates) in the 
gravity and antigravity conditions (see Figure 6c and Table 1). 
The antigravity conditions have weights of −0.03 to −0.05, with 
little change across the dynamics, while the weights in the grav-
ity condition are positive. This component captures associations 
between anxiety traits and a subset of schizotypy traits, with 
the higher anxiety trait scores associated with low levels of the 
corresponding SPQ dimension. This anxiety-SPQ feature likely 
isolates and reflects the generally sustained poorer tracking per-
formance under the antigravity condition seen for the high BAI 
trait group in Figure 4f. The fourth component, PC4, is over-
whelmingly dominated by GHQ with a weight of over 0.95. The 
next closest weight is BAI with a negative weight <|0.25|. PC4 
may capture the positive mood aspect of the GHQ trait ques-
tionnaire as the strong weight for GHQ comes with a negative 
relation to the other trait measures within this component. There 

F I G U R E  6   The relative loadings/weights α of each of the variables in PCA space. The numbered variables are detailed in Table 1. (a) For 
PC1: A plot of the relationship between the normalised weights once projected onto PCA space for each variable, compared for the first PCA 
component. Only the traits/demographics in the first column (#1-4) contribute. (b) PC2: Only the demographics/traits (# 1–4) contribute. (c) PC3 
is dominated by variables #1-4, in particular #3, BAI, and there is some relationship with eye movement measures under antigravity. (d) PC4 is 
dominated by #4, GHQ. (e) PC5 is dominated by the eye-tracking measures, particularly under the antigravity conditions (#12–18 and #26–32) 
with maximum values around 0.27–0.30, lower than 0.76–0.96 for PC1-4. The strongest trait weighting is for SPQ at −0.10, about one third of 
the maximum value, and there is a temporal component such that variability at 100 ms is more important that that at 500 ms for the y-RMSE 
measure. (f) Results of the parallel analysis showing the variance eigenvalue λ (in black) plotted for each component (along the abscissa) and 
simulated bounds of the meaningful variance (grey). The vertical line shows the cut-off point just after PC5, where variance is estimated to become 
unsystematic
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are no specific patterns in the related eye metrics with weights 
under 0.04. Overall, the first four components seem to capture 
variance dominated by AGE and the three inventories, with little 
contribution from the eye metrics. Within the first four PCs, we 
established what appeared to be features capturing (a) negative 
mood-related comorbidity, (b) age-related effects, (c) an anx-
iety-/schizotypy-associated dimension and (d) a positive mood 
factor. The Bartlett test identified 26 variables with systematic 
variation so we expect that the remaining 22 should contribute 
more to subsequent components.

PC5 is dominated by the dynamic vertical RMSE values, 
and in particular, those under the antigravity condition. Three 
striking patterns within this data are notable for us: (a) the dif-
ference between gravity and antigravity performance weights, 
specifically within the five y-RMSE values and the saccade 
size. While saccade rates also have a strong weight, this does 
not depend on gravity direction strongly (see Figure 6e). This 
tells us that PC5 reflects an underlying mechanism which 
drives variability in individual performance, most specif-
ically under the antigravity stimulation. (b) There is a dy-
namic change in the weights under the antigravity condition, 
and this seems to capture what is visualised in the dynamic 
y-RMSE traces of Figure 3a/b when compared to Figure 3e/f. 
Initiating the first 100 ms of the eye movement under the anti-
gravity condition has the most variability across participants, 
and this systematically reduces at 200 ms and subsequently 
with every other PC5 weight until 500 ms. This dynamic as-
pect captures the strangeness of the antigravity condition (in 
contrast to the expected gravity condition where the variance 
is larger at 300–500 ms than 100–200 ms) experienced at the 
onset of every stimulus trial. The reduction in the weight over 
the course of 500 ms is consistent with the implementation of 
a compensation mechanism which eventually brings perfor-
mance back into line. We believe these dynamics make PC5 
a candidate for a dynamic prediction mechanism. (c) The 
strongest of the trait/demographic weights is SPQ at just over 
−0.10 or one third of the maximum coefficients of the RMSE 
values of approximately 0.3 (see Table 1). With most of the 
variance related to the SPQ in the data strongly associated 
with the other trait/demographic measures explained by PC1 
and PC3, what remains in the weight of the SPQ in PC5 cap-
tures variance associated with a mechanism specific to anti-
gravity (c.f. (1)) and which has a dynamic processing element 
to it (c.f. (2)). This relationship seems to be most specific to 
the SPQ rather than the BAI, GHQ or AGE and is consistent 
with our results to H3 which isolate SPQ as a specific predic-
tor of saccade amplitudes and tracking performance.

