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Abstract: Surgical waiting lists present significant challenges to healthcare systems, partic-
ularly in resource-constrained settings where equitable prioritization and efficient resource
allocation are critical. We aim to address these issues by developing a novel, dynamic, and
interpretable framework for prioritizing surgical patients. Our methodology integrates
machine learning (ML), stochastic simulations, and explainable AI (XAI) to capture the
temporal evolution of dynamic prioritization scores, g,(t), while ensuring transparency
in decision making. Specifically, we employ the Light Gradient Boosting Machine (Light-
GBM) for predictive modeling, stochastic simulations to account for dynamic variables and
competitive interactions, and SHapley Additive Explanations (SHAPs) to interpret model
outputs at both the global and patient-specific levels. Our hybrid approach demonstrates
strong predictive performance using a dataset of 205 patients from an otorhinolaryngol-
ogy (ENT) unit of a high-complexity hospital in Chile. The LightGBM model achieved
a mean squared error (MSE) of 0.00018 and a coefficient of determination (R?) value of
0.96282, underscoring its high accuracy in estimating q,(t). Stochastic simulations effec-
tively captured temporal changes, illustrating that Patient 1’s q,(t) increased from 0.50
(att = 0) to 1.026 (at t = 10) due to the significant growth of dynamic variables such as
severity and urgency. SHAP analyses identified severity (Sever) as the most influential
variable, contributing substantially to g, (t), while non-clinical factors, such as the capacity
to participate in family activities (Lfam), exerted a moderating influence. Additionally,
our methodology achieves a reduction in waiting times by up to 26%, demonstrating its
effectiveness in optimizing surgical prioritization. Finally, our strategy effectively combines
adaptability and interpretability, ensuring dynamic and transparent prioritization that
aligns with evolving patient needs and resource constraints.

Keywords: dynamic prioritization; machine learning in healthcare; explainable Al; surgical
waiting lists; stochastic simulation

1. Introduction

Surgical waiting lists pose a significant challenge for healthcare systems around
the world, particularly in resource-constrained settings, where equitable allocation of
resources is critical to improving clinical outcomes and optimizing efficiency [1-3]. The
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dynamic and multidimensional nature of patient conditions, combined with fluctuating
resource availability, requires prioritization strategies that adapt over time [4,5]. In this
study, we propose a novel framework for dynamic surgical prioritization that integrates
ML, stochastic simulations, and XAI to enhance both decision-making transparency and
operational flexibility [6,7].

Traditional prioritization frameworks often rely on static scoring systems based on
clinical criteria, such as urgency, severity, and time spent on waiting lists [8]. Although
effective to some extent, these systems do not account for the temporal evolution of
patient conditions or the complex interactions between clinical, social, and psychological
factors [9,10]. Recent advances in ML have introduced predictive models capable of
addressing these complexities [11]. However, many of these approaches suffer from a lack
of interpretability, limiting their adoption in clinical practice where trust and transparency
are essential. Some studies, such as [12-14], have successfully integrated dynamic patient
modeling with interpretable ML, leaving a critical gap in the development of adaptive
prioritization strategies.

Our work addresses this situation by presenting a unified framework that combines
predictive accuracy, adaptability, and transparency [15]. We employ the LightGBM gradient
boosting algorithm to predict prioritization scores with high accuracy while integrating
stochastic simulations to model the temporal progression of dynamic patient variables,
similar to what authors such as [16,17] propose. By incorporating SHAP analysis, we
ensure that model outputs are interpretable at both the global and patient-specific levels,
fostering trust and alignment with clinical expectations. This approach not only captures
the evolution of patient conditions over time, but also accounts for competitive interactions
among patients, offering a comprehensive solution to the problem of surgical prioritization.

Through this methodology, we demonstrate key advances in surgical prioritization,
including high predictive accuracy (R? = 0.96282), adaptability to evolving patient needs,
and transparency in decision making. By simulating dynamic prioritization for multiple
patients, we demonstrate the scalability and applicability of our framework in diverse
clinical contexts. Furthermore, our approach achieves a reduction in waiting times of up to
26%, further validating its effectiveness in addressing the challenges of surgical waiting
lists. These contributions represent a significant step forward in the use of ML and XAl to
optimize surgical prioritization and improve patient outcomes.

The structure of our work is as follows: Section 2 reviews the existing literature on
prioritization frameworks, ML and XAI techniques. Section 3 describes the proposed
methodology, including the integration of LightGBM, stochastic simulations, and SHAP
analysis. Section 4 details the experimental evaluation and results, emphasizing the ac-
curacy, adaptability, and interpretability of the model. Section 5 reflects on the find-
ings and their implications, while Section 6 summarizes the study and suggests future
research directions.

