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Abstract: Magnetic Resonance Imaging (MRI) services in high-complexity hospitals of-
ten suffer from operational inefficiencies, including suboptimal MRI machine utilization,
prolonged patient waiting times, and inequitable service delivery across clinical priority
levels. Addressing these challenges requires intelligent scheduling strategies capable of dy-
namically managing patient waitlists based on clinical urgency while optimizing resource
allocation. In this study, we propose a novel framework that integrates a digital twin (DT)
of the MRI operational environment with a reinforcement learning (RL) agent trained via
Deep Q-Networks (DQN). The digital twin simulates realistic hospital dynamics using
parameters extracted from a MRI publicly available dataset, modeling patient arrivals,
examination durations, MRI machine reliability, and clinical priority stratifications. Our
strategy learns policies that maximize MRI machine utilization, minimize average waiting
times, and ensure fairness by prioritizing urgent cases in the patient waitlist. Our approach
outperforms traditional baselines, achieving a 14.5% increase in MRI machine utilization, a
44.8% reduction in average patient waiting time, and substantial improvements in priority-
weighted fairness compared to First-Come-First-Served (FCFS) and static priority heuristics.
Our strategy is designed to support hospital deployment, offering scalability, adaptabil-
ity to dynamic operational conditions, and seamless integration with existing healthcare
information systems. By advancing the use of digital twins and reinforcement learning
in healthcare operations, our work provides a promising pathway toward optimizing
MRI services, improving patient satisfaction, and enhancing clinical outcomes in complex
hospital environments.

Keywords: digital twin; reinforcement learning; MRI scheduling; patient waitlist prioritization;
healthcare operations optimization

1. Introduction
Efficient scheduling of MRI procedures remains a persistent challenge for high-

complexity hospitals around the world [1,2]. The increasing demand for imaging services,
combined with the variability in patient urgency and resource constraints, often leads to
underutilized equipment, extended patient waiting times, and uneven service levels across
clinical priorities [3,4]. These operational bottlenecks not only strain hospital resources, but
also negatively impact patient satisfaction and health outcomes [5–7].

MRI is a critical yet resource-intensive modality in modern healthcare. In high-
complexity hospital settings, MRI scheduling must reconcile limited machine availability,
variable scan durations, and heterogeneous patient clinical urgencies [8]. Traditional
scheduling policies, such as FCFS or fixed priority heuristics, are often inadequate to
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handle the dynamic and stochastic nature of real-world imaging workflows [9]. These
strategies typically lack adaptability and do not optimize system-level efficiency, leading to
prolonged waiting times, underutilized equipment, and inequitable care delivery [10].

Recent advances in artificial intelligence, particularly in reinforcement learning (RL),
have demonstrated a strong potential for dynamic decision making in healthcare opera-
tions. However, their application to MRI scheduling remains limited. Furthermore, many
existing studies overlook real-world operational constraints or fail to evaluate their models
within data-driven high-fidelity simulation environments [11]. This highlights the need
for integrative frameworks that combine RL with clinically grounded and operationally
realistic modeling to address the complex challenges of imaging service delivery.

Traditional scheduling approaches, such as FCFS or static priority heuristics, fail to
dynamically adapt to real-time fluctuations in patient arrivals, MRI machine availability,
or emerging clinical needs [12]. Consequently, healthcare systems urgently need more
intelligent and responsive scheduling mechanisms that balance operational efficiency with
clinical urgency considerations, while dynamically managing patient waiting lists according
to evolving clinical priorities [13–15].

In this study, we propose an advanced scheduling framework that combines an
MRI operational system DT with an RL agent trained through DQN. The digital twin
emulates realistic hospital dynamics, while the RL agent learns optimal scheduling policies
by interacting with this environment, aiming to maximize resource utilization, minimize
patient waiting times, enhance fairness across different clinical priority levels, and prioritize
patient waitlists dynamically based on clinical urgency.

Our main contribution lies in bridging the gap between theoretical optimization
and practical implementation in clinical MRI scheduling. We develop a discrete-event
digital twin of MRI operations, calibrated using publicly available data, and integrate
it with a DQN reinforcement learning agent. This framework formulates scheduling as
a Markov Decision Process (MDP), enabling dynamic patient waitlist prioritization and
policy learning under realistic operational constraints. We validate our approach through
simulation experiments, showing that it outperforms traditional baselines in utilization,
waiting time reduction, and fairness.