4  |   DISCUSSION

Eye tracking has been used as a window into cognitive func-
tion since the early work of Yarbus (1967). In many of the 

paradigms which look at the tracking of moving targets, re-
alism has been traded off for control and simplicity, often 
reducing tracked targets into points moving at constant speed 
along straight-line paths (Spering & Montagnini, 2011). That 
previous work has provided a range of insights and of par-
ticular relevance for the current study is the dynamics of pur-
suit responses from stimulus onset. Fast response latencies 
(~90–100 ms) lead to an open-loop stimulus-driven tracking 
initiation period (<200  ms) and then a closed-loop period 
where visual feedback mechanisms are expected to oper-
ate to maintain accurate tracking (Masson, 2004; Masson & 
Perrinet,  2012). The time course of performance in ocular 
tracking tasks has therefore previously been used to identify 
the hierarchical locus of motion processing computations 
(Pack & Born, 2001). In the current work, we sought to ex-
tend previous work by looking at tracking of motion trajecto-
ries which were more naturalistically curved by the effect of 
acceleration due to gravity. We had three questions of inter-
est which motivated the hypotheses we tested.

4.1  |  Can participants accurately track 
a naturalistically accelerating moving ball 
within a background with impoverished target 
depth and size cues?

We replicated previous work (Delle Monache, Lacquaniti, & 
Bosco, 2015; Jorges & Lopez-Moliner, 2019) finding that mo-
tion under gravity could be tracked very well and additionally 
showed that this could be done even with impoverished size 
and depth cues. We observed fast improvement up to a peak of 
performance for all participants within 150 ms (i.e. during the 
open loop) both for the gravity-influenced vertical and the hor-
izontal components moving at a constant speed. This fast time-
scale is comparable to that previously measured under linear 
trajectories (Spering & Montagnini, 2011) and notably quicker 
than the 300 ms or so measured under curved arcs from a larger 
circle (Ross et al., 2017) or sinusoidal paths (Faiola et al., 2020; 
Meyhofer et  al., 2015). It is also notably faster than motion 
tracking periods of up to 500 ms which were needed before 
participants could accurately compensate for a blanked trajec-
tory of an accelerating target (Bennett et  al.,  2007), though 
that is notably a different task from tracking performance to 
identify individual differences. In the current work, motion in 
a gravitationally curved trajectory drove a tracking initiation 
with an appropriate acceleration comparable in performance 
dynamics to the simpler case of motion along a linear trajec-
tory. This suggests specific adaptation to motion under grav-
ity (Brenner et  al.,  2016; Jorges & Lopez-Moliner,  2017), 
and unlike previously thought, this may not require pictorial 
or context cues (Flavell,  2014; Zago et  al.,  2009). A recent 
study which included pictorial cues in the background of 
tracked parabola to support acceleration estimation tested a 
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range of values of gravity g from 0.7 to 1.3 (Jorges & Lopez-
Moliner, 2019). Jorges and Lopez-Moliner (2019) found that 
gravity was tracked better than antigravity and there were large 
individual differences in this contrast between gravity condi-
tions. For gravity tracking, we thought it interesting that they 
did not find the ecological value of g = 9.81 to be the best 
tracked motion in the range tested, though the authors ac-
knowledge this may well have been because of confounds in 
the duration of the conditions with different values of g. If this 
effect is meaningful, it would support the notion that the sys-
tem was flexible under different values of g and pictorial cues 
did not necessarily seem to engender optimal sensitivity to 
gravity. The current results provided evidence we interpret to 
suggest that the fast tracking dynamics comparable to straight-
line tracking were likely to be driven by bottom-up sensory 
mechanisms during the initiation phase. This onset and time-
scale (100–150 ms) within the so-called open loop allow just 
enough time for a few sequential synapses in parallel to engage 
the fast network of midbrain structures, striate and extra-striate 
sensory visual cortex areas involved in motion processing and 
ocular responses (Masson & Perrinet, 2012). These early com-
putations appear to be adapted for motion which follows the 
laws of physics.