2. Literature Review

Surgical waiting lists remain a critical challenge for healthcare systems worldwide,
especially in resource-constrained settings where effective prioritization and equitable allo-
cation of resources are essential to improve patient outcomes [18]. Traditional prioritization
frameworks have predominantly relied on static scoring systems based on urgency, severity,
and time spent on the waiting list [8]. Although these approaches provide a foundational
structure, they are inherently limited in capturing the temporal progression of patient
conditions or accommodating evolving healthcare demands. Addressing these limitations
requires innovative approaches that integrate data-driven methodologies and dynamic
modeling [11,19,20].
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The advent of ML has revolutionized healthcare decision making by enabling the
analysis of high-dimensional datasets [21]. Techniques such as Random Forests (RFs),
LightGBM, and Artificial Neural Networks (ANNs) have shown exceptional predictive
accuracy in applications ranging from diagnosis to resource allocation (see, e.g., [22,23]).
However, their adoption in surgical prioritization has been hindered by their “black-box”
nature, which limits interpretability, a key requirement for clinical implementation [24].
Furthermore, most ML-based prioritization models lack mechanisms to incorporate tempo-
ral dynamics, leaving a critical gap in their ability to reflect real-time changes in patient
conditions [25].

XA frameworks, such as SHAP and Local Interpretable Model-Agnostic Explana-
tions (LIMEs), have emerged as essential tools to bridge the gap between predictive
precision and interpretability [26,27]. These techniques provide insight into the con-
tribution of individual characteristics to model predictions, enabling clinicians to un-
derstand and trust the decision-making process [28]. Although XAI has been widely
applied in fields such as radiology and genomics, its application in surgical prioritiza-
tion remains underexplored [29-31]. Integrating XAI into ML-based prioritization sys-
tems presents an opportunity to enhance both the transparency and clinical relevance of
these models.

Existing surgical prioritization approaches often do not address the simultaneous
challenges of predictive accuracy, adaptability, and interpretability [4]. Static frameworks
overlook the dynamic evolution of patient conditions and the impact of limited resources on
prioritization strategies [32]. Although stochastic simulations have been applied to model
resource allocation, their integration with supervised learning and XAl remains a topic that
is not addressed well [33]. Furthermore, some studies account for competitive dynamics
among patients, a critical factor in real-world prioritization scenarios (see, e.g., [34,35].)

Recent advances in hybrid methodologies demonstrate the potential of combining ML
and stochastic simulations for dynamic prioritization [36,37]. For example, LightGBM has
been employed in conjunction with time-series models to predict clinical outcomes [38-40].
However, the absence of integrated XAI tools limits the trustworthiness and adoption
of such models in clinical practice [41,42]. By incorporating SHAP analysis into these
frameworks, it becomes possible to provide global and patient-level explanations, ensuring
transparency and alignment with clinical guidelines [26,42].

As regards existing prioritization systems, we found works related to our methodol-
ogy. Of particular interest are the contributions of [4,7], which include recent advances
in risk-based and optimization-driven prioritization frameworks. Compared with these
approaches, we add to our work an integration of machine learning, stochastic simula-
tions, and explainable Al, offering a hybrid framework that combines predictive accuracy,
adaptability, and transparency.

Justification of the Chosen Method

Considering the existing literature, our methodology aims to address areas that have
been insufficiently studied, as detailed below:

e  Traditional prioritization frameworks do not integrate temporal evolution and compet-
itive dynamics among patients. By combining stochastic simulations with LightGBM,
our methodology models the dynamic progression of patient conditions and incorpo-
rates competitive interactions, offering a comprehensive solution.

*  Many ML models for prioritization lack interpretability, limiting their utility in clin-
ical settings. Our integration of SHAP analysis ensures transparency and provides
actionable insights into global and patient-specific contributions.
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¢  Existing methods often ignore the interaction between dynamic variables and re-
source limitations. Our framework explicitly models these interactions, dynami-
cally adjusting prioritization strategies based on evolving patient conditions and
healthcare resources.

¢ Some studies leverage XAl to provide detailed explanations of prioritization decisions.
Our approach contributes by employing SHAP to highlight the role of clinical, social,
and psychological factors, fostering trust and alignment with medical guidelines.

In summary, our methodology combines dynamic modeling, ML, and XAl into a
unified framework that addresses the challenges of predictive accuracy, adaptability, and
interpretability. By simulating patient conditions and resource constraints over time, our
framework provides a scalable and robust tool for surgical prioritization in real-world
clinical settings.

3. Methodology

We developed a dynamic and interpretable methodology for prioritizing surgical
patients on waiting lists [43,44]. This framework integrates ML for predictive modeling,
stochastic simulations for dynamic patient prioritization, and XAl for interpretability [27,45].
In the following, we outline each component with detailed mathematical and procedural
descriptions.

3.1. Dataset Description and Clinical Context

The dataset comprises evaluations from seven otolaryngologists for 205 patients on
the surgical waiting list of a high-complexity ENT unit in Chile [11]. Each patient is
characterized by a set of clinical, social, and psychological variables, as summarized in
Table 1.

Table 1. Variables defined by ENT physicians. Certain variables evolve over time, marked with an
asterisk (*), indicating their dynamic nature.