The remainder of the paper is organized as follows. Section 2 reviews the existing
literature on MRI scheduling, digital twins, and reinforcement learning in healthcare.
Section 3 describes our methodological framework. Section 4 presents the experimental
evaluation and comparative results. Section 5 discusses the implications, limitations, and
potential extensions of our approach. Finally, Section 6 summarizes the main findings and
provides directions for future research.

2. Literature Review
MRI scheduling has traditionally relied on heuristic-based methods, such as block

scheduling and FCFS policies [16,17]. Studies such as [18,19] have shown that while
heuristics provide simple implementations, they often lead to underutilization of resources
and inequitable levels of patient service, particularly under conditions of variable demand
and resource constraints.

More recent work has explored optimization-based approaches, including integer
programming and queuing theory models [20]. For example, refs. [21,22] formulated MRI
scheduling as a resource allocation problem and demonstrated modest improvements in
waiting times. However, these optimization techniques often assume static environments
and struggle to adapt to real-time operational variability.

The emergence of DT technology has opened new possibilities for healthcare oper-
ations [23,24]. Several studies have modeled hospital departments using DT to simulate
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operational dynamics and test intervention strategies. For example, refs. [24,25] applied a
DT framework in an emergency department setting, achieving notable performance gains.
However, applications specifically targeting imaging services such as MRI remain limited.

RL has gained attention as a promising paradigm for dynamic decision-making in
healthcare [26,27]. Previous research, such as [28,29] and others have applied RL to
healthcare, appointment scheduling, and resource allocation problems, demonstrating
the method’s ability to handle stochastic, nonstationary environments. However, studies
explicitly combining RL with DT simulations for imaging department optimization are
still scarce.

In addition, fairness in healthcare operations, particularly in regard to the delivery
of services across clinical priority levels, has recently attracted scholarly attention [30,31].
Works such as [32,33] have adapted classical fairness metrics (e.g., Jain’s index) to evaluate
scheduling strategies, yet integrating fairness explicitly into the learning objective remains
an underexplored area.

Comparative Analysis of Related Approaches

To contextualize our contribution within the existing body of work, Table 1 summarizes
key characteristics of representative approaches for the scheduling of MRI and the allocation
of hospital resources. We compare methods based on the decision paradigm, data usage,
adaptability to real-time dynamics, and integration with priority-based scheduling.

Table 1. Comparison of Scheduling Approaches in Healthcare Operations.

Study Methodology Data Source Real-Time Adaptivity Patient Prioritization

Hayatghaibi et al. (2023) [2] Optimization + Simulation Simulated No No
Choudhary et al. (2024) [12] Heuristic rules Real data No Yes
Keerthika et al. (2024) [34] Deep RL (DQN, A3C) General healthcare data No Partial
Lakhan et al. (2024) [35] Deep RL + Constraint Scheduling IoT + Hybrid Telemedicine Data Partial Yes
Our work Digital Twin + DQN (RL) fastMRI-derived synthetic Yes Yes

As shown in Table 1, most prior methods rely on static rules and lack dynamic adapt-
ability. Few incorporate priority for patient wait lists based on urgency. Our framework
addresses these gaps by integrating a digital twin with reinforcement learning, enabling
adaptive scheduling that considers machine failures and clinical priorities.

Our work advances previous research by introducing a fully integrated framework
that combines digital twin simulation with reinforcement learning for MRI scheduling.
The model incorporates clinical priorities, adapts to system congestion through dynamic
reward shaping, and is rigorously validated against baseline strategies using fairness,
utilization, and waiting-time metrics. Our strategy offers actionable information to enhance
operational performance and patient satisfaction in MRI departments.

3. Methodology
In this section, we present the methodological framework developed to optimize the

workflow of MRI procedures in high-complexity hospital environments. Our approach
integrates a DT of the MRI operational system with a RL agent that dynamically interacts
with a simulated environment to discover optimal scheduling policies.

The DT is constructed from operational patterns derived from publicly available
datasets. In particular, we used the fastMRI dataset [36,37], a publicly accessible collection
of deidentified MRI scans and associated metadata. This data set enables us to parame-
terize realistic operational features, including the availability of the MRI machine, patient
arrival rates, examination durations, and clinical priority classifications, while ensuring
full compliance with ethical standards and data privacy regulations.

The RL agent is trained using a DQN to optimize system efficiency metrics -specifically,
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to maximize utilization of the MRI machine and patient throughput while minimizing
average waiting times and ensuring fairness in patient prioritization.