4.2  |  Will the inversion of gravity have a 
measurable effect on tracking?

Antigravity was processed much worse, with slower im-
provement to a plateau of performance for all participants, 
under all conditions. The dynamics suggest critical process-
ing well into the closed-loop period (200–400 ms for the ver-
tical direction compared to 200 ms for the constant horizontal 
speed direction) and make a case for a more complex, per-
haps recurrent hierarchical computation. The advantage for 
the visual system which was identified for the motion under 
gravity was entirely lost under this inverted condition, con-
sistent with previous results where deviations from g were 
tested during tasks involving interception (Zago et al., 2009). 
The current work supports the notion that gravity is in fact a 
special encoded feature, fundamentally impacting the way we 
perceive and operate in the world including seemingly unre-
lated aspects like aesthetic preferences and decision-making 
(Gallagher et al., 2019; Gallagher & Ferre, 2018). We con-
jecture that this fast stimulus processing case is similar to the 
high sensitivity to upright faces or light from above for which 
there is a quick, pre-attentive response along a similarly fast 
timescale to ecologically relevant stimuli (Rhodes, Brake, & 
Atkinson, 1993). In contrast, the atypical antigravity condi-
tion which would be analogous to the inverted faces cannot 
exploit the default sensory predictive mechanisms and so is 
performed worse for everyone engendering larger individual 
differences which we sought to understand further.

4.3  |  Is there evidence that schizophrenia-
associated trait levels have any link with 
individual performance and does this depend 
on the gravity conditions?

Dynamic predictive sensory and cognitive mechanisms in-
corporating experience may support the excellent tracking 
we observe under gravity (Fletcher & Frith,  2009; Jorges 
& Lopez-Moliner, 2019). These same mechanisms may not 
fully explain participant performance divergence and ap-
parent compensation for the unexpected acceleration of in-
verted gravity seen in some participants. Corollary discharge 
signals (the neural signal produced in the brain to indicate 
actions performed by oneself) may have a role in how this 
pattern of results comes together and relates to schizotypy 
traits (Crapse & Sommer, 2008). We believe the time course 
of the antigravity result provides evidence of a hierarchical 
predictive computation which uses errors between efferent 
and afferent signals from an early sensory stage to adjust 
tracking online during the late part of the open-loop phase 
as it transitions to the closed loop, incorporating adjustments 
for expectations. It has been demonstrated that within such a 
framework, schizophrenic patients with impaired later stage 
prediction may be less sensitive to mathematical regularity or 
predictable structure in processing than healthy counterparts 
and may therefore improve when tracking unpredictable 
stimuli (Adams et al., 2012). We did not, however, measure 
an effect consistent with a better response to antigravity stim-
uli in the high-trait participants, perhaps because the inverted 
gravity condition in fact has a systematic regularity to it, just 
a less familiar acceleration rule providing the predictability 
than g. There was wide variability in performance which may 
be because some individuals (like sportspeople) might learn 
to expertly exploit laws of motion and harness predictive sig-
nals better than the rest of the population even in a novel con-
text like antigravity. Conversely traits of neuropsychological 
conditions like schizophrenia might drive stronger track-
ing deficits when strong, possibly automatically processed, 
expectations like gravity are no longer helpful (Bansal 
et  al.,  2018). Recent work also established that orientation 
and motion illusions thought to be driven by strong ambiguity 
resolution assumptions or priors produced similar perceived 
illusions in both psychotic schizophrenic patients and healthy 
controls (Kaliuzhna et  al., 2019). The similar tracking per-
formance we observe across trait groups would support the 
notion that gravity is indeed a very strong prior acting for all 
participants including those with otherwise impaired predic-
tive mechanisms (Jorges & Lopez-Moliner, 2017).