No.  Variable Definition

1 Sever (%)  Severity

2 Urg (%) Urgency

3 Jclin Maximum waiting time

4 Tsuen (%) Sleep disorder

5 Tlist Time on list

6 Pmcx (*) Expected improvement due to surgery
7 Dest (*) Capacity to study

8 Com(*) Chances of developing comorbidities
9 Lfam(*) Capacity of participating in family activities
10 Hanor (*) Affected area

11 Opat Presence of other pathologies

12 Diag Diagnosis

13 01lim(*) Other limitations

14 Ncuid Need of a caregiver

15 Rcuid Patient cares for another person

16 Dolor (*) Pain sale

17 Dtrab Capacity to work

18 Acc Type of residence area

19 Dtras Difficulty in transferring

20 Cerit Need for clinical bed

21 Pscore Physician’s score, given by the health team
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3.2. Foundations for Predictive Modeling

Our methodology establishes an initial base structure to address the challenge of

dynamic prioritization in surgical waiting lists [4,11,46]. To do so, we define the problem

and prepare the dataset for the development of a dynamic prioritization model, according

to the following steps:

We model the prioritization mathematically by predicting a dynamic prioritization
score, q,(t), for each patient p at time £, based on their clinical, social, and psychologi-
cal characteristics, represented by a feature vector z,, as follows:

’1p(t) = f(zp;G), 1

where z, € R" is a feature vector consisting of dynamic (z,4) and static (zp,s) vari-
ables, f(-) represents a predictive model trained to estimate g,(t), and 6 is the set of
parameters learned during model training.

We categorize the variables into the following dynamic and static groups:

- Dynamic variables (z, 4) reflect changes in the patient’s condition over time, such
as Sever (z;,4,1) or Urg (zp,42)-

- Static variables (zps) represent intrinsic characteristics of the patient, such as
Jelin (zps1) or Tlist (zps2)-

(n+1)

We represent the dataset as a matrix Z € RN* , where N denotes the total number

of patients, and n represents the number of features.

h
zp ={zpa.zpst, zpa €R', zps €R, (2)

where z,, represents the complete feature vector for patient p, comprising dynamic
variables Zpds which evolve over time (e.g., Sever, Urg) and have dimension &, and
static variables zy s, which remain fixed (e.g., Opat, Diag) with dimension r. The dy-
namic variables exist in an h-dimensional real-valued space (R"), while static variables
exist in an r-dimensional real-valued space (R").

z11 212 --- 21,y Pscorep
Z21  Z2p ... Zon Pscorep 3)
ZN1 ZN2 -+ ZNn Pscorepn

7

In Equation (3), Z represents the dataset matrix containing features and the physicians
prioritization scores (Pscore) for all patients. Each row corresponds to a specific
patient p, where z;,1,22,...,2pn are the characteristics n (including dynamic and
static variables), and Pscore, is the prioritization score assigned by the physician for
patient p. The dataset includes N patients, with Z € RN*("+1) where n 4 1 accounts
for the n features and the Pscore.

We model the evolution of dynamic variables over time. The state of a dynamic
variable z, 4, at time f + 1 is given by

Zp,d,v(t +1) = Zp,d,v(t) + Azp,d,v(t)/ (4)

where Az, ;,(t) represents the observed change between time t and f + 1. This
approach allows us to capture how dynamic variables evolve over time, reflecting
changes in patient conditions.
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To standardize variable scales and mitigate biases in model training, we normalize
variables using Min-Max scaling [47,48], as follows:

z K z ,mi
Lnorm _ P v,min , (5)

p.o _ .
Zy,max — Zy,min

where z; min and zymax represent the observed minimum and maximum values of
variable v. This normalization ensures that all variables are on a comparable scale,
improving the stability and performance of our model.

3.3. LightGBM Model: A Strategy to Prioritize Patients on the Surgical Waiting List

We implement a predictive model using LightGBM to estimate g, (t) of patients on

the surgical waiting list [16,49]. LightGBM is specifically chosen for its computational

efficiency, robustness when working with high-dimensional datasets, and ability to handle

both continuous and categorical variables effectively [50,51]. To evaluate the model’s

performance, we divide the dataset into a training set (80%) and a testing set (20%), ensuring

that the model is trained on a majority of the data while leaving a separate subset for

validation. This approach allows us to assess the model’s generalizability and predictive

accuracy under real-world conditions.

LightGBM constructs decision trees using gradient boosting, which optimizes predic-
tive performance by minimizing a specified loss function [52,53]. The loss function
used during training is given by

N
L= 1 Y (gp(t) — Pscorep)z, (6)
N &

where each predicted prioritization score, q,(t), reflecting dynamic conditions over
time, is modeled as a function of patient-specific features (F), with the observed
static physician-assigned score (Pscorey) serving as the benchmark for evaluation
as follows:

qp(t) = F(wp(t);h), (7)

where w,(t) is the feature vector for patient p at time ¢, which includes both static and
updated dynamic variables, and h represents the set of hyperparameters defining the
model configuration. By incorporating static and dynamic variables into the feature
vector, we ensure that the model accounts for both intrinsic patient characteristics and
evolving clinical conditions. This configuration enables us to accurately predict q,(t)
while maintaining flexibility and interpretability in the model design.

We evaluate the LightGBM model using MSE and R? [54,55]. The metrics are obtained
as follows:

1Y 2
MSE = N pX::l(qp(t) — Pscorey)”, (8)

ZPN:1 (Pscore, — Pscore)?

Zyzl(qp(t) — Pscorey)? '

R* =

where Pscore is the mean of the physician-assigned prioritization scores.



Technologies 2025, 13, 72

7 of 20

3.4. Dynamic Evolution of Prioritizations and Stochastic Simulation

We simulate the dynamic evolution of patient prioritization scores over time, captur-
ing temporal changes in dynamic variables and the interaction of competition between
patients. In this process, we integrate stochastic modeling to reflect the variability of patient
conditions and ensure that the predictions adapt to temporal progressions.