Our methodology unfolds across five sequential stages: (i) data modeling and en-
vironment synthesis, (ii) DT construction, (iii) formulation of the scheduling problem as
a MDP, (iv) RL agent training and hyperparameter tuning, and (v) evaluation of system
performance under diverse simulated scenarios.

To provide a high-level summary of our proposed methodology, we present in Figure 1
the complete architecture of our framework. This includes the generation of synthetic data,
the construction of a digital twin simulation, the formulation of the problem as MDP, the
training of a reinforcement learning agent using DQN, and the evaluation of the learned
scheduling policy using key performance metrics.

Figure 1. Overview of the proposed MRI scheduling framework. The synthetic environment is
modeled using a data-calibrated digital twin simulation, which serves as the basis for MDP formula-
tion and subsequent training of a DQN-based reinforcement learning agent. The resulting policy is
evaluated through key performance metrics, including utilization, waiting time, and fairness.

3.1. Data Modeling and Environment Synthesis

We construct a realistic operational environment by synthesizing patient and MRI
machine dynamics using parameter distributions extracted from the fastMRI dataset and
supported by findings from relevant clinical operations literature. Patient arrivals, denoted
by λt, are modeled as a non-homogeneous Poisson process [38,39]:

λt ∼ Poisson(λ(t)) (1)

where λ(t) is a time-dependent function that captures daily and weekly fluctuations.
The duration of the examination Di for the patient i follows a log-normal distribution [40,41]:

Di ∼ LogNormal(µ, σ2) (2)

where µ and σ2 are empirically estimated parameters. We used the logarithmic normal
distribution for its ability to capture the positive skew observed in the exams durations of
the real world. Each patient is assigned a clinical priority level Pi ∈ {1, 2, 3}, corresponding
to urgent, semi-urgent, and elective cases, respectively.

The full observation fed to the RL agent includes:

• The number of patients waiting,
• The arrival times and elapsed waiting times,
• The priority levels, encoded numerically or via one-hot encoding,
• The status of each MRI machine (idle, busy, or failed).

This comprehensive set of characteristics ensures that the agent has sufficient informa-
tion to make clinically appropriate and operationally efficient scheduling decisions.

To generate synthetic operational data, we used parameters derived from the fastMRI
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dataset, such as scan types and expected durations associated. Examination durations were
modeled as log-normal distributions, and patient arrivals were simulated using a non-
homogeneous Poisson process reflecting diurnal hospital activity. Clinical priorities were
assigned according to distributions representative of high-complexity hospital settings.
The parameters µ and σ2 in Equation (2), which define the log-normal distribution of the
examination duration, are estimated from synthetic data distributions calibrated on the
fastMRI dataset. These remain fixed during simulation. This synthetic data environment
allowed for robust evaluation of the proposed scheduling framework while preserving
ethical compliance and patient anonymity. Data used in the preparation of this article were
obtained from NYU fastMRI Initiative database (fastmri.med.nyu.edu) [36,37]. As such,
NYU fastMRI investigators provided data, but did not participate in the analysis or writing
of this manuscript.

To parameterize the synthetic environment, we used metadata from the fastMRI
dataset, such as acquisition time and scan sequence descriptors, to fit a log-normal distribu-
tion for examination durations. Since clinical urgency labels are not included in fastMRI,
we artificially assigned patient priority levels using empirical triage ratios reported in the
hospital operations literature [12,14]. These were mapped to three discrete classes: ur-
gent, semi-urgent, and elective. Arrival patterns were modeled using a non-homogeneous
Poisson process, with the time-varying rate λ(t) reflecting typical diurnal hospital ac-
tivity, peaking during daytime hours. This data-informed configuration enabled us to
generate a realistic and ethically compliant simulation environment for evaluating MRI
scheduling strategies.

3.2. Digital Twin Construction

We construct a simulation (based on digital twin, understood as a data-calibrated
proxy model) that emulates MRI operations at minute-level resolution. This digital
twin serves as a synthetic environment for evaluating scheduling policies under realistic
operational constraints.

The digital twin simulates MRI operations as a discrete-event system with minute-level
granularity [42–44]. The state of the system at time t is defined as

St = {Qt, Mt, At, Pt} (3)

where:

• Qt represents the queue of patients waiting,
• Mt = {m1, . . . , mk} describes MRI machine statuses,
• At records patient arrival times,
• Pt stores patient clinical priorities.