To test the prediction hypotheses, we established lev-
els of individual traits using three self-report question-
naires, the specific Schizotypal Personality Questionnaire, 
SPQ (Raine,  1991), and as controls the General Health 
Questionnaire, GHQ (Hardy et  al.,  1999), and the Beck 
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Anxiety Inventory (Beck et  al.,  1988). While self-reports 
present some limitations in producing objective measures 
of trait and state, these established inventories have been 
shown to reliably capture the traits they seek to measure 
over previous studies, albeit with some individual variability 
(Fydrich et al., 1992; Hills et al., 2016; Hu et al., 2007). Our 
sample number (N = 44) was comparable to the lower end 
for which these inventories have previously been success-
fully used and splitting individuals into equal trait groups 
allowed us to visualise the dynamics of the changes across 
trait levels and test our third hypothesis. The SPQ was cho-
sen to quantify schizotypy, a set of heterogenous traits found 
within the healthy population which are related to the pos-
itive, negative and disorganised symptoms of schizophre-
nia but which occur with a lower severity (Raine,  1991). 
Schizotypy, like schizophrenia, has consistently been shown 
to generate deficits in visual tracking (Faiola et  al.,  2020; 
Meyhofer et  al.,  2015; Spering et  al.,  2013). We therefore 
used the trait measure to split the participants into low and 
high groups and contrasted tracking performance between 
them. Results suggested that gravity-driven prediction mech-
anisms were active for both trait groups, consistent with 
previous findings of similar participant perception of visual 
illusions which rely on strong assumptions of the percep-
tual system (Kaliuzhna et  al.,  2019). Under the antigravity 
condition however, both groups were worse than under the 
gravity condition taking longer (200–400 ms) to attain sta-
ble tracking performance. The high-trait group performed 
worse than the low-trait group, starting from the same base 
at onset (implying that this was not simply due to poor fixa-
tion), but improving less quickly to reach a worse baseline of 
stable tracking performance. Both the tracking initiation and 
subsequent maintenance were poorer for the high SPQ trait 
group. As a control, we tested the GHQ and BAI traits in a 
similar way and found that negative scorers generated poorer 
tracking, with the entire dynamic tracking responses shifted 
upwards towards worse performance rather than replicating 
the shape of initiation and maintenance dynamics observed 
between the SPQ groups. In addition, the significant rela-
tionship between saccade size and SPQ score was not repli-
cated across the control trait conditions. Using multivariate 
PCA, we identified five dominant component features within 
the data which explained over 99% of the variance. The first 
four of these components showed patterns that appeared to 
be related to (a) negative mood through SPQ and BAI (PC1), 
(b) AGE-dependent state (PC2), (c) anxiety–schizotypy re-
lated to the BAI and part of the SPQ (PC3) and (d) posi-
tive mood seen in the GHQ (PC4). The first two of these 
alone explained 85.3% of the variance in the data, and this 
was not unexpected as the behavioural traits and underlying 
neural mechanisms captured by these measures are known 
to show some overlap (Lewandowski et al., 2006; Samsom 
& Wong, 2015). The first four of these components had very 

small and inconsistent weightings for the eye movement 
metrics. We therefore assumed they predominantly captured 
comorbidity which could not be strongly associated with 
specific eye movements. It would be of interest to study these 
associations, further testing different forms of PCA (correla-
tion-based and PCA regression) with larger sample sizes that 
allow for the decomposition of the SPQ into its constituent 
positive, negative and disorganised clusters and a similar de-
composition of the GHQ into negative and positive.