In our study, we modeled the stochastic noise term (e,(t)) in Equation (10) as
N(0,02), a Gaussian distribution with zero mean and variable-specific standard devi-
ation (0v). This selection reflects intrinsic variability in clinical conditions, supported by the
central limit theorem, which posits that aggregated random effects naturally converge to a
normal distribution [56].

We calibrated o, for each dynamic variable based on observed variability and expert
clinical input. High-fluctuation variables, such as severity (Sever), were assigned larger o,
values to capture their dynamics, while more stable variables, such as diagnosis scores, were
assigned smaller values. These assignments were informed by feedback from physicians
who assessed the expected variability of each variable based on their clinical experience
and patient data. Gaussian noise consistently provided the most realistic representation of
clinical scenarios and avoided extreme outliers. Its zero-mean property ensures unbiased
simulations and facilitates convergence to stable distributions over finite iterations, aligning
with established practices for modeling stochastic systems [57].

¢ Dynamic variables evolve over time, representing changes in patient conditions. We
model these variables using discrete time steps, reflecting temporal intervals. Let
Yp,0(t) represent the set of dynamic variables for patient p at time t. The state of these
variables at the next time step, (¢ + 1), is modeled as

Ypo(t+1) = ypo(t) - (1 +8po(t)) +€polt), (10

where gprv(t) represents the growth rate, and ep,v(t) is stochastic noise [58]. The noise
term €, (t) follows a Gaussian distribution as follows:

€po(t) ~ N(0, o?), (11)

where 0, is the standard deviation of variable v.
*  We adjust growth rates based on competition as follows:

adj - ) ):p’yép Kp’,v(t)
gPrv(t) - gplv(t) <1 + Zp’ Kp/,v(t) ’ (12)

where g}, »(t) represents the initial growth rate of the dynamic variable v for patient p
at time £, and «, , () denotes the contribution of variable v to the prioritization score
of another patient p’ at the same time f. The term Y+, kv ,(t) is the cumulative
contribution of variable v to the prioritization scores of all patients other than p.
Similarly, ),/ kv , () represents the total contribution of variable v to the prioritization
scores of all patients at time t. The competitive adjustment term,

Lpp Kp o)

, 13
Y o) 13)

allows us to quantify the relative impact of other patients on the growth rate of patient
p. If other patients exhibit high contributions to variable v, this reduces the relative
weight of g, »(t) for patient p, thereby incorporating competitive dynamics into the
prioritization model.
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*  Ateach time step, we recalculate q,(t) as follows:

qp(t) = M(wp(t); ). (14)

The prioritization score g,(t) of patient p at time ¢ is dynamically estimated using
the trained predictive model (M), which incorporates static and updated dynamic
variables from the characteristic vector wy(t). The model parameters () are learned
during training, allowing g,(t) to reflect evolving patient conditions and ensuring
adaptability to temporal changes in clinical needs.

We performed sensitivity analyses for the stochastic simulation parameters to assess
their impact on the performance and results of the model. In this study, we performed
preliminary sensitivity tests by varying key parameters, such as the standard deviation ()
of the noise term and the growth rates of the dynamic variables, within clinically plausible
ranges (see Section 4.2).

To ensure reproducibility, we used the following parameters: (1) for the stochastic
simulation, we set the noise standard deviation (cy) to 0.05, with growth rates varying
between 0.08 and 0.12; (2) we configured the LightGBM model with a learning rate of 0.1,
100 estimators, and a maximum depth of 7.

3.5. SHAP-Based Interpretability for Light GBM Model

We utilized SHAP, an essential tool within the XAI framework, to interpret the dynamic
predictions of our LightGBM-based prioritization model. While the model achieves high
predictive accuracy, its inherent complexity poses a “black-box” challenge, which can limit
clinical adoption. By leveraging SHAP, we quantified and visualized both global patterns
across the dataset and time-dependent contributions of variables for individual patients,
offering deeper insights into the decision-making process [26,42]. To achieve this, we
followed the following steps:

¢  The importance of each variable over time was quantified using the mean absolute
Shapley value [28,59], defined as

1 N
L) = 5 L 9o (1)) (15)
p=

where Z, (t) represents the global importance of variable v across all patients at time ¢,
N is the total number of patients, and ¢y, , () denotes the Shapley value of v for patient
p at time f. This metric captures the average absolute contribution of each variable to
the dynamic prioritization scores q,(t), offering critical insights into its influence at
specific time points.

e  We analyzed variable interactions using the following joint Shapley value formula:

Poy,00,p () = Por,p(t) + Poyp(t) — Poy00,p (), (16)

where ¢y, v, (t) represents the combined contribution of variables v; and v; to the
prioritization score q,(t) for patient p at time t. Here, ¢y, »(t) and ¢, »(t) are the
individual contributions of vy and v,, while ¢y, v, , (t) captures their joint contribution.
This formula quantifies the interactions between variables, revealing synergies or
redundancies that influence the dynamic predictions of the model [60].

*  We decomposed g, (t), the prioritization score of patient p at time , as follows:

ap(t) = o+ Y Pop(t), (17)
v=1
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where ¢ represents the baseline prediction, corresponding to the mean g, (t) across all
patients, and ¢, ,(t) quantifies the contribution of variable v to g,(t) for patient p at
time t. This decomposition enables transparency by explaining the specific factors in-
fluencing g, (t), ensuring interpretability in the context of dynamic patient conditions.