We model transitions as including new patient arrivals, MRI examination completions,
and random MRI machine breakdowns, where failures are simulated as Bernoulli processes
with probability of failure pfail [45].

Additionally, we simulate resource recovery dynamics: MRI machines that fail are
restored after a repair time sampled from an exponential distribution, reflecting the main-
tenance processes that are typically observed in hospital imaging departments in the
real world [46].

We model each MRI machine as being subject to random failure events at each time
step, represented as Bernoulli trials with failure probability pfail. Upon failure, we mark
the MRI machine as unavailable and initiate a repair process, during which it remains non-
operational for a duration sampled from an exponential distribution with an empirically



Bioengineering 2025, 12, 626 6 of 16

calibrated mean repair time. Once the repair is completed, we reintegrate the MRI machine
into the operating pool for scheduling purposes.

3.3. Markov Decision Process Formulation

We formalize the MRI scheduling task as a MDP with the tuple (S ,A,P , R, γ) [20,47]:

• State space S : As defined in Section 3.2, we represent the state at time t as
St = {Qt, Mt, At, Pt}, recording the queue of waiting patients, the operational statuses
of the MRI machines, the arrival times of patients, and the corresponding levels of
clinical priority.

• Action space A: We define the action space as the assignment of a patient i to an MRI
machine m, or the decision to delay the assignment. If multiple patients and MRI
machines are idle, the number of available actions scales combinatorially.

• Transition probability P(s′|s, a): We model the transitions as primarily deterministic,
governed by the simulator logic, while incorporating stochastic elements arising from
exogenous events such as patient arrivals and MRI machine failures.

• Reward function R(s, a): We define the immediate reward obtained after taking action
a in state s as:

R(s, a) = α ·U(a)− β ·W(a)− δ · I(a) (4)

where U(a) measures the improvement in MRI machine utilization, W(a) denotes the
expected increase in patient waiting time, and I(a) captures the imbalance of workload
among available MRI machines. The coefficients α, β, and δ are tunable weights that control
the relative importance of these competing objectives.

The weights α, β, and δ in Equation (4) are hyperparameters tuned via grid search.
We initialize them with standard values (α = 1.0, β = 1.0, δ = 0.1) and select the best
configuration based on validation performance to ensure balanced learning objectives.

Furthermore, under conditions of extreme queue congestion, we implement a reward
shaping mechanism that dynamically adjusts β:

β = β0 × (1 + ρ×Overload Factor) (5)

where ρ is a scaling coefficient, and Overload Factor is computed as the ratio of the current
queue length to a baseline normal queue length, thus quantifying system congestion.

This dynamic reward adjustment approach aligns with the principles of adaptive
reward shaping in reinforcement learning environments, as discussed by [48,49].

Our objective is to learn an optimal policy π∗ that maximizes the expected cumulative
discounted reward [50–52]:

π∗ = arg max
π

E
[

∞

∑
t=0

γtR(St, π(St))

]
(6)

balancing immediate operational gains, dynamic patient prioritization, and long-term
system optimization.

We ensure that our modeling approach coherently integrates deterministic operational
logic with stochastic exogenous events within the MDP formulation.

In addition, we design the RL agent to dynamically manage patient waitlists by
prioritizing cases with greater clinical urgency, ensuring that patients requiring faster
attention are scheduled promptly while maintaining overall operational efficiency. In the
following section, we describe the training process of this agent.
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3.4. Reinforcement Learning Agent Training

We implement a deep Q-Network (DQN) agent to approximate the optimal action
value function [53,54]:

Qπ(s, a) ≈ Qθ(s, a) (7)

where s represents the system state, a the action taken, Qπ the expected cumulative reward
under policy π, and θ the parameters of a deep neural network with fully connected layers.

We train the DQN agent following the standard algorithm, incorporating the
following mechanisms:

• Experience replay : We store up to 105 transitions in a replay buffer, randomly sampling
to stabilize learning and break the correlation between sequential experiences.

• Target network: We update a separate target network every 1000 steps to stabilize the
estimation of target Q-values.

• ϵ-Greedy exploration: We apply a ϵ-greedy policy during training, where ϵ decays
linearly from 1.0 to 0.01, balancing exploration and exploitation.

Following the standard DQN methodology, we minimize the loss of temporal differ-
ence (TD), formally expressed as [50,52]:

L(θ) = E(s,a,r,s′)

[(
r + γ max

a′
Qθ−(s

′, a′)−Qθ(s, a)
)2

]
(8)

where r denotes the immediate reward received after taking action a in state s, s′ is the
next resulting state, γ is the discount factor and Qθ− denotes the target network used
for stabilization.