The fifth component PC5 was dominated by eye-tracking 
performance, most importantly under the antigravity condi-
tion where variance weights were strongest. There was also 
a dynamic aspect to the patterns of these weights, suggesting 
different underlying processing for gravity and antigravity. 
In this light, PC5 appeared to specifically capture predictive 
performance divergence most strongly related to the earlier 
parts of the vertical RMSE and the saccade sizes in the an-
tigravity condition. There was a specific significant relation-
ship between these eye movement metrics and the SPQ in a 
way that was not seen in the control inventories, suggesting 
this SPQ-related prediction measure could be used to gather 
more insights from eye movements in future. These identified 
biometrics of prediction need to be explored further.

These findings demonstrated that our antigravity condi-
tion provided a window into dynamic tracking mechanisms 
specific to schizotypy. Imaging studies (fMRI) alongside 
tracking tasks have identified the networks that respond 
specifically to motion tracking including visual cortex, 
frontal areas, cerebellum and the thalamus, and of these, 
only sensory visual cortex showed a significantly higher 
activation for lower than for higher schizotypy groups 
during a tracking task (Meyhofer et  al.,  2015). Our find-
ings of fast tracking dynamics support these results that 
gravity might obtain its fast processing advantage within 
appropriately adapted early sensory areas. Meyhofer and 
colleagues (2015) speculate that the non-significant trend 
towards higher activation in the frontal areas which is 
linked to schizotypy trait score might reflect a high-level 
compensatory mechanism applied by schizophrenic pa-
tients to deal with sensory–perceptual errors (Fletcher & 
Frith, 2009). Such a compensatory mechanism operating in 
frontal cortex would necessarily be slower than prediction 
processed at a sensory level by up to hundreds of millisec-
onds due to the recurrent hierarchical spiking computations 
that would need to be engaged to link the occipital lobe 
and the midbrain to the frontal networks (Thorpe, Fize, & 
Marlot, 1996). Further experiments need to be carried out 
to advance our understanding of the mechanistic under-
pinning of the heterogeneity in participants’ performance 
we observe, a pattern of individual differences which has 
also similarly been shown to arise in a context-dependent 
way during visual motion ambiguity resolution (Li, Meso, 
Logothetis, & Keliris, 2019). It is also unclear whether the 
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capacity for implicit learning of the rules of motion during 
tracking shows any dependence on trait levels. A future 
question may be whether like primates (Bourrelly, Quinet, 
Cavanagh, & Goffart, 2016), some humans can eventually 
learn to track accelerating stimuli well, in our case specif-
ically under antigravity over the course of many trials and 
what this says about the plasticity of dynamic brain func-
tion. There is also the question of whether schizophrenic 
patient tracking would be even more disrupted than our 
high schizotypy participants by the antigravity condition, 
and this should be tested.

5  |   CONCLUSIONS

We have shown that human tracking of a ball which moves 
under the influence of gravity is performed very well, with 
fast reactions across all participants with a time course which 
reflects automated computations within the so-called open 
loop, while visual feedback remains limited and bottom-up 
sensory mechanisms are primarily active. In contrast, anti-
gravity was generally poorly performed with longer delays 
before performance stabilised and resulted in a marked diver-
gence in measured individual differences. We showed that 
while everyone performed well under the gravity condition, 
the antigravity condition produced better tracking for the low 
schizotypy trait participants who must have applied a com-
pensatory mechanism for motion prediction in the closed-
loop part of the response, which the high-trait individuals did 
not. This work provides a novel framework for studying sen-
sorimotor prediction which we believe has a lot of potential 
and must be tested further. It also adds to a growing body 
of literature which provide encouraging early results in the 
quest for tools which can provide a diagnostic window into 
mechanisms of brain function (Faiola et al., 2020; Freedman 
& Foxe, 2018; Krol & Krol, 2019; Paladini et al., 2019), in 
our case dynamic prediction which can be an indication of 
psychotic traits.
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