4. Results

We present the results of the proposed methodology that encompass three key compo-
nents using Python 3.11. First, we demonstrate the predictive performance of the Light GBM
model, highlighting its ability to accurately estimate g, () at different time steps. Second,
we present the dynamic evolution of prioritizations through stochastic simulations, captur-
ing temporal changes in patient conditions and competitive dynamics over time. Finally, we
provide SHAP-based interpretability analyses for the Light GBM model, providing insight
into the time-dependent contributions of static and dynamic variables to prioritization
decisions at specific moments.

4.1. Performance Evaluation of the LightGBM Predictive Model

We evaluated the performance of our LightGBM predictive model using a combination
of metrics, visualizations, and detailed analyses. In the following, we present the key results,
including MSE, R?, and residual analysis.

We have determined confidence intervals and statistical significance tests for key
metrics such as MSE and R?. We computed 95% confidence intervals using the bootstrap
method in multiple training and testing splits [61]. The resulting intervals for the Light-
GBM model were [0.00016,0.00020] for MSE and [0.958, 0.966] for R?2, demonstrating the
consistency and reliability of our results.

The overall performance of the Light GBM model was evaluated using two key metrics:
an MSE of 0.00018 and an R? value of 0.96282. These results demonstrate the high predictive
accuracy of the model, characterized by minimal error and a strong correlation between
qp(t) and Pscore,. This evaluation provides evidence of the model’s ability to align its
predictions with clinical benchmarks over time (see Figure 1 and Table 2).

Table 2. Comparison of Pscorey, 4,(t), and residuals for a sample of 10 patients.

Patient Pscore(p) qp(t) Residual
1 0.78 0.76 0.02
2 0.85 0.87 —0.02
3 0.66 0.68 —0.02
4 0.72 0.73 —0.01
5 0.81 0.79 0.02
6 0.75 0.74 0.01
7 0.69 0.67 0.02
8 0.88 0.86 0.02
9 0.77 0.76 0.01
10 0.80 0.82 —0.02




Technologies 2025, 13, 72

10 of 20

——- Ideal Fit (45° Line) ® 0
1.0 4 )
o 0@
D,"i
o ﬁﬂg
0.9 . :
1 =
. - D
0% ®
-
0e.”
(n%
0.8 o o
L ]
9 |
= %gﬂo
= o, .
o td
.o’%
i T hd
0.7 ~1
P P
® ,§° *
e
4 - 0gr®
0.6 d‘ﬂgg,g“
-
i
», L ]
0.5 - ,é’é
0.5 0.6 0.7 0.8 0.9 1.0
Pscorep

Figure 1. Scatter plot comparing q,(t) with Pscorey.

We performed a k-fold cross-validation (with k = 5) on the training data during model
evaluation. This approach ensures that the model performance metrics, including the mean
squared error (MSE) and R?, are robust and generalizable. The cross-validation results
demonstrated consistency across folds, with an average MSE of 0.00018 + 0.00003 and R?
of 0.96282 + 0.004, confirming the model’s ability to generalize effectively to unseen data.

While our integration of LightGBM introduces a slight increase in computational
complexity, this is offset by its superior predictive accuracy and the ability to handle
heterogeneous high-dimensional datasets effectively. In our timing tests, we observed that
LightGBM required approximately 15% more computational time for training compared
with Random Forest. However, this additional complexity resulted in a 20% improvement
in predictive accuracy and better interpretability through SHAP-based analytics, making it
a highly effective choice for the proposed prioritization framework.

4.2. Sensitivity Analysis of Stochastic Simulation Parameters

We performed a sensitivity analysis of the parameters of the stochastic simulation
process. The results showed that lower values of 03 (e.g., 0.03) produced smaller variations
in final prioritization scores, resulting in lower mean squared errors (MSE). As 05, increased
to 0.05 and 0.07, the MSE grew correspondingly, reflecting a greater influence of noise.
Similarly, higher growth rates (e.g., 0.12) led to more pronounced cumulative variations,
resulting in higher MSE values, while moderate (0.1) and lower (0.08) growth rates yielded
more stable outputs. In particular, when both ¢, and growth rates were at their upper limits,
the MSE reached its maximum, highlighting the compound effect of noise and variable
dynamics. In contrast, moderate configurations, such as ¢, = 0.05 and a growth rate of 0.1,
provided a balance between variability and stability, demonstrating the robustness of the
model under clinically plausible conditions.

These analyses indicate that the model’s predictions remain stable under moderate
parameter variations, underscoring its robustness to changes.
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4.3. Analysis of Prioritization Dynamics Through Stochastic Simulations

We simulated the dynamic evolution of g, (t) for three patients (Patient 1, Patient 2,
Patient 3) over 10 time steps. The simulation incorporated two key dynamic variables,
Sever and Urg, which evolved based on specific growth rates and stochastic noise. At each
time step, g, (t) was recalculated as a weighted combination of these dynamic variables.

At t = 0, the dynamic variables for each patient were initialized with random values
within a reasonable range (0.4 to 0.6). For example, Patient 1’s initial Sever was 0.54, and
their Urg was 0.52. The initial g, (t) for all patients was set to 0.5, assuming homogeneous
conditions at the start (see Table 3).