We optimize hyperparameters such as learning rate, replay buffer size, and target
update frequency through grid search, and we validate policy convergence using multiple
random seeds to ensure robustness and generalizability.

After training the DQN agent, we proceeded to evaluate its performance through
simulation experiments, as detailed in the following section.

3.5. Evaluation via Scenario Simulation

We evaluated the trained policy across multiple simulation settings characterized by:

• Different patient arrival patterns,
• Variable MRI machine reliability levels,
• Altered clinical priority mixes.

Performance is assessed using three key metrics:

• MRI Machine Utilization Rate:

U =
Total Busy Time

Total Available Time

• Average Patient Waiting Time:

W̄ =
1
n

n

∑
i=1

Wi

• Priority-weighted Fairness Index:

F =

(
∑i

1
Pi ·Wi

)2

n ·∑i

(
1

Pi ·Wi

)2
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These metrics provide a balanced evaluation of operational efficiency and clinical
service quality.

Comparisons against baseline methods, such as FCFS and static scheduling heuris-
tics, consistently show that the RL-based policy achieves superior performance across all
measured criteria.

For reproducibility, we summarize the full DQN training and evaluation procedure in
pseudocode in Appendix A.

4. Results
In this section, we present an experimental evaluation of our proposed scheduling

framework. We begin by detailing the simulation setup, including the calibration of
synthetic operational data based on the fastMRI dataset and the configuration of the digital
twin environment. Subsequently, we describe the set of performance metrics used to
assess the policies under comparison. We report quantitative results comparing our DQN
scheduling agent against traditional FCFS and static priority heuristics. Finally, we provide
a graphical analysis to illustrate the operational and clinical advantages achieved by the
reinforcement learning approach in terms of the use of the MRI machine, patient waiting
times, and fairness at different clinical priority levels.

4.1. Experimental Setup

The experimental evaluation was performed by simulating the operating environment
of the MRI using synthetic data distributions calibrated with the public and anonymized
fastMRI dataset.

We configured the digital twin to simulate a typical high-complexity hospital setting
with three MRI machines and dynamic patient arrivals over a simulated 30-day period.
MRI machine failure events were modeled with a probability of pfail = 0.01 per operating
hour, and repair times were exponentially distributed with a mean of 3 h. Patient arrivals
varied by hour to replicate the seasonality of the day, with peak loads observed between
8:00 a.m. and 5:00 p.m.

Three scheduling policies were compared:

• DQN Scheduling Policy: Our reinforcement learning-based scheduling agent.
• First-Come-First-Served (FCFS): Traditional queue-based policy.
• Static Priority Heuristic: Patients are scheduled strictly according to clinical urgency,

disregarding the load balance of the MRI machine.

All results are averaged over 10 independent simulation runs with different random
seeds to account for stochastic variability.

We evaluated the performance of scheduling policies using three key metrics, dis-
cussed in Section 3.5: the MRI Machine Utilization Rate (U), which measures the proportion
of operational time relative to the total available time; the Average Waiting Time per Patient
(W̄), which captures the mean time patients spend waiting for MRI procedures; and the
Priority-weighted Fairness Index (F), which assesses the equitable distribution of service
between clinical priority levels. Together, these metrics provide a comprehensive evaluation
of both operational efficiency and patient-centered service delivery.

4.2. Comparison of Scheduling Strategies

In Table 2, we summarize the results obtained for the three scheduling strategies we
evaluated, using key performance indicators that allow us to compare their operational
efficiency and clinical equity. We compute all metrics as the average of 10 independent
simulation runs with different random seeds to reflect the system’s stochastic variability.
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Table 2. Performance metrics for our DQN scheduler compared to baseline approaches (FCFS and
Static Priority), including utilization rate, average patient waiting time, and priority-weighted fairness
index. Values represent mean ± standard deviation over 10 simulation runs.

Policy Utilization Rate (U) Avg. Waiting Time (W̄) [min] Fairness Index (F)

DQN Scheduler 0.87± 0.01 32.4± 2.1 0.91± 0.01
FCFS 0.76± 0.02 58.7± 3.0 0.78± 0.02
Static Priority 0.81± 0.01 45.2± 2.4 0.85± 0.01

Our DQN scheduler outperforms both baselines in all metrics evaluated. It achieves a
14.5% higher utilization of the MRI machine compared to FCFS and a 7.4% improvement
relative to the static priority heuristic. In addition, it reduces the average patient waiting
time by approximately 44.8% compared to FCFS.