Table 3. Initial values of dynamic variables and prioritization scores for all patients (t = 0).

Patient Sever Urg gy (t)
Patient 1 0.54 0.52 0.50
Patient 2 0.59 0.43 0.50
Patient 3 0.55 0.43 0.50

At each time step (f), we applied Equation 10 to model the evolution of the dynamic
variables. The growth rates were tailored to each patient and variable. For example, as
shown in Figure 2, Patient 1’s Sever increased at a rate of 10% per time step, while Patient
2’s Urg grew at 7%. The inclusion of stochastic noise introduced variability, effectively
capturing the unpredictable nature of changes in patient condition and their subsequent
influence on recalculated prioritization scores g, ().

T Patient 1 — Patient 1

1.6 1 Patient 2 Patient 2

| Patient 3 0757 — patient 3

Time Steps Time Steps

Figure 2. Comparison of Sever and Urg evolution for 3 patients over 10 time steps.

The weighting parameters in Equation (18) (e.g., 0.6 and 0.4) were chosen based
on input from clinical experts, reflecting the relative importance of severity (Sever) and
urgency (Urg) in the prioritization process. Physicians emphasized that severity generally
has a greater weight in determining patient prioritization due to its direct impact on clinical
outcomes, while urgency plays a complementary but secondary role. These weights were
validated by sensitivity analyses, which showed that small variations in parameters did
not significantly alter overall model performance or classification consistency.

Next, as an example, we calculated g,(t) as a weighted combination of Sever and Urg
as follows:

qp(t) = 0.6 - Sever(t) 4 0.4 - Urg(t), (18)

where the weights assigned greater importance to clinical severity (Sever), in accordance
with medical guidelines. For instance, at f = 5, Patient 1’s g p(t) increased to 0.72 due to
significant growth in both Sever and Urg, as shown in Table 4.
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Table 4. Sample q,(t) values at selected time steps for Patient 1.

Time () Sever Urg gy (t)
5 0.780 0.630 0.720
10 1.250 0.690 1.026

The evolution of Sever and Urg for each patient exhibited upward trends, with fluc-
tuations influenced by stochastic noise, as observed in Figure 3. For example, Patient 3’s
severity increased more rapidly than that of the other patients, driven by a higher initial
growth rate of 12%. These dynamic changes were reflected in the prioritization scores,
which captured both the progression of variables and the cumulative temporal effects.

1.3+ —— Patient 1
Patient 2

—— Patient 3
1.2

1.1+

1.0

0.9 1

gplt)

0.8

0.7 7

0.6 1

0.5

Time Steps

Figure 3. Dynamic evolution of g, (t) over time for 3 patients.

We demonstrate that integrating LightGBM with stochastic simulation establishes a
dynamic and scalable framework for predicting q,(t) over time. By capturing temporal
changes and inherent variability, this approach ensures robust applicability throughout the
surgical waiting list, providing clinically relevant support for decision making.

4.4. Insights from SHAP-Based Interpretability of the Light GBM Model

We present the SHAP summary plot in Figure 4, which highlights the global im-
portance and local impact of the characteristics on the predictions of the model. This
visualization illustrates how the model prioritizes patients by dynamically predicting q,(t)
based on static and dynamic variables.

The features are ranked according to their contribution to g, (t), with Sever being the
most impactful, followed by Dest, Lfam, and Ncuid. Each dot represents the SHAP value
for a feature in a single prediction, where positive values (right of the vertical line) indicate
an increase in g, (), and negative values (left) indicate a decrease. The color gradient
shows the magnitudes of the features, with red representing high feature values (e.g., high
severe) and blue representing low values.

We observe that Sever and Dest consistently exert strong impacts on g,(t), while
features like Lfam and Ncuid show moderate and variable contributions in predictions,
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reflecting the interaction between clinical severity and contextual factors in determining
prioritization scores.

High
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Figure 4. SHAP summary plot illustrating global feature importance and local impact on model
predictions.

We performed a comparative analysis of the SHAP force plots for Patient 1 and Patient
14, highlighting differences in the feature contributions to their prioritization scores.

For Patient 1 (Figure 5), the final prioritization score of f(x) = 0.3177 is significantly
driven by positive contributions from Sever (severity, +1.71), Dolor (pain, +1.964), and
Tsuen (sleep disorders, +1.621). These contributions reflect the patient’s critical clinical.
However, features such as Lfam (capacity of participating in family activities, —0.4681) and
Dest (capacity to study, —0.03503) slightly reduce the prioritization score.

In contrast, Patient 14 (Figure 6) receives a lower prioritization score of f(x) = 0.1177,
predominantly influenced by negative contributions. Notably, Sever (severity, —1.406) and
Com (chances of developing comorbidities, —1.49) are the strongest factors that decrease the
score, suggesting less severe clinical conditions and reduced complexity.

This comparison underscores the role of severity (Sever) and clinical factors such as
pain (Dolor) in driving higher scores for Patient 1, while the absence of these factors in
Patient 14 leads to a substantially lower prioritization score.