Regarding fairness, measured through a priority-weighted adaptation of Jain’s index,
our scheduling policy shows better equity between clinical priorities, systematically pri-
oritizes urgent cases without disproportionately penalizing lower priority patients, thus
improving fairness while preserving overall system performance.

4.3. Visual Comparison of Scheduling Performance

To complement the numerical analysis, we present graphical comparisons that illus-
trate the performance of each scheduling strategy in terms of MRI machine utilization,
average patient waiting time, and fairness between clinical priorities.

In Figure 2, we observe that our DQN scheduler achieves the highest utilization of the
MRI machine, reaching 87%. This represents a substantial improvement of 14.5% over the
traditional FCFS policy, which achieves only 76%. The static priority heuristic performs
moderately better than FCFS, achieving 81%, but remains below the DQN’s performance.
These results confirm that our reinforcement learning agent not only respects clinical
urgency, but also effectively maximizes resource utilization, a critical requirement in high-
demand imaging departments.

Figure 2. MRI Machine Utilization Rates across Scheduling Policies.

Figure 3 shows the average patient waiting times under each scheduling policy. Our
DQN agent significantly reduces waiting times, achieving an average of 32.4 min per
patient. In contrast, the FCFS approach results in an average of 58.7 min, highlighting a
44.8% improvement in favor of the DQN strategy. Although the static priority heuristic
performs better than FCFS (45.2 min on average), it does not match the efficiency of the
reinforcement learning-based approach. These findings emphasize that our model not only
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improves throughput, but also contributes meaningfully to improving patient experience
and patient response to clinical operations.

Figure 3. Average Patient Waiting Times across Scheduling Policies.

In Figure 4, we analyze fairness using a priority-weighted adaptation of Jain’s index.
Our DQN policy achieves the highest fairness score (F = 0.91), indicating a more equitable
distribution of services between clinical priority levels. The static priority heuristic yields a
fairness score of 0.85, while FCFS performs the worst at 0.78. These results highlight that
our learning-based approach is capable of dynamically balancing operational efficiency
with equity, ensuring that patients with urgent needs are prioritized without neglecting
lower-priority cases. This balance is essential in the context of high-complexity hospitals,
where both clinical urgency and throughput must be optimized simultaneously.

Figure 4. Priority-weighted Fairness Index across Scheduling Policies.

5. Discussion
The experimental results validate the effectiveness of integrating reinforcement learn-

ing within a digital twin framework for MRI scheduling. By dynamically balancing the
loads of the MRI machine and prioritizing patients according to clinical urgency, the RL-
based agent achieves substantial operational gains over traditional methods. Our proposed
system consistently improves machine utilization, reduces patient waiting times, and im-
proves fairness among clinical priority levels, as evidenced by both quantitative metrics
and graphical analysis.

In addition, the architecture of the reward function and the deployment of a carefully
tuned DQN agent allow for robust generalization across different operating conditions,
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including MRI machine breakdowns and fluctuating patient arrivals. The ability to maintain
high performance despite system perturbations highlights the resilience of our model.
Furthermore, the observed improvement in fairness metrics suggests that the proposed
framework not only optimizes operational efficiency, but also strengthens clinical equity,
contributing to better patient outcomes without compromising throughput.

To our knowledge, no previous work has combined digital twin simulations and
reinforcement learning techniques to optimize MRI scheduling operations using parameters
derived from the publicly available fastMRI dataset. This integration represents a novel
contribution to both healthcare operations management and machine learning applications
in clinical settings.

Despite its demonstrated advantages, our approach has certain limitations. The rein-
forcement learning agent requires extensive training in a simulated environment before
deployment, which may involve considerable computational resources and time. Addi-
tionally, while our simulation parameters were calibrated based on realistic public data,
real-world operational environments can introduce unforeseen complexities, such as sud-
den resource reallocations, or patient no-shows, which were not explicitly modeled. These
factors may affect the direct applicability of the learned policies without further domain-
specific fine-tuning.

We acknowledge that simulation-based evaluation, while informative, does not constitute
full clinical validation. Our results serve as a proof of concept and must be complemented by
future hospital-based trials comparing performance with clinician-driven scheduling.

From an implementation standpoint, training the our RL agent is done offline us-
ing high-performance hardware and takes a few hours. Once trained, the model can
make near-instant scheduling decisions, enabling real-time integration. Periodic retraining
(e.g., weekly) helps to adapt to changing conditions, and future work may explore continu-
ous learning for greater adaptability.

Another limitation concerns the fixed nature of clinical priority assignments during
simulation. In practice, patient conditions can deteriorate over time, requiring dynamic
reprioritization that our current model does not accommodate. Integrating mechanisms for
dynamic priority updates based on elapsed waiting time or clinical reassessments could
further enhance the model’s applicability and responsiveness.

While our current framework assumes fixed clinical priority levels upon patient en-
try, we recognize that real-world clinical conditions may evolve, warranting dynamic
re-prioritization. In future extensions, our goal is to incorporate mechanisms that ad-
just priority scores based on elapsed waiting time, patient deterioration risk, or medical
reassessments. This would enable our scheduling agent to respond more adaptively to
evolving clinical urgency and reflect a more patient-centered care strategy. Incorporating
such dynamic logic may involve integrating time-sensitive reinforcement learning models
or multitask clinical risk prediction [55,56].

While our simulation captures the main operational variables, it currently does not
incorporate human-centered factors such as staff fatigue, perceived stress, or emotional
burden for the patient. We recognize this as an important limitation and highlight the
potential for future extensions to integrate human-in-the-loop feedback mechanisms or
hybrid models that explicitly model human resource constraints and psychological load.

We recognize the current limitations in the interpretability of the model. Although
our Deep Q-Network is optimized for operational performance, its decision logic may
be difficult for clinical stakeholders to interpret. We mitigate this by aligning the reward
structure with transparent clinical goals and logging decisions for retrospective audit.

Future work could extend this framework to multi-department imaging centers, in-
tegrate on-line learning capabilities to adapt policies continuously as new data become
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available, or explore federated reinforcement learning approaches to share scheduling
strategies across hospital networks while preserving patient data privacy. Furthermore,
validating the model’s performance using real-world hospital operational data would
constitute a significant next step towards practical deployment.

In general, our study demonstrates the promising role of intelligent digital systems
in transforming the delivery of MRI services, paving the way for the next generation of
patient-centered and data-driven healthcare management practices.

6. Conclusions
In this study, we developed and validated an advanced methodological framework

that integrates a digital twin of the MRI operational environment with a reinforcement
learning (RL) agent for optimized scheduling. Our approach takes advantage of synthetic
environments calibrated from the fastMRI dataset and models realistic constraints such as
availability of the MRI machine, stochastic failures, patient arrival dynamics and clinical pri-
ority levels. The main contributions of this work include the design of a high-fidelity digital
twin for MRI workflows, the formalization of the scheduling problem as an MDP, and the
implementation of a DQN agent capable of learning clinically informed scheduling policies.

Our experimental evaluation demonstrated that the RL-based scheduling agent sig-
nificantly outperforms traditional baselines, including FCFS and static priority heuristics.
Specifically, the DQN scheduler achieved improvements of 14.5% in MRI machine utiliza-
tion, 44.8% reduction in average patient waiting times, and substantial gains in fairness
across clinical priorities. These results confirm that our model is effective in balancing
operational efficiency with clinical service quality, addressing key bottlenecks commonly
observed in high-complexity hospital imaging departments.

To further enhance the proposed framework, several methodological extensions can
be considered. Incorporating mechanisms for dynamic updating of patient priority lev-
els based on elapsed waiting times or clinical reassessments would increase the realism
and responsiveness of the model. Furthermore, adopting more sophisticated reward
shaping techniques or hybridizing model-based and model-free reinforcement learning
approaches could accelerate agent training and improve policy generalization to unforeseen
operational scenarios.

From a managerial perspective, the deployment of the proposed scheduling system
would require integration with existing hospital information systems and real-time data
feeds. A phased implementation strategy, starting with shadow deployments for policy
validation and gradually moving to partial automation of scheduling decisions, could
mitigate adoption risks. Training hospital staff and clinicians in the operational logic of the
system, and ensuring transparency of scheduling decisions, would be critical to fostering
trust and achieving successful integration in clinical workflows.