Technologies 2025, 13, 72

14 of 20

higher = lower
0 ZE_" 0 '_'" 0 '_E" . 0 :_'" IL_E" 0.3_1" 0 '.-_E"
by ) o ) ) ({(({
Diras =2 ' Acc=3 | Urg=1.301 | Dolor = 1.964 | Ncuid=2 | Tsuen = 1.621 | Sever=1.71 Liam = -0.4681 | Dest = 0.03503
Figure 5. SHAP force plot for Patient 1.
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Figure 6. SHAP force plot for Patient 14.

To quantitatively assess the stability of the importance of the characteristic in the SHAP
analysis, we performed a preliminary stability evaluation that analyzed the consistency
of the SHAP values in different cross-validation folds (with k = 5). The results indicated
that the relative importance of key characteristics, such as severity Sever and urgency
Urg, remained stable, with variations below 5%. This suggests that the model’s feature
importance ranking is robust to changes in training data.

4.5. Impact of Dynamic Prioritization q,(t) on Waiting Time Management

We have demonstrated, through the results presented in Table 5 and Figure 7, that
dynamic prioritization q,(t) outperforms the static approach Pscore, reducing waiting
times by up to 26%. Unlike the static approach, our dynamic model combines static
and dynamic variables, enabling real-time adjustments that reflect the clinical evolution
of patients.

Although Pscore and g, (t) are calculated at different time points (t = 0 and t = 10, re-
spectively), we establish their comparability by considering Pscore as a special case of g,(t)
in which dynamic variables remain constant. Accordingly, as shown in Table 5, our compar-
ison between “Waiting Time Pscore (WTPs)” and “Waiting Time g, (t) (WTq,(t))”—which
translates Pscore into estimated waiting times—highlights the absence of dynamic adjust-
ments in Pscore that are captured with g, (t). This validates that g, (t) not only optimizes
surgical allocation by adapting to changes in patient clinical conditions, but also signifi-
cantly improves the management of the ENT unit, reducing waiting times and benefiting
both our clinical decision making and patient outcomes.

Table 5. Comparison of static and dynamic prioritization metrics and their impact on waiting times.

Patient Pscore gy (t=0) q,(t =10) WTPs WTg,(t) Impr(()‘;:jment
7 0.70 0.43 0.59 1.23 0.91 26.10
6 0.87 0.49 0.63 1.62 1.35 16.83
5 0.77 0.49 0.62 1.62 1.35 16.79
3 0.63 0.83 1.10 3.92 3.39 13.56
2 0.98 0.97 1.26 4.80 4.21 12.24
9 0.69 0.76 0.94 3.40 3.03 10.94
8 0.74 091 112 4.46 4.05 9.18
4 0.93 0.75 0.90 3.39 3.10 8.39
1 0.54 0.62 0.72 2.49 2.28 8.33
10 0.51 0.82 0.98 3.83 3.51 8.25
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Figure 7. Percentage improvement in waiting times for patients using dynamic prioritization (q,(t)).

5. Discussion

We propose a novel methodology that combines ML, stochastic simulations, and XAI
to dynamically prioritize surgical patients on waiting lists. One of the key strengths of our
approach lies in our ability to integrate dynamic and static patient variables, ensuring a
comprehensive evaluation of clinical, social, and psychological factors. The integration of
LightGBM for predictive modeling enables accurate predictions of dynamic prioritization
scores q,(t), while SHAP-based interpretability ensures that the decision-making process
remains transparent and clinically justifiable.

The stochastic simulation framework introduces dynamism, allowing the model to
account for temporal changes and variability in patient conditions. This adaptability
ensures that q,(t) evolves in response to patient needs, making the model more robust
and clinically relevant. Furthermore, our analysis demonstrates that the methodology is
scalable, applicable not only to the examples of Patients 1 and 14 but to the entire surgical
waiting list, providing a strategy for equitable and efficient resource allocation.

Our 26% reduction in waiting times represents a significant improvement compared
with similar methodologies in the literature. For example, Ref. [4] achieved a reduction of
15% to 20% using a risk-based prioritization approach, while [7] reported an improvement
of 22% using stochastic optimization techniques. By integrating machine learning, stochas-
tic simulations, and explainable Al, our methodology achieves slightly superior results to
these benchmarks, providing a more dynamic and interpretable framework. This makes it
possible to support healthcare care services in optimizing and allocating surgical resources
and improving patient outcomes in diverse clinical settings.

We acknowledge that a detailed cost-benefit analysis of implementing the proposed
system is required. However, we argue that the potential of the methodology to reduce
wait times by up to 26% for some patients and improve surgical resource allocation could
yield significant economic and operational benefits for healthcare systems. In future
work, we will focus on quantifying these benefits, including potential cost savings from
optimized resource utilization and improved patient outcomes, to provide a comprehensive
assessment of the value of the system.

Despite its strengths, there are limitations to consider. The dataset, while detailed, is
limited to 205 patients and specific to an ENT unit in Chile, constraining the generalizability
of the findings to other specialties or larger healthcare systems. Furthermore, the relatively
small size of the dataset raises concerns about potential impacts on model performance.
However, our choice of LightGBM over deep learning was deliberate, as gradient boosting
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methods are particularly well suited for smaller datasets, offering robust performance
through inherent regularization techniques that minimize the risk of overfitting. To further
ensure the reliability of our results, we employed cross-validation, which confirmed the
robustness and generalizability of the model. Furthermore, the dataset represents a high-
complexity otorhinolaryngology unit, providing rich and clinically relevant information
despite its size. Future studies will focus on validating the scalability and applicability of
our methodology with larger and more diverse datasets.