Looking ahead, the proposed framework offers strong potential for scalability and
adaptation to broader healthcare settings. Extending the system to multimodal imaging
centers (e.g., combining MRI, CT, and PET scheduling), integrating online learning to adapt
to evolving patient populations, and exploring federated reinforcement learning for cross-
institutional collaboration without compromising patient data privacy represent promising
avenues for future work. Real-world validation studies, using actual operational hospital
data, would be the next critical step toward translating the demonstrated experimental
gains into tangible clinical impact.
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Appendix A. Pseudocode of Reinforcement Learning Framework

Algorithm A1: Reinforcement Learning Framework for MRI Scheduling using a
Digital Twin

Data: DT environment simulating MRI operations with patient arrivals, machine
states, scan durations, and clinical priorities

Result: Trained DQN agent for dynamic MRI scheduling
1. Construct a DT environment calibrated using operational parameters derived

from historical MRI data.
2. Initialize DQN with random weights θ.
3. Initialize the target network Qθ− ← Qθ .
4. Initialize the replay buffer D ← ∅.
5. Set the exploration rate ϵ← 1.0.
6. for each episode do

(a) Reset the DT environment to the initial state s0.
(b) for each simulation step t do

i. Select action at:

• With probability ϵ, choose random action.
• Otherwise, choose at = arg maxa Qθ(st, a).

ii. Execute at on the digital twin and observe the reward rt

and the next state st+1.
iii. Store transition (st, at, rt, st+1) in D.
iv. Sample mini-batch of transitions from D.
v. Compute target: yt = rt + γ maxa′ Qθ−(st+1, a′).
vi. Update DQN by minimizing loss:

L(θ) = (yt −Qθ(st, at))2.
vii. In every C step, update the target network: Qθ− ← Qθ .
viii. Decay ϵ linearly towards 0.01.

end

end
7. Return trained Q-network Qθ .

https://fastmri.med.nyu.edu
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49. Zhang, K.; Yang, Z.; Başar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of
Reinforcement Learning and Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–384.

50. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction ; MIT Press Cambridge: Cambridge, MA, USA, 1998; Volume 1.
51. Andrew, B.; Richard S, S. Reinforcement Learning: An Introduction ; MIT Press: Cambridge, MA, USA, 2018.
52. Barto, A.G. Reinforcement learning: An introduction. by richard’s sutton. SIAM Rev. 2021, 6, 423.
53. Stember, J.N.; Shalu, H. Reinforcement learning using Deep Q Networks and Q learning accurately localizes brain tumors on

MRI with very small training sets. Bmc Med. Imaging 2022, 22, 224. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JIOT.2023.3288050
http://dx.doi.org/10.1016/j.eswa.2022.117949
http://dx.doi.org/10.1371/journal.pdig.0000102
http://dx.doi.org/10.1109/TPDS.2022.3144376
http://dx.doi.org/10.26599/TST.2024.9010140
http://dx.doi.org/10.1016/j.compbiomed.2024.108694
http://dx.doi.org/10.1148/ryai.2020190007
http://dx.doi.org/10.1007/s10729-021-09553-5
http://dx.doi.org/10.1016/j.pcorm.2021.100165
http://dx.doi.org/10.3390/math9233113
http://dx.doi.org/10.3389/fgene.2018.00031
http://dx.doi.org/10.12688/digitaltwin.17454.1
http://dx.doi.org/10.1109/ACCESS.2024.3380021
http://dx.doi.org/10.1080/16843703.2023.2232639
http://dx.doi.org/10.1111/1754-9485.13656
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://dx.doi.org/10.1186/s12880-022-00919-x
http://www.ncbi.nlm.nih.gov/pubmed/36564724


Bioengineering 2025, 12, 626 16 of 16

54. Ulaganathan, S.; Ramkumar, M.; Emil Selvan, G.; Priya, C. Spinalnet-deep Q network with hybrid optimization for detecting
autism spectrum disorder. Signal Image Video Process. 2023, 17, 4305–4317. [CrossRef]

55. Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate
deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [CrossRef] [PubMed]

56. Harutyunyan, H.; Khachatrian, H.; Kale, D.C.; Ver Steeg, G.; Galstyan, A. Multitask learning and benchmarking with clinical
time series data. Sci. Data 2019, 6, 96. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11760-023-02663-3
http://dx.doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/pubmed/31304302
http://dx.doi.org/10.1038/s41597-019-0103-9

	Introduction
	Literature Review
	Methodology
	Data Modeling and Environment Synthesis
	Digital Twin Construction
	Markov Decision Process Formulation
	Reinforcement Learning Agent Training
	Evaluation via Scenario Simulation

	Results
	Experimental Setup
	Comparison of Scheduling Strategies
	Visual Comparison of Scheduling Performance

	Discussion
	Conclusions
	Appendix A
	References