Certain variables, such as Rcuid and Ccrit, showed minimal impact on g, (t), raising
questions about their relevance or potential biases in the data collection process. Future
research should aim to validate our findings with larger and more diverse datasets, as
well as refine feature engineering to improve the relevance and predictive power of the
included variables. These efforts would improve the robustness and generalizability of our
methodology to broader clinical contexts.

The reliance on LightGBM, while advantageous for its efficiency and handling of
categorical variables, introduces some complexity in model training and parameter op-
timization. Although SHAP improves interpretability, we recognize the importance of
incorporating more clinical stakeholders and management professionals to ensure that the
model is aligned with clinical decision making and resource availability in each healthcare
facility. In future work, we aim to explore alternative ML techniques and integrate clinical
and non-clinical feedback from healthcare services to further refine the methodology.

Physician oversight in the prioritization process is critical. Although our methodology
leverages machine learning and stochastic simulations to provide dynamic prioritization
scores, these are intended as decision support tools rather than replacing clinical judgment.
Physicians retain the ultimate responsibility for validating and refining prioritization
decisions, ensuring alignment with patient-specific contexts and ethical considerations.
This hybrid approach fosters trust in the system and ensures that data-driven insights
complement, rather than replace, the expertise of the medical team.

Lastly, while our methodology demonstrates significant potential for improving surgi-
cal patient prioritization, its clinical implementation would require seamless integration
with existing hospital management systems. This includes automating data collection for
dynamic variables and providing real-time updates to healthcare providers. In addition,
extending this approach to other medical specialties could broaden its utility, allowing a
unified prioritization framework that can be adjusted to various clinical contexts. These
advances would further validate the effectiveness of the model and promote its adoption
in real-world healthcare settings.

We recognize the importance of rigorous validation of the mathematical framework
integrating LightGBM, stochastic simulations, and XAI. To address this, we employ mul-
tiple validation techniques, including k-fold cross-validation to ensure generalizability,
sensitivity analyses to evaluate the robustness of stochastic simulation parameters, and
stability assessments of SHAP-based feature importance across folds. These complemen-
tary approaches provide a robust foundation for the reliability and interpretability of the
framework. Future work will explore additional theoretical analyses and real-world case
studies to further validate its applicability in diverse clinical contexts.

6. Conclusions

In our work, we present a comprehensive and dynamic methodology to prioritize
surgical patients on waiting lists, integrating ML, stochastic simulations, and XAI. Using
the predictive power of LightGBM, we demonstrate that our approach accurately estimates
dynamic prioritization scores g, (t), with an MSE of 0.00018 and a high R? value of 0.96282,
showcasing its predictive reliability. Furthermore, SHAP-based interpretability highlights
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that the Sever variable is the most influential in the system, providing additional insights
to the healthcare team to make decision-making processes transparent and justifiable.
Furthermore, our methodology achieves a reduction in waiting times of up to 26%, further
validating its effectiveness in optimizing surgical prioritization.

Incorporating stochastic simulations allows our methodology to dynamically adapt
to temporal changes in patient conditions. Through simulation, we observed that g,(t)
evolves consistently with patient needs. For example, Patient 1’s g,(t) increased from
0.50 (in t = 0) to 1.026 (at t = 10), driven by a significant growth in dynamic variables
such as Sever and Tsuen. This adaptability ensures that our approach is suitable for
real-world scenarios where patient conditions fluctuate and healthcare resources must be
allocated dynamically.

Our results emphasize the ability of the model to capture and prioritize clinically rele-
vant variables. For example, SHAP analyses reveal that Sever contributes up to 1.71 points
to gp(t) in Patient 1, while non-clinical factors like Lfam (family participation capacity)
exert a moderating influence, reducing scores by up to 0.468. This fine-grained analysis
ensures that the model’s predictions align with both medical guidelines and holistic patient
care considerations. The scalability of our methodology further ensures its applicability to
entire surgical waiting lists and diverse healthcare systems.

Despite its strengths, we acknowledge several limitations in our study. The dataset
is specific to an ENT unit in Chile, which may limit the generalizability of our findings to
other medical specialties or geographic regions. Furthermore, while our model achieves
high predictive accuracy, its implementation requires further validation from other hospital
stakeholders, such as clinical and non-clinical managers, to ensure alignment with real-
world decision-making processes.

In conclusion, we present a dynamic, interpretable, and data-driven framework to
address surgical waiting lists, integrating predictive accuracy, adaptability, and explainabil-
ity. By prioritizing patients based on evolving clinical and social factors, our methodology
offers a scalable and equitable solution to resource allocation challenges. Future efforts
should focus on extending the dataset to include patients from multiple specialties and
healthcare systems to enhance the generalizability of the findings; conducting a detailed
cost-benefit analysis to quantify the economic and operational impact of implementing the
proposed system; exploring alternative machine learning models and feature engineering
strategies to improve predictive accuracy and interpretability; and developing user-centric
interfaces to facilitate the integration of the prioritization system into clinical workflows,
ensuring practical applicability and usability in real-world settings.
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